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Orthogonal Radiation Field Construction for Microwave Staring
Correlated Imaging

Bo Liu* and Dongjin Wang

Abstract—Microwave staring correlated imaging (MSCI) achieves high resolution imaging results by
employing the temporal-spatial independent radiation field. In MSCI, the imaging performance is
determined by the independent degree of the radiation field. In this paper, a novel kind of ideal
independent radiation field named the orthogonal radiation field (ORF) is constructed for MSCI.
Firstly, a group of two-dimensional (2-D) orthogonal basis functions are used to construct the ideal
ORF samples. Then a method is proposed to construct the ORF samples by designing the transmitting
signals. The numerical simulations validate the feasibility of this method. Finally, when the ORF is
applied in MSCI, the numerical simulations achieve high resolution imaging results and demonstrate
good imaging performance that is robust to noise.

1. INTRODUCTION

Microwave staring correlated imaging (MSCI) is a newly proposed high resolution microwave imaging
technique [1–3]. The essential principle of MSCI is to construct the temporal-spatial independent
radiation field in the imaging region, to make scatters located at different positions reflect independent
radiation field from each other, and then to reconstruct the target image by utilizing the echo signals
and the known radiation field samples.

The key idea of MSCI is to construct the temporal-spatial independent radiation field. In recent
years, several methods have been studied to construct the temporal-spatial independent radiation field.
Using the random modulated signals to construct the field is the most common method, such as the
pseudo-random gold sequence is utilized in [1, 2], the signals modulated with zero-mean Gaussian noise
upon frequency, amplitude, and phase respectively are used in [3–5], the band-pass white Gaussian noise
is used in [6, 7], and random frequency hopping signals are used in [8]. Moreover, the effect of array
geometry on imaging performance is analyzed based on the effective rank theory, and useful design
guidance about the array geometry is obtained [9]. In [10], the plasma lens array is used to modulate
the azimuth wavefront. In [11, 12], the complex radiation patterns are generated by the mode-mixing
cavity and printed aperiodic cavity respectively. In [13, 14], metamaterials enable the design of a planar
antenna that illuminates a scene with dramatically varying radiation patterns as function of frequency.
In MSCI, the SNR is generally required to be not less than 20 dB by employing the radiation field
constructed by the existing methods, that means the imaging model is sensitive to noise. Therefore,
the independent degree of the radiation field still needs to be improved.

In this paper, we focus on the construction of temporal-spatial independent radiation field and
construct a novel kind of ideal independent radiation field, which is named the orthogonal radiation
field. Firstly, we use a group of 2-D orthogonal basis functions to construct the ideal ORF samples. This
is a significant difference from the existing methods. It ensures the high independent degree between
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the radiation field samples. Then the ideal ORF samples are approximated by properly designing the
transmitting signals. Suppose that each signal is made up of N known frequencies, and the signal is
determined when the complex amplitude of each frequency is obtained. The details of this method
are described in Section 3. Finally, when the approximated ORF samples are applied in MSCI, high
resolution imaging results with good robustness to noise are obtained.

The rest of this paper is organized as follows. In Section 2, the imaging model of MSCI is established.
The details of the ORF construction are presented in Section 3. In Section 4, the numerical simulations
are presented, and we make a concluding remark in Section 5 to summarize this paper.

2. MICROWAVE STARING CORRELATED IMAGING MODEL

The geometry of MSCI system is illustrated in Figure 1. There is an array of M transmitting elements
and a receiving element. Let (x, y, z) be Cartesian coordinates with the origin O. The array aperture is
labeled as D, and the 2-D imaging region is labeled as S. r′m, r′′0 and r is the position vector of m-th
transmitting element, the receiving element and an arbitrary point within S, respectively.

Figure 1. The geometry of MSCI.

The radiation field Ei(r, t) generated by the M transmitting elements can be expressed as [1]

Ei (r,t) =
M∑

m=1

∫
Dm

1
4π|r − r′|Am

(
r′

)
fm

(
t − |r− r′|

c

)
dr′ (1)

where c denotes the speed of light, Dm the sub-aperture of the m-th transmitting element, fm(t) the
signal of the m-th transmitting element, and Am(r′) the amplitude of the source in the sub-aperture
Dm.

The received echo signal sr(t) of the target in the imaging region can be expressed as follows

sr (t) =
∫
S

1
4π|r − r′′0 |

Ei

(
r, t − |r− r′′0 |

c

)
σ(r)dr + n (t) (2)
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where σ(r) denotes the backscattering coefficient distribution of the target in the imaging region, and
the n(t) denotes the addictive noise. We define the modified radiation field Er(r,t) as

Er (r,t) =
1

4π|r − r′′0 |
Ei

(
r, t − |r− r′′0 |

c

)
(3)

Unless otherwise explicitly stated, the radiation field refers to Er(r,t) in the rest of this paper. Therefore,
the received echo signal can be written as

sr (t) =
∫
S

Er (r,t)σ(r)dr + n (t) (4)

According to Eq. (4), the time domain is discretized as {t1, t2, . . . , tk, . . . , tK} and the imaging region
discretized as {r1, r2, . . . , rl, . . . , rL}, and rl is the position vector of the l-th imaging cell center. The
imaging region is divided into L imaging cells according to the minimum unit to be resolved. Let
σl = σ(rl) stand for the scattering feature of the l-th imaging cell. The scattering coefficient vector is
expressed as

σ = [σ1, σ2, . . . , σl, . . . σL]T (5)

Therefore, the imaging model for MSCI can be described as a following matrix equation

sr = Er · σ + n (6)

where sr = [sr(t1), sr(t2), . . . , sr(tK)]T represents echo signal vector, n =[n(t1), n(t2), . . . , n(tK)]
represents the noise vector, and Er denotes the imaging matrix as

Er =

⎡
⎢⎢⎢⎣

Er (r1, t1) Er (r2, t1) . . . Er (rL, t1)
Er (r1, t2) Er (r2, t2) . . . Er (rL, t2)

...
...

. . .
...

Er (r1, tK) Er (r2, tK) . . . Er (rL, tK)

⎤
⎥⎥⎥⎦ (7)

When the imaging matrix is full rank, namely rank(Er) = L, Equation (3) has a unique solution.
However, if the independent degree between the radiation samples is not high, it will make the imaging
matrix Er ill-conditioned. And the imaging model in Eq. (6) will be very sensitive to noise. According
to Eq. (7), the row vector of the imaging matrix is obtained by discretization of the radiation field at
the sampling time. Thus, the row rank of Er relies on the independent degree of radiation field at
different sampling times. Therefore, how to construct the radiation field samples with high independent
degree is a key problem of MSCI. Focusing on this problem, this paper constructs a novel kind of ideal
independent radiation field, which is named the orthogonal radiation field.

3. ORTHOGONAL RADIATION FIELD CONSTRUCTION

Assuming that Er(r, tk1) and Er(r, tk2) are two radiation field samples. The inner product Γ(tk1 , tk2)
of the two samples is given by

Γ (tk1, tk2) =
∫
S

Er (r, tk1) · Er (r, tk2)
∗ dr (8)

If Γ(tk1, tk2) = 0, when tk1 �= tk2 , the two radiation field samples are termed to be orthogonal to each
other. According to this definition, the radiation field samples of any two different sampling times are
orthogonal. Thus, it ensures that the row rank of the imaging matrix is equal to the radiation field
samples when K ≤ L. More significantly, it makes the row vectors of the imaging matrix are orthogonal
to each other.

In this paper, the construction of ORF consists of two steps. Firstly, we choose a group of 2-D
orthogonal basis functions as ideal ORF samples. And then the ideal ORF samples are approximated
by properly designing the signals of the transmitting elements.
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There are many kinds of 2-D orthogonal basis functions. The general form of a group of orthogonal
basis functions can be expressed as

{Ψ1 (r) ,Ψ2 (r) , . . . ,Ψk (r) , . . .} , r ∈ S (9)

where Ψk(r) is considered as the ideal ORF sample that Er(r, tk) is going to approximate.
Assuming that Er(r, tk) = Ψk(r), substitute Eq. (1) to Eq. (3), then Ψk(r) can be expressed as

Ψk (r) =
1

(4π)2 |r − r′′0|
M∑

m=1

∫
Dm

1
|r− r′|Am

(
r′

)
fm(tk − |r− r′|

c
− |r− r′′0 |

c
)dr′ (10)

Assume that Fm(ω) is the Fourier transform result of fm(t), and it is known that the spectrum range
of this signal is ωL to ωH . Thus fm(t) can be expressed as

fm (t) =
1
2π

∫ ωH

ωL

Fm (ω) ejωtdω (11)

Further, the spectral domain is discretized as {ω1, ω2, . . . , ωn, . . . , ωN}, and ωn is

ωn = ωL + (n − 1) · Δω (12)

where Δω = (ωH − ωL)/N . Thus fm(t) can be written as

fm (t) =
Δω

2π

N∑
n=1

Fm (ωn) ejωnt (13)

According to Eq. (13), if we calculate the value of Fm(ωn), the signal fm(t) can be determined.
Substituting Eq. (13) to Eq. (10), we can obtain

Ψk (r) =
M∑

m=1

N∑
n=1

Φm,n (r, tk)Fm (ωn) (14)

where

Φm,n (r, tk) =
Δω

32π3|r − r′′0|
∫

Dm

1
|r − r′|Am

(
r′

)
e
jωn

(
tk− |r−r′|

c
− |r−r′′0 |

c

)
dr′ (15)

In Eq. (14), r is discretized as {r1, r2, . . . , rq, . . . , rQ}. And the radiation field values at these points are
arranged into a vector as

erk = [Ψk (r1) ,Ψk (r2) , . . . ,Ψk (rq) , . . . ,Ψk (rQ)]T (16)

Therefore, Eq. (14) can be described as the following matrix equation

erk = Φk · F (17)

where,

Φk =

⎡
⎢⎢⎢⎣

Φ1,1 (r1, tk) Φ1,2 (r1, tk) . . . Φ1,N (r1, tk) . . . ΦM,1 (r1, tk) ΦM,2 (r1, tk) . . . ΦM,N (r1, tk)
Φ1,1 (r2, tk) Φ1,2 (r2, tk) . . . Φ1,N (r2, tk) . . . ΦM,1 (r2, tk) ΦM,2 (r2, tk) . . . ΦM,N (r2, tk)

...
...

. . .
...

. . .
...

...
. . .

...
Φ1,1 (rQ, tk) Φ1,2 (rQ, tk) . . . Φ1,N (rQ, tk) . . . ΦM,1 (rQ, tk) ΦM,2 (rQ, tk) . . . ΦM,N (rQ, tk)

⎤
⎥⎥⎥⎦(18)

F =[ F1 (ω1) F1 (ω2) . . . F1 (ωN ) . . . FM (ω1) FM (ω2) . . . FM (ωN ) ]T (19)

With known erk and Φk, the result of spectrum vector F is achieved by utilizing least squares (LS)
method as

F =
(
ΦT

k ·Φk

)−1 · ΦT
k · erk (20)

When the spectrum vector F is known, the signal of each transmitting element can be obtained by
Eq. (13). And the approximate ORF sample Er(r, tk) can be calculated by Eq. (3) or (14).
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4. NUMERICAL SIMULATIONS

In this section, numerical experiments are performed to validate the performance of the proposed scheme.
Assume that the 5 × 5 uniform spacing 2-D array with spacing d = 1 m is located on the XOY plane.

1.5

1

0.5

0

-0.5

-1

10
-1.5

5
0

-5
-10

10
5

0
-5

-10
y/m x/m

1.5

1

0.5

0

-0.5

-1

10
-1.5

5
0

-5
-10

10
5

0
-5

-10
y/m x/m

(e) (f)

1.5

1

0.5

0

-0.5

-1

10
-1.5

5
0

-5
-10

10
5

0
-5

-10
y/m x/m

1.5

1

0.5

0

-0.5

-1

10
-1.5

5
0

-5
-10

10
5

0
-5

-10
y/m x/m

1.5

1

0.5

0

-0.5

-1

10
-1.5

5
0

-5
-10

10
5

0
-5

-10
y/m x/m

1.5

1

0.5

0

-0.5

-1

10
-1.5

5
0

-5
-10

10
5

0
-5

-10
y/m x/m

(a) (b)

(c) (d)

Figure 2. Radiation field samples approximate to different orthogonal basis functions. (a) Orthogonal
basis (i = 3, j = 0). (b) Radiation field (i = 3, j = 0). (c) Orthogonal basis (i = 3, j = 3). (d)
Radiation field (i = 3, j = 3). (e) Orthogonal basis (i = 5, j = 5). (f) Radiation field (i = 5, j = 5).
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The receiver is located at the origin O. The distance between the array center and the imaging region
center is 100 m. In the experiments, the imaging region is 20m × 20m.

4.1. Orthogonal Radiation Field Approximation

The 2-D orthogonal basis functions are chosen as

Ψi,j (x, y) = sin
(

iπx

Lx
+

π

2

)
cos

(
jπx

Ly
+

π

2

)
(21)

where x ∈ [−Lx/2, Lx/2], y ∈ [−Ly/2, Ly/2], i = 1, 2, . . . , I, j = 0, 1, 2, . . . , J . According to the
simulation parameters, Lx = Ly = 20 m.

The bandwidth of the signals is limited to 1 GHz, which has the center frequency of 1 GHz.
100 frequency points with uniform spacing are used to synthesize the signals. Therefore, the
vector F has 2500 (M × N = 25 × 100) unknowns. Here, the imaging region S is discretized into
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Figure 3. Imaging target and imaging result based on orthogonal radiation field. (a) Imaging target
model. (b) Imaging result with no noise.
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Figure 4. Imaging results with different SNRs based on orthogonal radiation field. (a) Imaging result
with SNR = 0dB. (b) Imaging result with SNR = 5 dB. (c) Imaging result with SNR = 10 dB. (d)
Imaging result with SNR = 15 dB.

100 × 100 (Q = 1 × 104) cells. It means that an ORF sample provides 1 × 104 spatial sampling values,
which is much bigger than the required number to resolve the unknowns in F. The results of the
constructed ORF samples are shown in Figure 2.

Figure 2 shows that the ORF samples can be constructed using the method proposed in this paper.
However, with the increasing of i and j, and the orthogonal basis function becomes more and more
complex as shown in Figures 2(a), (c), (e). Figures 2(b), (d), (f) show that the error of the ORF
samples constructed by designing the transmitting signals increases as well. The root mean square
error (RMSE) is used to describe the error between the constructed ORF samples and the orthogonal
basis functions. And the errors of results shown in Figures 2(b), (d), (f) are 0.0155, 0.0222, and 0.1019
respectively.
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Figure 5. RMSE versus SNR.
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4.2. Imaging Based on Orthogonal Radiation Field

The target model is shown in Figure 3(a). Here the imaging region S is discretized into 100 × 100 cells
to reconstruct the target. Due to the limitation of simulation parameters, such as the bandwidth, array
size and number of transmitting elements, 240 (I = 15, J = 15) ORF samples are constructed to use
in the imaging experiment. Utilizing the pseudo-inverse method, the imaging result with no noise is
shown in Figure 3(b). We can see from the imaging result that the shape of the target is successfully
reconstructed. According to the traditional radar resolution formula Δρ = Rλ/D, it is about 7.5 m
under the parameters in the experiment. Therefore, the imaging result based on ORF has achieved a
high resolution reconstruction.

Furthermore, considering the additive noise, the imaging results with different SNRs are shown in
Figure 4. It can be seen that with the increase of SNR, the imaging quality becomes better. Moreover, a
good imaging performance can be achieved when SNR = 10 dB. It shows that the imaging based on the
ORF has better robustness to noise. Figure 5 shows that the imaging error varies with SNR. With the
increase of SNR, the imaging error decreases rapidly at the beginning, and then it tends to be constant
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Figure 6. The ordinary temporal-spatial independent radiation field samples. (a) Sample 1. (b)
Sample 2.
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Figure 7. Imaging results with different SNRs based on the ordinary temporal-spatial independent
radiation field. (a) Imaging result with SNR = 0 dB. (b) Imaging result with SNR = 5dB. (c) Imaging
result with SNR = 10 dB. (d) Imaging result with SNR = 15 dB.

when the SNR is greater than 20 dB. It means that the effect of noise can be ignored when the SNR is
greater than 20 dB.

4.3. Comparison

In this section, with the same simulation parameters, an imaging experiment based on the ordinary
temporal-spatial independent radiation field is performed to compare with the proposed method. Herein,
the signals are chosen to be bandpass white Gaussian noise. Then, the ordinary temporal-spatial
independent radiation field samples can be derived from Eq. (3), as shown in Figure 6. Figure 7 shows
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the imaging results based on ordinary temporal-spatial independent radiation field with different SNRs.
When SNR is 0 dB, it is almost failed to reconstruct the target, as shown in Figure 7(a). And the
imaging result is still blurry when SNR is 5 dB, as shown in Figure 7(b). Figure 7(d) shows a result
that we can see the shape of the target, but the backscattering coefficient distribution of the target is
not uniform as the target model shown in Figure 3(a).

Comparing Figure 7 with Figure 4, it is obvious that the imaging results based on ORF are much
better when SNR is the same. And it is also verified by comparison of imaging errors shown in Figure 8.

5. CONCLUSIONS

In this paper, we present a novel kind of ideal independent radiation field named the orthogonal radiation
field for MSCI. It is an inverse method to construct the independent radiation field. It means that the
ORF samples are supposed to exist firstly, and then they can be constructed by properly designing
the transmitting signals. When the ORF is applied in MSCI, the imaging model is robust to noise
while the row vectors of the imaging matrix are approximately orthogonal. Therefore, we can achieve
better imaging performance when the SNR is low. Simulation results demonstrate the feasibility of the
ORF samples construction. Compared with current imaging scheme based on ordinary temporal-spatial
independent radiation field, the proposed imaging scheme based on ORF is validate to have superior
performance in different SNR situations.
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