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A Virtual Space-Time Adaptive Beamforming Method
for Space-Time Antijamming

Fulai Liu1, *, Ruiyan Du1, *, and Xiaoyu Bai2

Abstract—Space-time antijamming problem has received significant attention recently in the passive
radar systems, such as Global Navigation Satellite Systems (GNSS). The space-time beamformer
contains two adaptive filters, i.e., spatial filter and temporal filter for canceling interference signals.
However, most of the works on space-time antijamming problem presented in the literature require
multiple antennas and delay taps. In this paper, a virtual space-time adaptive beamforming method
is proposed. The temporal smoothing technique is utilized to add a structure of the received data
model for the implementation of the proposed method without delay taps. Compared with the previous
works, the presented method offers a number of advantages over other recently proposed algorithms.
For example, the space-time weight vector can be obtained by simple algebraic operations with lower
computational complexity, since the matrix inversion is avoided. Furthermore, the system overhead can
be reduced obviously since the temporal smoothing technology is used instead of multiple delay taps.
Simulation results are presented to verify the effectiveness of the proposed method.

1. INTRODUCTION

Adaptive beamforming is a method for receiving the interested signal of specific direction while
suppressing the jamming signals of other directions through an array of antennas. The minimum
variance distortionless response (MVDR) algorithm is one of the popular approaches, which minimizes
the array output power while maintains a distortionless mainlobe response [1]. Unfortunately, the
MVDR beamformer may have unacceptably high sidelobes, which may lead to significant performance
degradation in the case of unexpected interfering signals [2]. A large number of robust beamforming
methods based on MVDR have been presented later [2–9]. For example, covariance matrix tapers and
derivative constraints are used in [2]. White noise gain constraint is considered in [3]. Space-time
averaging techniques and rotation techniques of the steering vectors are proposed in [4]. A new method
based on amplitude-only perturbations is given in [5]. A multi-parametric quadratic programming
method is presented in [6], and a blind adaptive beamforming method called power inversion is proposed
in [7] for low signal-noise-ratio (SNR) scenario. Additionally, the genetic algorithm (GA) is considered
in [8] and [9]. The algorithm in [8] aims at adaptively eliminating interfering signals, and an enhanced
GA method is proposed in [9] to synthesize planar, sparse and aperiodic arrays.

However, in general, the adaptive beamforming method above can only process N − 1 jamming
signals using an N -element array. To overcome the shortcoming, temporal degrees of freedom are
also employed, and a space-time processor is introduced, leading to the space-time adaptive processing
(STAP) technique [10]. In STAP, multiple delay taps, which can be regarded as a finite impulse response
(FIR) filter, are placed after each sensor, and it can process many more narrowband interference sources
than the number of sensors via the temporal degrees of freedom [11, 12]. In STAP, the dimension equals
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the product of the number of antenna elements and the order of the FIR filter. The STAP methods
have found numerous applications in modern systems encountered in communications [13], radar [14],
and navigation [15–17].

Numerous algorithms with different tradeoffs between performance and complexity for designing
STAP have been proposed [18–24]. A STAP method with sub-band structure, called sub-band adaptive
array (SBAA) is put forward in [18, 19]. The SBAA can make parallel processing at high speed
and reduce the computational complexity. A rank-reducing STAP algorithm is proposed in [20].
The rank-reducing STAP method does not require matrix inversion and has a lower computational
complexity. Another method to reduce the computational complexity without severely affecting the
performance is spatial frequency adaptive processing, which transfers the temporal domain processing to
frequency domain processing through the Fourier transform or bandpass filter [21]. A robust space-time
beamforming based on second-order cone programming is presented in [22]. In the presented method,
all the line-of-sight signals are pointed by the array, and the temporal reference of the signal is exploited.
The work also presents an extension of this beamforming that takes into account the incertitudes in
the steering matrix due to pointing errors or array miscalibration. A multiple constraints space-time
beamformer is given by [23]. The proposed space-time beamformer can be operated in multiple linear
constraints mode to combat the angle mismatch problem. The antijamming performance of the spatial
adaptive processing and STAP is discussed in [24].

However, all of the above space-time beamforming methods require multiple antennas with delay
taps which incur high system overhead. In this paper, an effective virtual space-time beamforming
method is proposed. The temporal smoothing technique is utilized to add a structure of the received
data model for the implementation of proposed method based on multiple antennas without delay taps.
The proposed approach makes use of the Frame method to obtain the inverse matrix to avoid the
complexities of matrix inversion. The rest of the paper is organized as follows. The data model is
described in Section 2. Section 3 introduces the presented method. Section 4 shows some simulation
results. Finally, the conclusion is given in Section 5.

2. DATA MODEL

Consider a uniform linear array (ULA) of M elements equispaced by d. Employing the first element of
the ULA as the phase reference, the array manifold can be written as

aM (f, θ) =
[
1, ejμ, . . . , ej(M−1)μ

]T
(1)

where μ = (2πf/c)d sin(θ) with f and θ denoting the frequency and direction of arrival (DOA),
respectively. c stands for the velocity of light. d is equal to the interelement spacing.

Suppose that there are q narrowband sources of interest, with complex baseband representations
si(t), for i = 1, . . . , q. Suppose that the ith source has a carrier frequency of fi. The signal received at
the kth antenna is [25]

xk(t) =
q∑

i=1

ak(fi, θi)ej2πfitsi(t) + wk(t) (2)

where ak(fi, θi) is the antenna response of the kth antenna to the signal from the direction θi, and wk(t)
represents the output of the additive noise of the kth sensor.

The observed signals at the ULA are given by

x(t) = As(t) + w(t) (3)

The matrices and vectors in Eq. (3) have the following forms

x (t) = [x1(t), · · · , xM (t)]T

A = [aM (f1, θ1), · · · ,aM (fq, θq)]

s(t) = [s1(t), · · · , sq(t)]T

w(t) = [w1(t), · · · , wM (t)]T
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where xk(t) and wk(t) (k = 1, . . . ,M) denote the output signal and the additive noise of the kth sensor,
respectively. aM (fk, θk) (k = 1, . . . , q) is the steering vector for the kth source, which is defined by
Eq. (1). The superscript (·)T represents the transpose operation. Assume that wk(t) is a complex
Gaussian random process with zero-mean and variance σ2

n, and the noise wk(t) is uncorrelated with
si(t).

Under the above assumptions, it can be easily seen that E{w(t)wH(t)} = σ2
nIM where E{·}

represents the statistical average operation, and the superscript (·)H denotes the Hermitian operation.
IM is the M × M identity matrix.

Assume that P is the sample rate, which is much higher than the data rate of each source. The
data samples at the receiver are

x
( n

P

)
=

q∑
i=1

a(fi, θi)ej(2π/P )finsi

( n

P

)
+ w

( n

P

)
(4)

In matrix form, it can be written as

x
( n

P

)
= AΦns

( n

P

)
+ w

( n

P

)
(5)

where Φ = diag{(φ1, . . . , φq)} with φi = ej(2π/P )fi for i = 1, . . . , q, which includes the information of
the frequencies of incident signal sources, e.g., we refer matrix Φ as time factor matrix and its diagonal
element as time factor. Assume that we have collected N samples of the array output x(t) at a rate P
into the M × N data matrix, i.e.,

X
( n

P

)
= A

[
s(0),Φs

(
1
P

)
, . . . ,ΦN−1s

(
N − 1

P

)]
+ W (6)

where W is a matrix collecting N samples of the M × 1 array noise vector.

3. ALGORITHM FORMULATION

3.1. Temporal Smoothing

Consider a data stacking technique, which is referred as temporal smoothing. An m-factor temporal
smoothed data matrix is constructed by stacking m temporally shifted versions of the original data
matrix. This results in the following mM × (N − m + 1) matrix

Xm =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

A
[
s(0),Φs

(
1
P

)
, . . . ,ΦN−ms

(
N − m

P

)]

AΦ
[
s
(

1
P

)
,Φs

(
2
P

)
, . . .

]

...

AΦm−1

[
s
(

m − 1
P

)
,Φs

(m

P

)
, . . .

]

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+ Wm (7)

where Wm represents the noise term constructed from W in a similar way as Xm obtained from X.
Assume that the signals are narrow band, i.e., s(t) ≈ s(t + 1/P ) ≈ . . . ≈ s(t + (m− 1)/P ). In this case,
all the block rows in the right-hand term of Eq. (7) are approximately equal, which means that Xm has
the following factorization

Xm ≈

⎡
⎢⎢⎣

A
AΦ

...
AΦm−1

⎤
⎥⎥⎦

[
s(0),Φs

(
1
P

)
, . . . ,ΦN−ms

(
N − m

P

)]
+ Wm

= AmFs + Wm (8)
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where Fs = [s(0),Φs( 1
P ), . . . ,ΦN−ms(N−m

P )]. Am is given by

Am =

⎡
⎢⎢⎣

A
AΦ

...
AΦm−1

⎤
⎥⎥⎦ = A� G

= [aM (f1, θ1) ⊗ gm(f1), . . . ,aM (fq, θq) ⊗ gm(fq)] (9)

where A = [aM (f1, θ1), . . . ,aM (fq, θq)], G = [gm(f1), . . . ,gm(fq)] with gm(fk) = [1, φk, . . . , φ
(m−1)
k ]T ,

and ⊗ denotes Kronecker product.

3.2. Virtual Space-Time Manifold

Similar to the array response vector aM (f, θ), we can define the virtual space-time response vector
umM (f, θ) as

umM (f, θ) = aM (f, θ)⊗ gm(f) (10)

This mM -dimensional vector umM (f, θ) is the response of the array to a incoming signal with direction
θ and frequency f . As θ and f vary over the dimensions of angle and frequency, the vector umM (f, θ)
traces a multidimensional space-time manifold, which is the combination of the array manifold aM (f, θ)
and the time manifold gm(f), and it is determined by the array geometry, signal frequency and the
sampling rate jointly.

Thus, Equation (8) can be rewritten as

Xm = UFs + Wm (11)

where U = Am = [umM (f1, θ1), . . . ,umM (fq, θq)]. In other words, U is referred as the virtual space-time
array steering matrix.

Hence, the covariance matrix of the m-factor temporal smoothed data matrix Xm can be expressed
as

Rm = E
{
XmXH

m

}
= URsUH + σ2

nImM (12)

where the signal covariance matrix Rs = E{s(t)sH(t)}. For the sake of convenience, Rs is assumed to
be a full rank matrix, i.e., all sources are not fully correlated.

3.3. The Virtual Space-Time Weight Vector

The virtual space-time beamformer output is given by

y(k) = wHxm(k) k = 1, . . . , N − m + 1 (13)

where w is the mM × 1 weight vector, and xm(k) is the kth column vector of Xm.
The MVDR beamformer minimizes the array output power while keeping the unit gain in the

desired direction and frequency of the interesting signal

min
w

wHRmw subject to wHu(f0, θ0) = 1 (14)

where u(f0, θ0) is the mM × 1 virtual space-time steering vector of the desired signal.
A closed-form solution to Eq. (14) is given by

wMVDR =
1

u(f0, θ0)HR−1
m u(f0, θ0)

R−1
m u(f0, θ0). (15)
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3.4. Frame Method

As discussed above, the inverse R−1
m of Rm is required for calculating the virtual space-time weight

vector w. In this subsection, we consider the inverse problem. To reduce the computation cost of the
inverse matrix, we use the following Frame algorithm [26].

Summary of Frame method

A1 = Rm, p1 = trace(A1), B1 = A1 − p1ImM

A2 = A1B1, p2 = 1
2trace(A2), B2 = A2 − p2ImM

...
...

...
An = A1Bn−1, pn = 1

ntrace(An), Bn = An − pnImM

⎫⎪⎪⎬
⎪⎪⎭

(16)

From the Frame algorithm, it is easy to know that if Rm is a nonsingular matrix, then R−1
m =

1
pn

Bn−1.

3.5. Summary of the Proposed Method

Step. 1 Collect the sample data matrix X according to Eq. (6).
Step. 2 Form the m-factor temporal smoothed data matrix Xm by Eq. (7).
Step. 3 Estimate the covariance matrix R̂m given by

R̂m =
1

N − m + 1

N−m+1∑
k=1

xm(k)xH
m(k)

where xm(k) denotes the kth volume vector of Xm.
Step. 4 Compute the inverse R̂

−1
m of R̂m by the Frame method.

Step. 5 Compute the virtual space-time wight vector w according to Eq. (15).

4. SIMULATION RESULTS

In this section, simulation results are provided to illustrate the performance of the proposed method.
Consider an ULA with M = 5 antenna elements and equispaced by d = 0.125 m. Assume that there
are four far-field signals impinging on the antenna array. Their DOAs are θ1 = −60◦, θ2 = 0◦, θ3 =
30◦, θ4 = 0◦, respectively. Their corresponding center frequencies are f1 = 0.9GHz, f2 = 1GHz, f3 =
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Figure 1. The three-dimensional mesh diagram for space frequency response.
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Figure 2. The contour plot of the proposed method.
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Figure 3. Direction patterns for different frequency with N = 128, m = 3, and M = 5.

1.1GHz, f4 = 1.2GHz, respectively. Their SNRs are equal to snr1 = 25dB, snr2 = 30 dB, snr3 =
25dB, snr4 = −10 dB. The sampling rate is set to 4.8 GHz. The number of samples N and temporal
smoothing factor m are set to N = 128 and m = 3, respectively.

Figure 1 shows a three-dimensional mesh diagram for space frequency response. In the simulation,
the direction and center frequency of the desired signal are θ4 = 0◦ and f4 = 1.2 GHz, respectively. The
other three signals are interferer signals. As shown in the figure, the weight vector calculated by the
proposed method can achieve satisfactory space frequency response performance, such as deeper nulling
level.

Figure 2 shows a contour plot of the proposed method with center frequencies ranging from 0.6 GHz
to 1.4 GHz and DOAs ranging from −90◦ to 90◦. From this figure, it is easy to know that there are three
interferer signals located at (θ1, f1) = (−60◦, 0.9GHz), (θ2, f2) = (0◦, 1GHz), (θ3, f3) = (30◦, 1.1GHz),



Progress In Electromagnetics Research M, Vol. 58, 2017 189

respectively. That is, the proposed method can suppress the interferer signals effectively and maintain
a distortionless response for the desired signal located at (θ4, f4) = (0◦, 1.2 GHz).

Figure 3 shows the space response of the proposed approach for different frequency. From this
figure, we can observe that a distortionless space response is obtained only at the desired DOA θ4 = 0◦
for the center frequency f4 = 1.2 GHz and three space nulls located at (θ1 = −60◦, θ2 = 0◦, θ3 = 30◦),
for the center frequencies (f1 = 0.9GHz, f2 = 1 GHz, f3 = 1.1GHz), respectively.

Figure 4 plots the output SINR of the proposed method when the temporal smoothed factor m
varies from 2 to 4. Obviously, (1) the output SINR of the virtual space-time beamforming method
is much higher than MVDR. (2) The difference between the performances of the two algorithms is
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Figure 4. The output SINR versus input SNR for the proposed algorithm and MVDR with N = 128
and M = 5.
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relatively larger for lower input SNR and becomes smaller when the input SNR is high. (3) The
temporal smoothed factor m impacts the output SINR of the proposed method significantly, when the
input SNR is low, a larger factor m will bring a better result, but the tendency is just contrary when the
input SNR is high. (4) The performance of the virtual space-time beamforming method tends to the
performance of MVDR when m becomes less and less. When m = 1, the two methods are equivalent.
So, the virtual space-time beamforming method can be regarded as the extended version of MVDR
at the two dimensions of space and time. In brief, the virtual space-time beamforming method is an
improved method based on the MVDR, and it is more appropriate for relatively lower SNR scenario.
Additionally, for different input SNRs, the optimal temporal smoothed factor m is different.

Figure 5 shows the influence of snapshots on the output SINR with input SNR = 30 dB. Evidently,
(1) the output SINR of the virtual space-time beamforming method is much higher than MVDR when
snapshots N > 50, and the difference between the output SINRs of the two methods becomes larger and
larger with the increasing snapshots N . (2) The temporal smoothed factor m impacts the performance
of the virtual space-time beamforming method significantly, and for SNR = 30 dB, smaller factor m
brings a better performance, which is consistent with Figure 4. (3) The performance of the virtual
space-time beamforming method with m = 1 is the same as the performance of MVDR, which is also
similar to Figure 4.

5. CONCLUSIONS

In this paper, we present a virtual space-time beamforming method for space-time antijamming problem.
The temporal smoothing technique is utilized to add a structure of the received data model such that
a virtual space-time array response data can be formed without delay taps. Additionally, the proposed
approach makes use of the Frame method to obtain the inverse matrix of the covariance matrix of the
temporal smoothed data matrix, so that it avoids the complexities of matrix inversion. Simulations are
presented in order to illustrate the performance of the proposed method. It is shown that the presented
approach has better space-time antijamming performances than the conventional MVDR method.

ACKNOWLEDGMENT

This work was supported by the Program for New Century Excellent Talents in University (NCET-
13-0105), the Support Program for Hundreds of Outstanding Innovative Talents in Higher Education
Institutions of Hebei Province, under Grant No. BR2-259, the Natural Science Foundation of Hebei
Province (No. F2016501139), the Specialized Research Fund for the Doctoral Program of Higher
Education of China (No. 20130042110003), and the Fundamental Research Funds for the Central
Universities under Grant (No. N142302001).

REFERENCES

1. Joseph, R. G., “Theory and application of covariance matrix tapers for robust adaptive
beamforming,” IEEE Transactions on Signal Processing, Vol. 47, No. 4, 977–985, 1999.

2. Liu, F. L., C. Y. Sun, J. K. Wang, and R. Y. Du, “A robust adaptive beamforming optimization
control method via second-order cone programming for bistatic MIMO radar systems,” ICIC
Express Letters, Vol. 4, No. 5(B), 1823–1830, 2010.

3. Cox, H., R. Zeskind, and M. Owen, “Robust adaptive beamforming,” IEEE Transactions on
Acoustics, Speech, and Signal Processing, Vol. 35, No. 10, 1365–1376, 1987.

4. Liu, F. L., R. Y. Du, J. K. Wang, K. Wang, and B. Wang, “A robust adaptive control method for
widening interference nulls,” IET International Radar Conference, 2009.

5. Zeng, Y. B., “Array pattern nulling by amplitude-only perturbations,” Journal of Electronics and
Information Technology, Vol. 28, No. 11, 2073–2076, 2006.

6. Liu, F. L., S. M. Guo, Q. P. Zhou, and R. Y. Du, “Robust MVDR beamformer for nulling level
control via multi-parametric quadratic programming,” Progress In Electromagnetics Research C ,
Vol. 20, 239–254, 2011.



Progress In Electromagnetics Research M, Vol. 58, 2017 191

7. Wang, Y. D., F. Q. Chen, J. W. Nie, and G. F. Sun, “Optimum reference element selection for
GNSS power-inversion adaptive arrays,” Electronics Letters, Vol. 52, No. 20, 1723–1725, 2016.

8. Massa, A., M. Donelli, F. De Natale, S. Caorsi, and A. Lommi, “Planar antenna array control with
genetic algorithms and adaptive array theory,” IEEE Transactions on Antennas and Propagation,
Vol. 52, No. 11, 2919–2924, 2004.

9. Donelli, M., S. Caorsi, F. De Natale, D. Franceschini, and A. Massa, “A versatile enhanced genetic
algorithm for planar array design,” Journal of Electromagnetic Waves and Applications, Vol. 18,
No. 11, 1533–1548, 2004.

10. Gao, G. X., M. Sgammini, M. Lu, and N. Kubo, “Protecting GNSS receivers from jamming and
interference,” Proceedings of the IEEE, Vol. 104, No. 6, 1327–1338, 2016.

11. Zhang, X. Y., X. H. Wang, and G. Z. Fan, “Research on knowledge-based STAP technology,” IET
International Radar Conference, 2009.

12. Zhao, X., L. Zhao, and M. Wen, “A novel GPS space-time anti-jamming scheme,” Journal of
Harbin Engineering University, Vol. 32, No. 3, 322–327, 2011.

13. Paulraj, A. J. and C. B. Papadias, “Space-time processing for wireless communications,” IEEE
Signal Process Magazine, Vol. 14, No. 6, 49–83, 1997.

14. Setlur, P. and M. Rangaswamy, “Waveform design for radar STAP in signal dependent
interference,” IEEE Transactions on Signal Processing, Vol. 64, No. 1, 19–34, 2016.

15. Xiong, P., M. Medley, and S. Batalama, “Spatial and temporal processing for global navigation
satellite systems: The GPS receiver paradigm,” IEEE Transactions on Aerospace and Electronic
Systems, Vol. 39, No. 4, 1471–1484, 2003.

16. Azaro, R., F. De Natale, M. Donelli, A. Massa, and E. Zeni, “Optimized design of a
multifunction/multiband antenna for automotive rescue systems,” IEEE Transactions on Antennas
and Propagation, Vol. 54, No. 2, 392–400, 2006.

17. Azaro, R., F. De Natale, M. Donelli, E. Zeni, and A. Massa, “Synthesis of a prefractal dual-
band monopolar antenna for GPS applications,” IEEE Antennas and Wireless Propagation Letters,
Vol. 5, No. 1, 361–364, 2006.

18. Yao, H. C., H. L. Wang, and K. Hu, “Design and implementation of navigation anti-jam terminal
based on subband array processing technology,” Fire Control Command Control, Vol. 37, No. 3,
617–622, 2012.

19. Firoozabadi, A. D. and H. R. Abutalebi, “Combination of nested microphone array and subband
processing for multiple simultaneous speaker localization,” IEEE International Symposium on
Telecommunications, 907–912, 2012.

20. Goldstein, J. S., I. S. Reed, and L. L. Scharf, “A multistage representation of the wiener filter based
on orthogonal projections,” IEEE Transactions on Information Theory, Vol. 44, No. 7, 492–496,
1997.

21. Gupta, I. J. and T. D. Moore, “Space-frequency adaptive processing (SFAP) for RFI mitigation
in spread spectrum receivers,” IEEE Antennas and Propagation Society International Symposium,
No. 4, 172–175, 2003.

22. Fernández-Prades, C. and J. A. Fernández-Rubio, “Robust space-time beamforming in GNSS by
means of second-order cone programming,” IEEE International Conference on Acoustics, 2004.

23. Deng, J. H., J. K. Wang, C. Y. Lin, and S. M. Liao, “Adaptive space-time beamforming technique
for passive radar system with ultra low signal to interference ratio,” IEEE International Conference
on Wireless Information Technology and Systems, 2010.

24. Zhao, H. W., Y. F. Shi, B. Q. Zhang, and M. M. Shi, “Analysis and simulation of interference
suppression for space-time adaptive processing,” IEEE International Conference on Signal
Processing , 2014.

25. Liu, F. L., J. K. Wang, and R. Y. Du, “Unitary-JAFE algorithm for joint angle-frequency estimation
based on Frame-Newton method,” Signal Processing, Vol. 90, No. 3, 809–820, 2010.

26. Zhang, K. Y. and Z. Xu, “Numerical algebra,” Science Press, Beijing, 2000.


