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Analytical Method Using Virtual PM Blocks to Represent Magnet
Segmentations in Surface-Mounted PM Synchronous Machines

Tow Leong Tiang1, Dahaman Ishak2, *, Chee Peng Lim3, and Mohd Rezal2

Abstract—This paper describes an analytical subdomain model to predict the magnetic field
distributions in the semi-closed surface-mounted permanent magnet synchronous machines (PMSMs)
due to magnet segmentations with radial magnetization (RM). The magnet segments per pole can be
virtually represented by finite number of permanent magnet (PM) blocks and Fourier decompositions.
The model can also determine the optimum magnet pole-arcs for each segment and the optimum airgap
spacing between the segments. The analytical model is then applied to evaluate the performance of
a three-phase, 12-slot/8-pole, surface-mounted PMSM having two segmented magnets per pole with
RM. With design objective for minimum cogging torque and minimum total harmonic distortion in
phase back-emf waveforms, we obtain that the optimum settings are 147.6◦ elect. for magnet segment
pole-arc and 11.2◦ elect. for airgap spacing between the magnet segments. These analytical results are
further compared and validated by 2-D finite element analysis (FEA). Additionally, we also compare
the results with those from the optimum magnet pole-arc of one magnet segment per pole machine. It
is observed that the cogging torque and total harmonic distortion THDv of the phase back-EMF are
significantly reduced by 89% and 25%, respectively, with constraint and assumption that both machines
utilize similar total magnet volume.

1. INTRODUCTION

The improvement and innovation in the rare-earth magnetic materials have accelerated their use in
electrical machines. These magnetic materials which have very high energy product created opportunity
for various machine topologies and complexity in the design and construction of permanent magnet
(PM) AC motors such as surface-mounted PMSM, inset PMSM, and interior PMSM for either internal
rotor structure or external rotor structure. Compared with the conventional electrical machines,
PMSMs are very popular in aviation industries, electric propulsion, servo drives and renewable energy
technologies since PMSMs exhibit higher efficiency, higher torque density, compact size, excellent
dynamic performance, and almost maintenance free [1, 2]. However, the drawbacks of PMSMs are
the unwanted noise and vibration which can originate from the motor torque ripples [3, 4].

Torque ripples in PMSMs, in general, can be attributed to several reasons such as [5]: (i) cogging
torque due to the magnetic attraction or magnetic forces between the stator slot openings and the rotor
magnets; (ii) higher order harmonics in the induced phase back-EMF; (iii) nonlinear property of the
stator and rotor cores; and (iv) higher order harmonics in the motor currents from inverter switching.
Many researches have been devoted to mitigate or minimize the torque ripples in PMSMs by employing
several techniques such as using fractional slot-to-pole number, dummy slots on stator pole surface,
magnet pole-arcs, magnet stepping, stator skewing, rotor skewing, different magnetization patterns in
rotor magnets, and shifting the magnet poles [6].
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However, the use of magnet segmentations per pole in the rotor for the sole purpose of reducing the
cogging torque and harmonics in the induced phase back-EMF in surface-mounted PMSMs is still not
yet comprehensively researched and documented. On the contrary, the concept of magnet segmentation
was first deployed to minimize the eddy current losses in PM mounted on the rotor surface which can
be significantly reduced by splitting or segmenting the magnet into smaller pieces, either axially or
circumferentially. For example, the problem of rotor losses from the circumferential segmented magnets
in surface-mounted PMSMs was investigated: (i) rotor losses due to eddy currents in uniform segmented
magnets [7] and in non-uniform segmented magnets [8]; (ii) optimization of segmented magnets for
minimum rotor eddy current losses [9].

Previous researches have attempted to address the cogging torque minimization issue via magnet
segmentation technique. For instance, the authors in [10] used Fourier series to estimate the harmonics
of cogging torque originating from the segmented magnet blocks per rotor pole. Appropriate magnet
span and optimum location of magnet blocks were then calculated based on the outcomes of empirical
formulae which might suppress the fundamental harmonic of cogging torque waveform. Reducing the
cogging torque in surface-mounted PMSMs by optimizing the magnet segments based on semi-analytical
model coupled with an airgap permeance function was proposed in [11]. Meanwhile, the authors in [12]
applied three optimization tools to determine the optimum spans of magnet segments. Here, energy
method in semi-analytical model was used to evaluate the cogging torque in open-slotted surface-
mounted PMSM. Nevertheless, the calculated cogging torque is arguably less accurate because the
model did not consider the energy coming from the tangential component of magnetic fields in the slot
openings.

In this paper, multiple magnet segmentations with radial magnetization (RM) per rotor pole
are first formulated using superposition concept from a finite number of PM blocks. The Fourier
decompositions that describe the magnetization vectors from each PM block are then incorporated
into the exact 2-D analytical subdomain model in order to predict the magnetic field distributions in
the regions of PM, airgap, slot openings and winding slots, respectively. The exact 2-D analytical
subdomain model which is reasonably fast and accurate is often preferred during the initial design
stage of PM machines in order to predict motor global quantities [13–17]. In this paper, we will show
that our analytical subdomain model of segmented magnets with RM per pole in the 2-D semi-closed
surface-mounted PMSMs constructed from virtual PM blocks can also account for the influence of stator
slotting and tooth-tips. The motor global quantities in PMSMs such as the phase back-EMF, cogging
torque, and total harmonic distortion (THDv) are computed. Optimum segmented magnet pole arcs
for each segment are also evaluated for minimum cogging torque and minimum THDv. The analytical
model is applied on a three-phase, 12 s/8 p semi-closed surface-mounted PMSM. Then, the analytical
results are compared with those obtained from 2-D finite element analysis (FEA) for validation purpose.

2. MACHINE SPECIFICATIONS AND ASSUMPTIONS

A typical layout of a three-phase, surface-mounted PMSM with segmented magnets per rotor pole is
shown in Figure 1 where all symbols and regions are clearly indicated. In formulating the exact 2-D
analytical subdomain model, important assumptions for deriving the model pertaining to the segmented
magnets are [13]: (a) effect of induced eddy current is ignored; (b) actual relative permeability in PMs is
considered; (c) stator and rotor laminations are non-conductive; (d) linear BH curve for PMs; (e) sides
of stator slots are radially extended; (f) end effects of PM machines are ignored; (g) stator and rotor
laminations are infinitely permeable; and (h) only z-component of magnetic vector potential exists in 2-
D polar coordinates, and it is determined by the radial position r, and tangential position α. The derived
analytical subdomain model is evaluated on a three-phase, surface-mounted PMSM whose parameters
and dimensions are given in Table 1.

3. VIRTUAL PM BLOCKS TO REPRESENT MAGNET SEGMENTATIONS

While different magnetization patterns and modeling techniques are available in the literature [14, 15],
the segmented magnets in each magnetic pole can also be graphically represented by Figure 2.
Hypothetically, the segmented magnets per pole can be formulated such that the net magnetic flux is



Progress In Electromagnetics Research B, Vol. 76, 2017 25

Figure 1. Typical geometry of a surface-mounted PMSM with two segmented magnets per rotor pole.

Table 1. Specifications and dimensions for 12 s/8 p PMSMs.

Slot number, Ns 12 Winding turns/coil, Nc 30
Pole number, 2p 8 Stator inner diameter 54 mm

Stator outer diameter 100 mm Tooth-tips edge 3 mm
Remanence, Br 1.12 T Slot-opening angle, boa 5.5◦ mech
Active length, la 50 mm Winding slot angle, bsa 15◦ mech
Airgap length, lg 1 mm Stator yoke height 7.5 mm

Magnet thickness, hm 3 mm Rotor outer diameter 52 mm
Relative recoil permeability, μr 1.05 Rotor yoke inner radius, Rr 23 mm

PM surface radius, Rm 26 mm Magnetization pattern RM
Slot-openings inner radius, Rs 27 mm Slot-openings outer radius, Rt 30 mm

Bottom slots radius, Rsb 42.5 mm
Optimum magnet pole-arc
per pole of 1st virtual PM

block for 2 SM machine, αp1

147.6◦ elect.

Optimum magnet pole-arc
per pole for 1 SM machine

136.4◦ elect.
Optimum magnet pole-arc
per pole of 2nd virtual PM
block for 2 SM machine, αp2

11.2◦ elect.
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Figure 2. Representation of three segmented magnets per rotor pole by three superimposed virtual
PM blocks with same magnet thickness and located on common rotor surface of PMSM.

achieved by summation of individual flux from the virtual PM blocks, which are having the same magnet
thickness located on the rotor surface. As shown in Figure 2, the effect of three segmented magnets can
be constructed from a group of three virtual PM blocks that are superimposed together axially. Any
regions meant to cancel out each other have identical surface area (for the 2D model) or identical volume
(for a 3D model). The blocks are mounted on the rotor surface with common circumferential radii and
same magnet thickness hm, but the blocks comes with different pole arcs following this rule: pole-pitch
≤ αp1 < αp2 < αp3 < . . . < αpv, where v is the number of segmented magnet. The polarities of virtual
PM blocks VSM1, VSM2, and VSM3 are alternate, which are represented by either positive or negative
signs governed by (−1)(v+1) from (9). Since the PM blocks VSM1, VSM2, and VSM3 are isotropic and
homogenous with similar relative permeability and remanence, the magnitude of magnetic moments in
each virtual segmented magnet is also the same. These virtual magnet segments are directly summed
up or cancelled out through its polarities to obtain the net magnetic flux of the segmented magnet, SM1,
as shown in Figure 2. Three virtual PM blocks are superimposed to build three segmented magnets per
rotor pole. Therefore, similar number of virtual PM blocks are required to be superimposed in order to
realize the similar number of segmented magnets per rotor pole.

Different pole-arc ratios of two virtual PM blocks with opposite magnetization directions create the
gap between the PMs. Estimating and optimizing the pole-arcs of the vth virtual PM blocks, i.e., αp1,
αp2, αp3, . . . , αpv can provide the optimum settings for each magnet segment and the airgap spacing
between magnet segments per rotor pole. Since Fourier decompositions of magnetic fluxes from each
virtual PM block can be applied, the net magnetic flux density from the segmented magnets per pole
can be obtained. Therefore, the magnetization patterns of the segmented magnets per pole can be
expressed in Fourier Series with radial magnetization (RM) patterns as

Mr =
∑

k=up=1,3,5,...
Mrk cos (kα− kωrt− kα0) (1)

=
∑

k=up=1,3,5,...
Mrck cos (kα) +Mrsk sin (kα) (2)

Mα =
∑

k=up=1,3,5,...
Mαk sin (kα− kωrt− kα0) (3)

=
∑

k=up=1,3,5,...
Mαck cos (kα) +Mαsk sin (kα) (4)

Mrck = Mrk cos(kωrt+ kα0) (5)
Mrsk = Mrk sin(kωrt+ kα0) (6)
Mαck = Mαk sin(kωrt+ kα0) (7)
Mαsk = Mαk cos(kωrt+ kα0) (8)
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where

Mrk =
∑

v = 1, 2, 3, . . .
k/p = 1, 3, 5, . . .

(−1)(v+1) 4pBr sin (kπαpv/2p)
/
kπμ0 (9)

Mαk = 0 (10)
where Mr and Mα are the normal and circumferential components of magnet magnetization; u is the
harmonic number of PM; p is the number of pole-pair; α0 is the rotor position at initial location; ωr is the
angular speed of the rotor; Br is the remanence of PM; αpv is the ratio of magnetic pole span of v-pieces
of the virtual PM blocks; Mrk and Mαk are the normal and circumferential components of magnetization
vector with kth harmonic number. From here, Laplace’s and Poisson’s equations are solved by using
separation of variables technique to obtain the magnetic field solutions in each subdomain [18].

3.1. Vector Magnetic Potential and Current Density Profile

The vector potentials in Region 1 (Az1) for PMs, Region 2 (Az2) for the airgap, Region 3i (Az3i) for
the winding slots, and Region 4i (Az4i) for the slot openings are governed by

∂2Az1

∂r2
+

1
r

∂Az1

∂r
+

1
r2
∂2Az1

∂α2
= −μ0

r

(
Mα − ∂Mr

∂α

)
(11)

∂2Az2

∂r2
+

1
r

∂Az2

∂r
+

1
r2
∂2Az2

∂α2
= 0 (12)

∂2Az3i

∂r2
+

1
r

∂Az3i

∂r
+

1
r2
∂2Az3i

∂α2
= −μ0J (13)

∂2Az4i

∂r2
+

1
r

∂Az4i

∂r
+

1
r2
∂2Az4i

∂α2
= 0 (14)

where J is the current density. Figure 3 shows the current density profile of a slot area, which can be
expressed as

J = Ji0 +
∑

n
Jin cos [En (α+ bsa/2 − αi)], for αi − bsa/2 ≤ α ≤ αi + bsa/2 (15)

Ji0 = (Ji1 + Ji2) dj/bsa (16)
Jin = [2 (Ji1 + Ji2 cosnπ) sin (nπdj/bsa)]/nπ (17)
En = nπ/bsa (18)

where n is the harmonic number in the winding slot, dj the width angle of slot area with Ji excitation
current density, and αi the ith slot rotor position.

Figure 3. Profile of current density Ji in slot area.

The vector magnetic potential distribution in the PM region can be expressed by

Az1 =
∑

k

[(C1kA1 + C2kMαck − C3kMrsk) cos (kα) + (C1kC1 + C2kMαsk + C3kMrck) sin (kα)] (19)

where
C1k = (r/Rm)k +G1 (r/Rr)

−k (20)
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C2k =

⎧⎨
⎩

μ0

[
Rrk (r/Rr)

−k + r
]/(

k2 − 1
)
, k �= 1

μ0

[
2Rr (r/Rr)

−1 + r
]
, k = 1

(21)

C3k =

⎧⎨
⎩

μ0

[
Rr (r/Rr)

−k + kr
]/(

k2 − 1
)
, k �= 1

μ0

[
Rr (r/Rr)

−1 + r
]
, k = 1

(22)

G1 = (Rr/Rm)k (23)
On the other hand, the general field distribution in the airgap is given by

Az2 =
∑

k

{[
A2 (r/Rs)

k +B2 (r/Rm)−k
]
cos (kα) +

[
C2 (r/Rs)

k +D2 (r/Rm)−k
]
sin (kα)

}
(24)

Then, the general field solutions in Regions 3i and 4i can be obtained as

Az3i = A0 +
∑

n
An cos [En (α+ bsa/2 − αi)] (25)

Az4i = D ln r +Q4i +
∑
m

[
C4i (r/Rt)

Fm +D4i (r/Rs)
−Fm

]
cos [Fm (α+ boa/2 − αi)] (26)

where
A0 = μ0Ji0

(
2R2

sb ln r − r2
)/

4 +Q3i (27)

An = D3i

[
G3 (r/Rsb)

En + (r/Rt)
−En

]
+ μ0Jin

[
r2 − 2R2

sb

/
En (r/Rsb)

En

]/(
E2

n − 4
)

(28)

G3 = (Rt/Rsb)
En (29)

Fm = mπ/boa (30)
where m is the harmonic number in slot-opening, and D is a constant. By imposing the continuity of
interface conditions between regions in terms of flux density and vector potential, coefficients A1, C1,
A2, B2, C2, D2, D3i, Q3i, C4i, D4i, Q4i, and D in expressions (19), (24), and (25)–(28) can be obtained.
A detailed computation can be found in Appendix.

3.2. Magnetic Flux Density

The normal and tangential components of flux density distributions are derived from the general vector
potential expressions as

Br = ∂Az/(r∂α) and Bα = −∂Az/∂r (31)

In PM region, the magnetic fluxes can be obtained by

B1r = − (1/r)
∑

k
k (C1kA1 + C2kMαck − C3kMrsk) sin (kα)

+ (1/r)
∑

k
k (C1kC1 + C2kMαsk + C3kMrck) cos (kα) (32)

B1α = − (1/r)
∑

k
(C4kA1 + C5kMαck − C6kMrsk) cos (kα)

− (1/r)
∑

k
(C4kC1 + C5kMαsk + C6kMrck) sin (kα) (33)

where

C4k = k
[
(r/Rm)k −G1 (r/Rr)

−k
]

(34)

C5k =

⎧⎨
⎩

μ0

/{(
k2 − 1

) [
−k2Rr (r/Rr)

−k + r
]}
, k �= 1

μ0r
[
−2 (r/Rr)

−2 + 1
]
, k = 1

(35)

C6k =

⎧⎨
⎩

μ0k
/{(

k2 − 1
) [

−Rr (r/Rr)−k + r
]}
, k �= 1

μ0r
[
− (r/Rr)

−2 + 1
]
, k = 1

(36)
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Similarly, for Region 2, the magnetic flux density of normal and tangential components in the
airgap can be computed by

B2r =
∑

k
Brs sin (kα) +

∑
k
Brc cos (kα) (37)

B2α =
∑

k
Bαc cos (kα) +

∑
k
Bαs sin (kα) (38)

where

Brs = −k
[
A2 (r/Rs)

k +B2 (r/Rm)−k
]/
r (39)

Brc = k
[
C2 (r/Rs)

k +D2 (r/Rm)−k
]/
r (40)

Bαc = −k
[
A2 (r/Rs)

k −B2 (r/Rm)−k
]/
r (41)

Bαs = −k
[
C2 (r/Rs)

k −D2 (r/Rm)−k
]/
r (42)

Lastly, for Regions 3 and 4 respectively, the magnetic flux densities in the copper slots of a non-
overlapping machine and the slot-openings are given as the following

Brs = −k
[
A2 (r/Rs)

k +B2 (r/Rm)−k
]/
r (43)

Brc = k
[
C2 (r/Rs)

k +D2 (r/Rm)−k
]/
r (44)

Bαc = −k
[
A2 (r/Rs)

k −B2 (r/Rm)−k
]/
r (45)

Bαs = −k
[
C2 (r/Rs)

k −D2 (r/Rm)−k
]/
r (46)

4. PHASE BACK-EMF, COGGING TORQUE AND OPTIMUM SETTINGS

After formulating the field solutions, motor global quantities such as flux linkage, phase back-EMF and
cogging torque are computed to evaluate further the motor performance. The flux linkage induced in a
coil Ji1 is obtained by

ψi1 = (laNc/Ac)
{
Z0dj +

∑
n
Zn/[En sin (Endj)]

}
(47)

where Ac is the winding slot area of a coil, whereas the flux linkage induced in coil Ji2 is attained by

ψi2 = (laNc/Ac)
{
Z0dj −

∑
n
Zn/[En sin (nπ − Endj)]

}
(48)

where

Z0 = Q3i

(
R2

sb −R2
t

)/
2 + μ0Ji0

(
+4R4

sb lnRsb − 4R2
sbR

2
t lnRt

−3R4
sb + 2R2

sbR
2
t +R4

t

)/
16 (49)

Zn = +D3iG3

(
R2

sb −R2
tG3

)/
(En + 2) +D3i

(
R2

t −R2
sbG3

)/
(En − 2)

+μ0Jin

(
R4

sb −R4
t

)/[
4
(
E2

n − 4
)]

+ 2μ0JinR
2
sb

(
R2

tG3 −R2
sb

)/[
En

(
E2

n − 4
)
(En + 2)

]
(50)

The computation of total flux linkage in each phase is expressed by
Ψabc = Swψc (51)

where Sw is the winding slots order and ψc is the phase flux linkage produced by each phase coils.
Therefore, differentiating Eq. (51) with time yields the phase back-EMF as

Eabc = ωrdΨabc/dΔ (52)
where Δ is the angular position of rotor. Furthermore, Fast-Fourier Transform is used to capture the
THDv of phase back-EMF, which can be calculated by

THDv =
(√∑∞

x=2
V 2

x

/
V1

)
× 100 (53)
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where V1 is the fundamental component of the phase back-EMF and Vx the higher order harmonics of
phase back-EMF. Furthermore, Maxwell stress tensor is deployed to evaluate the cogging torque in the
motor model as given by

Tc =
(
lar

2
/
μ0

) ∫ 2π

0
B2rB2αdα (54)

Therefore, the peak cogging torque can be estimated. The peak cogging torque and THDv of the phase
back-EMF are then normalized according to the feature scaling method as the following

yin =
yi − min(y)

max(y) − min(y)
(55)

where yin is the normalized value of yi, yi the ith value of y, and y the data sample of either the
peak cogging torque or THDv of the phase back-EMF. Eventually, the optimum setting of magnet arcs
required by the segmented magnets in any machines can be obtained.

5. RESULTS, DISCUSSION, AND FEA VALIDATION

The exact 2-D analytical subdomain model of segmented magnets per pole due to radial magnetization is
further evaluated on a three-phase, surface-mounted PMSM to search for the optimum setting of magnet
segmentations. Since PMSMs having fractional slot-to-pole number are very popular in the industries,
we have chosen a three-phase, 12 s/8 p, semi-closed, surface-mounted PMSM for our case study. The
main parameters and dimensions of the PM motor are given in Table 1. The winding layout for the
motor is graphically illustrated in Figure 4. Each phase winding consists of four coils which are located
90 deg. mech. apart. The phase windings are inherently symmetrical around the stator periphery,
resulting in zero unbalanced magnetic pull. According to the analytical assessment reported in [14],
it is observed that if one segmented magnet (1 SM) per pole is used under the radial magnetization
pattern in the aforementioned machine, an optimum magnet pole-arc of 136.4◦ elect. can generate the
peak cogging torque and THDv of 0.19 Nm and 5.62%, respectively, as shown in Figure 5(a). Another
important result in [14] indicates that the magnitude of the fundamental phase back-EMF is 19.09 V.
Hence, assuming that similar total magnet volume is used, we deploy two segmented magnets (2 SM)
per pole, and then analytically estimate the best segmented magnet pole-arcs by varying magnet spans
of the virtual PM blocks, which can potentially lead to lower cogging torque and THDv.

Figure 5(b) shows the trend of the normalized maximum cogging torque and normalized THDv

when the magnet span αp1 is changing from 136.4◦ elect. to one full pitch, which mutually corresponds
to the change of magnet pole-arc αp2 from 0◦ elect. to 43.6◦ elect. From Figure 5(b), a considerably

Figure 4. Winding arrangement in a three-phase, 12 s/8 p PMSM.
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(a) (b)

Figure 5. Normalized peak cogging torque and normalized total harmonic distortion versus the magnet
span variation in 12 s/8 p PMSMs with each magnetic pole of (a) 1 SM, (b) 2 SM.

Figure 6. Fundamental phase back-EMF versus the magnet span variation in 12 s/8 p PMSM with
2 SM per magnetic pole.

low cogging torque and THDv of 0.02 Nm and 4.23%, respectively, are attainable when αp1 is 147.6◦
elect. and αp2 is 11.2◦ elect. This is considered as the optimum setting for 2 SM per pole in 12 s/8 p
PM motor. Meanwhile, Figure 6 shows the variation of the phase back-EMF fundamental magnitude
versus the magnet span αp1 in a 12 s/8 p PMSM with 2 SM per pole. It indicates that the magnitude
of fundamental phase back-EMF at the optimum setting of 2 SM per pole is about 17.73 V. Comparing
the analytical results obtained from 1 SM- and 2 SM per pole motors, the cogging torque and THDv

have been significantly reduced by 89% and 25%, respectively.
The motor models were built and studied in 2-D FEA for comparison and validation purposes.

Figure 7 exhibits the magnetic equipotential lines during open-circuit conditions in the 12 s/8 p PM
machine with its optimum magnet pole-arc per pole for 1 SM and 2 SM, respectively. The fields due
to the magnet are slightly different in the airgap region by observing the field distributions in both
machines. As can be seen in Figure 7(b), the airgap spacing that exists between magnet segments
in the 2 SM per pole machine is able to significantly nullify the pulling forces between PM interpoles
and slot-openings, yielding a lower peak cogging torque. Figure 8 shows the radial and tangential
components of magnetic flux density in the middle of airgap (at r = 26.5 mm) in 12 s/8 p machines
having similar total magnet volume with the optimum magnet pole-arcs in each magnetic pole for 1 SM
and 2SM, respectively. The effect of stator slots can clearly be seen in the flux density distributions
in both machines. As expected from this magnet segmentation, slightly higher magnitude of radial
component of flux density is obtained in the 1 SM per pole machine compared to that of 2 SM per pole
machine. Good agreement is achieved between the analytical results and FEA.
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(a) (b)

Figure 7. Open-circuit magnetic field distributions predicted by FEA in 12 s/8 p PMSMs with its
optimum magnet pole-arc per pole. (a) 1 SM. (b) 2 SM.

(a) (b)

Figure 8. Open-circuit magnetic flux density in mid airgap (r = 26.5 mm) of 12 s/8 p PMSMs having
same PM volume with the optimum magnet pole-arcs in each magnetic pole of 1 SM and 2 SM predicted
by analytical model and FE method. (a) Radial component. (b) Tangential component.

Figures 9 and 10 present the phase back-EMF and cogging torque waveforms in 12 s/8 p PMSMs
which have similar total PM volume with the optimum magnet pole-arc in 1 SM and 2SM per pole as
predicted by analytical model and FEA. Clearly, the motor performance of both machines predicted by
the analytical model and FE method show good agreements. As can be noted, the phase back-EMF
generated by the 2 SM per pole machine is marginally smaller than that of the 1 SM per pole machine.
This is because the magnitude of radial component of magnetic flux density in the 2 SM per pole machine
is marginally smaller than the 1 SM per pole machine, as illustrated earlier in Figure 8(a). However, the
2 SM per pole machine is inherently able to exhibit considerably smaller value of undesirable cogging
torque as compared with that of 1 SM per pole machine. Creating the airgap spacing between magnet
segmentations in each magnetic pole provides similar effects as the dummy slots in the stator tooth
surface.

Therefore, using this analytical subdomain method for searching and determining the optimum
setting of the segmented magnet pole-arcs, more sinusoidal phase back-EMF is achievable, and the
cogging torque can be minimized to a substantially low value as exemplified by the 2 SM per pole machine
in this case study. Lower values of THDv and cogging torque are important design requirements for
smooth output torque in PMSMs.
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Figure 9. Phase back-EMF in 12 s/8 p PMSMs
having the same PM volume with optimum
magnet pole-arcs in each magnetic pole of 1 SM
and 2 SM predicted by analytical model and FE
method.

Figure 10. Cogging torque in 12 s/8 p PMSMs
having same PM volume with optimum magnet
pole-arcs in each magnetic pole of 1 SM and 2SM
predicted by analytical model and FE method.

6. CONCLUSIONS

An analytical subdomain model using virtual PM blocks to represent magnet segmentations in surface-
mounted PMSMs has been described. The analytical model can be used to determine the optimum
magnet pole-arc setting of segmented magnets under the influence of radial magnetization patterns. A
generic machine of three-phase, 12 s/8 p surface-mounted PM motor has been selected with either 1 SM-
or 2 SM per pole. The peak cogging torque and THDv of phase back-EMF have been normalized by
using the feature scaling method to determine their optimum settings. The optimum magnet pole-arc
of 136.4◦ elect. for the 1 SM per pole machine is able to produce about 0.19 Nm of peak cogging torque,
5.62% of THDv, and 19.09 V of the fundamental phase back-EMF, respectively. By imposing the same
PM volume as a constraint, the optimum setting for 2 SM pole-arcs is found to be 147.6◦ elect. per
pole associated with 11.2◦ elect. of airgap spacing between two magnet segments. The optimum 2 SM
per pole machine is predicted to generate peak cogging torque, THDv, and fundamental magnitude of
phase back-EMF about 0.02 Nm, 4.23%, and 17.73 V, respectively. The optimum setting of the 2 SM
per pole machine exhibits better performances as compared with those of the 1 SM per pole machine,
where the cogging torque and THDv have been reduced by 89% and 25%, respectively.
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APPENDIX A.

All coefficients in the field solutions describing the vector magnetic potentials in each region, i.e., PM,
airgap, slot-openings, and winding slots, can be estimated by applying the boundary conditions at the
respective interfacing regions [13, 16, 18].

A.1. Interface between Airgap and PM

Since the normal component of flux density is continuous between airgap and PM at radius Rm, the
following equations can be obtained

(
1+G2

1

)
A1−G2A2−B2 =

⎧⎨
⎩
− μ0

(k2 − 1)
[(RrkG1 +Rm)Mαck − (RrG1 + kRm)Mrsk] , k �= 1

−μ0 [(2RrG1 +Rm)Mαck − (RrG1 +Rm)Mrsk] , k = 1
(A1)
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(
1+G2

1

)
C1−G2C2−D2 =

⎧⎨
⎩
− μ0

(k2−1)
[(RrkG1+Rm)Mαsk+(RrG1+kRm)Mrck] , k �= 1

−μ0 [(2RrG1 +Rm)Mαsk + (RrG1 +Rm)Mrck] , k = 1
(A2)

(
1−G2

1

)
A1−μrG2A2+μrB2 =

⎧⎨
⎩
− μ0

(k2−1)
[k (Rm−RrG1)Mαck−(Rm−RrG1)Mrsk] , k �= 1

−μ0 [2 (Rm −RrG1)Mαck − (Rm −RrG1)Mrsk] , k = 1
(A3)

(
1−G2

1

)
C1−μrG2C2+μrD2 =

⎧⎨
⎩
− μ0

(k2−1)
[k (Rm−RrG1)Mαsk+(Rm−RrG1)Mrck] , k �= 1

−μ0 [2 (Rm −RrG1)Mαsk + (Rm −RrG1)Mrck] , k = 1
(A4)

G2 = (Rm/Rs)
k (A5)

A.2. Interface between Slot Opening and Winding Slot

Similarly, applying the tangential component of flux density which is continuous at this interface in a
non-overlapping machine, the following expressions can be obtained

B3iαn = B4iα0γ0 +
∑

m
B4iαmγ (A6)

A3t0 = D lnRt +Q4i (A7)∑
n
A3inζ = C4i +D4iG4 (A8)

where
B3iαn = −EnD3i

(
G2

3 − 1
)/
Rt − 2μ0Jin

(
R2

t −R2
sbG3

)/[
Rt

(
E2

n − 4
)]

(A9)
B4iα0 = −D/2 (A10)

D = μ0Ji0 (bsa/boa)
(
R2

sb −R2
t

)/
2 (A11)

γ0 = 4cos (nπ/2) sin (Enboa/2)/nπ (A12)
B4iαm = −Fm (C4i −D4iG4)/Rt (A13)

G4 = (Rs/Rt)
Fm (A14)

γ =
{−2En

/[
bsa

(
F 2

m−E2
n

)]
[cos (mπ) sin (En{bsa+boa}/2)−sin(En{bsa−boa}/2)], Fm �= En

boa/bsa cos [Fm(bsa − boa)/2] , Fm = En
(A15)

A3t0 =
∑

n
A3inζ0 + μ0Ji0

(
2R2

sb lnRt −R2
t

)/
4 +Q3i (A16)

A3in = D3i

(
G2

3 + 1
)

+ μ0Jin

(
R2

t − 2R2
sbG3

/
En

)/(
E2

n − 4
)

(A17)
ζ0 = bsaγ0/(2boa) (A18)
ζ = bsaγ/boa (A19)

A.3. Interface between Airgap and Slot-Opening

The interface condition for the tangential component of flux density which is continuous between airgap
and slot-opening produces solution sets as

−kA2 + kG2B2 = RsCs (A20)
−kC2 + kG2D2 = RsDs (A21)

G4C4i +D4i =
∑

k
(A2cσi +A2sτi) (A22)∑

k
(A2cσi0 +A2sτi0) = D lnRs +Q4i (A23)

where
Cs =

∑
i,m

Biαmηi +
∑

i
Biα0ηi0 (A24)

Ds =
∑

i,m
Biαmξi +

∑
i
Biα0ξi0 (A25)
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Biαm = −Fm (C4iG4 −D4i)/Rs (A26)

ηi =
{ −k/[

π
(
F 2

m − k2
)]

[cos (mπ) sin (kαi + kboa/2) − sin (kαi − kboa/2)] , Fm �= k

boa cos [Fm (αi − boa/2)]/2π, Fm = k
(A27)

ξi =
{
k
/[
π

(
F 2

m − k2
)]

[cos (mπ) cos (kαi + kboa/2) − cos (kαi − kboa/2)] , Fm �= k

boa sin [Fm (αi − boa/2)]/2π, Fm = k
(A28)

Biα0 = −D/Rs (A29)

ηi0 = 2 sin (kboa/2) cos (kαi)/(kπ) (A30)

ξi0 = 2 sin (kboa/2) sin (kαi)/(kπ) (A31)

A2c = A2 +G2B2 (A32)

A2s = C2 +G2D2 (A33)

σi =
{

2πηi/boa, Fm �= k

cos (Fmαi −mπ/2) , Fm = k
(A34)

τi =
{

2πξi/boa, Fm �= k

sin (Fmαi −mπ/2) , Fm = k
(A35)

σi0 = πηi0/boa (A36)

τi0 = πξi0/boa (A37)
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