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3-D Imaging of High-Speed Moving Space Target via Joint
Parametric Sparse Representation
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Abstract—The high-speed moving of space targets introduces distortion and migration to range profile,
which will have a negative effect on three-dimensional (3-D) imaging of targets. In this paper, based
on joint parametric sparse representation, a 3-D imaging method for high-speed moving space target
is proposed. First, the impact of high speed on range profile of target is analyzed. Then, based on an
L-shaped three-antenna interferometric system, a dynamic joint parametric sparse representation model
of echoes from three antennas is established. The dictionary matrix is refined by iterative estimation of
velocity. Moreover, an improved orthogonal matching pursuit (OMP) algorithm is proposed to recover
interferometric phase information. Finally, with the phase information, interferometric processing is
conducted to obtain the 3-D image of target scatterers. The simulation results verify the effectiveness
of the proposed method.

1. INTRODUCTION

With the increasing number of space targets, such as space debris, satellites, and ballistic missiles, the
space environment is becoming more and more complex. Thus it is of great significance to conduct
tracking, measuring, categorization and recognition of space targets to ensure space security and
stimulate the development of space technology.

Three-dimensional (3-D) imaging technique is capable of providing abundant features of target
outline, size, micro-motional parameters, etc. Thus the 3-D imaging technique for space targets has
been a hot researching spot in radar imaging field [1]. The existing 3-D imaging methods of space targets
mainly include monostatic-radar-based imaging methods [2, 3] and multistatic-radar-based imaging
methods [4, 5]. Moreover, a novel interferometric 3-D imaging method of space target based on an
L-shaped three-antenna configuration has been proposed in the authors’ previous work [6]. On the
condition of multiple antennas, only micro-motional characteristic in the radial direction of radar can be
extracted from the echo of each antenna. In addition, the extracted micro-motional characteristics from
all antennas are approximately the same, since there is not much difference between their observation
angles. However, the different locations of antennas produce delicate differences among the ranges
from target to each antenna, which will introduce corresponding phase difference (i.e., interferometric
phase) among the received echoes of each antenna. The interferometric phase in reverse reflects the
position of target. Ref. [6] makes use of different micro-motional characteristics of multiple target
scatterers to separate the echo of each scatterer on range-slow-time plane. Then interferometric
processing is conducted to obtain interferometric phase, and a 3-D image of target is thus reconstructed
through a geometrical transform between the interferometric phase and target position. Compared with
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monostatic-radar-based imaging method, the interferometric imaging method provides a real target 3-
D size for more reliable target recognition; meanwhile, it avoids complex synchronization and joint
processing of echoes from different radars compared with multistatic-radar-based imaging methods.
Besides, the interferometric imaging method of space target realizes a time-varying imaging during
radar irradiation time with obtaining an illustration of target motion trajectory, thus providing a new
direction for 3-D imaging and characteristic extraction of space target.

However, space target is usually with a high-speed moving velocity, which will introduce distortion
and migration to range profile [7]. Interferometric 3-D imaging is conducted on range-slow-time plane,
thereby the distortion and migration of range profile will bring many adverse effects to 3-D imaging,
which mainly include: (i) the distortion of range profile will affect the extraction of trajectory on
range-slow-time profile, resulting in difficulty of separating echoes of multiple target scatterers; (ii)
interferometric phase is hard to be extracted from distorted range profile; (iii) impulse migration changes
the phase of target echo thus resulting in reconstructed target position obtained by interferometric
processing deviating from real value; (iv) the migration of range profile affects the range position
reconstruction of target scatterer, since the range position is directly obtained by range-slow-time profile.
Thus, compensating for distortion and migration of range profile is an important step in the procedure
of 3-D interferometric imaging of space targets.

This paper introduces parametric sparse representation into interferometric 3-D imaging of space
targets with high-speed motion. According to the characteristic of target echo, a sensing matrix is first
constructed, which contains unknown motion velocity of the target. And a joint sparse representation
model of the echoes from three antennas is accordingly set up. Then, the optimal velocity is obtained by
iteratively refining the estimated velocity and sensing matrix. Based on the estimated optimal velocity,
an improved orthogonal matching pursuit (OMP) algorithm is adopted to obtain the range position of
target and phase information on range-slow-time profile. Finally, via interferometric processing on the
obtained phase information, the 3-D image of target is reconstructed. Simulation results verify that
the proposed method is capable of compensating the effect of high-speed motion while preserving the
interferometric phase for 3-D imaging of space targets.

2. SIGNAL MODEL

The interferometric 3-D imaging system adopts three L-shaped antennas as shown in Fig. 1. Orthogonal
antennas A, B and antennas A, C are composed of interferometric antenna pairs on XOY plane and YOZ
plane, respectively. The length of antenna baseline is L. Radar coordinate XYZ is originated at antenna
A, and target coordinate xyz is originated at a point O on the target. The axes of target coordinate are
parallel with those of radar coordinate, respectively. Antenna A transmits linear frequency modulated
(LFM) signal. The received signal of antenna A is
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In Eq. (1), rAk(t̂, tm) is the range from the kth scatterer to antenna A, c the wave velocity, fc the
carrier frequency, Tp the pulse width, μ the modulation rate, t̂ = t − tm the fast time, tm = mT ,
m = 0, 1, 2, . . . ,M − 1 the slow time, M the pulse number, T the pulse repetition duration, and σk

the scattering coefficient of the kth scatterer. The range from point O to antenna A is chosen as the
reference range, which is Rref(tm) = RAO(tm). Since the target moves with a high speed, it yields
rAk(t̂, tm) = rAk(tm) + vr t̂, where rAk(tm) is the range from the kth scatterer to antenna A at each
slow-time sampling point, and vr is the radial velocity relative to radar. After “dechirp”, Eq. (1)
becomes
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and RΔAk(tm) = rAk(tm) − Rref(tm). σ′Ak is the range profile of the kth scatterer obtained by
antenna A, of which the phase term is the essence of interferometric imaging. Since there is almost no
difference between view angles of all antennas, the amplitudes of range profiles of them should remain
a constant [8, 9]. Thus the range profiles of antenna B and antenna C can be represented as

σ′Bk = σk · exp
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σ′Ck = σk · exp
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(7)

where RΔBk(tm) = rBk(tm) − Rref(tm) and RΔCk(tm) = rCk(tm) − Rref(tm). rBk(tm) and rCk(tm) are
range from the kth scatterer to antenna B and C, respectively. φ1 is relatively small and generally
can be ignored. In φ2, the first term −4πμRΔAk(tm)/c is the initial range position of scatterer and
the next two terms will introduce range migration. φ3 will introduce distortion to range profile. The
migration and distortion of range profile will both affect the interferometric 3-D imaging in the later
processing, thus they must be compensated before conducting interferometric processing. It can be
seen from Eq. (5) that the migration and distortion terms are both decided by velocity of target, thus
estimating and compensating the velocity is the essence of eliminating migration and distortion of range
profile.
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Figure 1. Geometry of 3-D imaging system and space target.

3. PARAMETRIC SPARSE REPRESENTATION BASED 3-D IMAGING OF
HIGH-SPEED SPACE MOVING TARGET

3.1. The Model of Joint Parametric Sparse Representation

Interested space target is sparse in the view of range direction, that is, the target scatterers cover a
certain number of range bins. Discrete the interested area along the range direction into N sub-bins
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which can be represented as

RΔ = [rΔ1, . . . , rΔi, . . . , rΔN ] i = 1, . . . , N (8)

where rΔi = ri −Rref and ri is the range from the ith range bin to radar. During the imaging time, the
mth pulse received by antenna A is
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And ϕ represents the kernel function. After being discretized, Eq. (9) can be rewritten as
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σAmi is the scattering coefficient of the ith range bin in interested area, T = [t̂1, . . . , t̂j , . . . , t̂N ′ ] the
sampling time sequence, N ′ the number of sampling data, and Em the noise vector.

Through solving Eq. (11), the range profile σ′Am can be obtained. The sensing matrix Φ(vr)
is indeterminate since the velocity is unknown. Different velocities correspond to different sensing
matrixes. Thus vr should be estimated at first. With a well estimated vr, the sensing matrix will
match with echo signal. Thereby a focused range profile could be obtained. In this paper, an iterative
optimization algorithm is applied to estimate vr. The velocity and sensing matrix are updated iteratively
until the optimal solution is obtained. Then the range profile σ′Am can be solved by the following
optimizing model:

min
∥∥σ′

Am

∥∥
0

s.t.
∥∥sAdm − Φ (vr)σ′

Am

∥∥
2
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where ε is noise level.
In an interferometric imaging system, the phase information of echo should be as accurate as

possible to ensure the imaging precision [10]. Thus a joint sparse representation model is established
for ensuring the coherence of the reconstructed phase information from three antennas. Eq. (16) can
be rewritten as
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3.2. 3-D Imaging Based on Improved Orthogonal Matching Pursuit Algorithm

The amplitudes of range profiles from the three antennas keep consistent, as mentioned before, thus the
joint range profiles can be represented as

σ′
m = Amp ·ψ (18)

where Amp = diag(σ), σ = [σAm1, . . . , σAmi, . . . , σAmN ] and ψ=[exp(jψA), exp(jψB), exp(jψC)]
is the phase vector of RΔ. ψA = [ψA1, . . . ψAi, . . . ψAN ]T, ψB = [ψB1, . . . ψBi, . . . ψBN ]T, ψC =
[ψC1, . . . ψCi, . . . ψCN ]T. An improved OMP algorithm is developed to solve Eq. (17). The detail is
as follows:

Step 1 Initializing: The residual is r0 = sm. Iterative times are n = 1 and p = 1. The position
vector is Pos = ∅. Matching vector set is At = ∅. Sparseness is Sp, and initial velocity is vrn.

Step 2 Seek for the matching vector and position: Search for the position of max (|ΦH
n (vrn)r0|) and

denote its row number and column number as row and col, respectively. Update Pos = [Pos, row],
At = [At, ϕrow].

Step 3 Estimate the amplitude:
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where scol is the colth column of sm. Denote Val = diag(amp).
Step 4 Estimate the phase:
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Step 5 Update the residual:
r0 = sm − At ·Val · pha (21)

Step 6 Iterate to get the solution: p = p+ 1 and Φn(ϕrow) =0. Repeat Step 2 to Step 5 until p = Sp.
Step 7 Estimate the velocity: n = n + 1 and set the termination threshold η. Construct σ′

m(n−1)

by obtained amp and pha, then expand the sensing matrix using Taylor series expansion, that is
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The velocity is computed as vrn = vr(n−1) +Δvr. Substitute the new vrn into (22) and repeat the above
processing until |Δvr| ≤ η.

Step 8 Obtain the range profile: construct Φn(vrn) using vrn and repeat Step 2 to Step 6. A
focused range profile is finally obtained.

The obtained position vector Pos contains the positions of scatterers in the range direction.
Correspond these positions to RΔ and thus the y-axis positions of scatterers are obtained. pha contains
the phase information for interferometric processing and pha = [phaA,phaB,phaC]T, where phaA,
phaB and phaC are the phases of range profiles from antenna A, B and C, respectively. Use the
phase information, combining with Eqs. (4), (6) and (7), to conduct interferometric processing. The
interferometric phases are

ψABk = angle(phaA∗
k · phaBk) = 2π(RΔAk −RΔBk)/λ (25)

ψACk = angle(phaA∗
k · phaCk) = 2π(RΔAk −RΔCk)/λ (26)
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where “∗” represents conjugating operation; phaAk, phaBk and phaCk are the kth elements in
corresponding phase vectors; λ is wave length. According to the geometrical relationship in Fig. 1,
it yields

RΔAk −RΔBk = (rAk −Rref) − (rBk −Rref) =
2L(Xc + xk) − L2

rAk + rBk
(27)

In far field, it yields rAk + rBk ≈ rAk + rCk ≈ 2× (yk +Yc), where yk is the reconstructed y-axis position
of the kth scatterer. Thus, reconstructed x-axis and z-axis position of the kth scatterer are

xk =
ψABλ · (yk + Yc)

2πL
+
L

2
−Xc (28)

zk =
ψACλ · (yk + Yc)

2πL
+
L

2
− Zc (29)

On the basis of the reconstructed 3-D positions [xk, yk, zk], k = 1, 2, . . . ,K of target scatterers, the 3-D
image is thus obtained. During imaging time, repeat the 3-D imaging processing for each echo pulse,
time-varying 3-D images are reconstructed.

4. SIMULATIONS AND ANALYSIS

4.1. Simulation Results

The antenna configuration in Fig. 1 is adopted. Suppose that the carrier frequency of transmitted signal
is 20 GHz, bandwidth 750 MHz, pulse width 200 µs, pulse repetition frequency 800 Hz, imaging time 1 s,
range resolution 0.2 m and length of antenna baseline L = 100 m. The velocity of target is (4000, 0,
4000) m/s, and the radial velocity is vr = 5656.9 m/s. The target center is at (0, 500, 0) km at initial
time. Suppose that there are three scatterers. Considering the complex micro-motion of space targets,
rotation and precession are simulated here. One of the three scatterers is rotating with rotation velocity
ωc = (5.45, 0, 30.94) rad/s. The other two are undergoing precessional motion, which contains the same
rotation with the first scatter and coning of velocity ωs = (0, 0, 18.85) rad/s. The rotation period is 0.2 s
and the coning period is the 0.33 s. Under Nyquist sampling, range profile at each time slice will be
affected by high speed motion. For an instance, the range profile at tm = 0.6 s is shown in Fig. 2(a).
Fig. 2(b) shows the range profile when the velocity of target is 0m/s at tm = 0.6 s. It can be seen that
range profile under high speed is seriously migrated and distorted. The range-slow-time profile is shown
in Fig. 2(c). To better illustrate the figures, time span [0, 0.4 s] in figures is taken out. The migrated
and distorted range-slow-time profile will affect both the abstracting the y-axis position of scatterer
and interferometric phase. Fig. 2(d) shows y-axis positions abstracted by range-slow-time profile in
Fig. 2(c). Fig. 2(e) shows the theoretical y-axis positions. As shown, abstracted y-axis positions are
also migrated and distorted with many redundant points.

The initial velocity of target is set as 5500 m/s, and the estimated velocity is 5651.2 m/s. The
compressing ratio is 0.8. In order to illustrate the performance of the velocity estimation in the proposed
method, Fractional Fourier transform (FrFT) based velocity estimation algorithm in [11] is compared
with the proposed algorithm. The FrFT based velocity estimation algorithm makes use of a priori
information that the echo of high-speed moving target is multicomponent chirp signal and searches
for the optimal order p to obtain velocity. While choosing different order-searching accuracy classes δ,
different velocity accuracies are obtained. Table 1 shows the simulation results of the proposed algorithm
and FrFT based algorithm with different order-searching accuracy classes. Each result is a mean of 50

Table 1. Comparison of two velocity-estimated algorithms.

FrFT Proposed
δ = e−3 δ = e−4 algorithm

Estimated velocity/(m/s) 5609.3 5647.7 5651.2
Computing time/s 33.7 112.3 25.3
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Figure 2. Initial processing result of echo. (a) Range profile when vr = 5656.9 m/s. (b) Range profile
when vr = 0 m/s. (c) Range-slow-time profile. (d) Abstracted y-axis position. (e) Theoretical y-axis
position.

Monte Carlo experiments. It can be seen that the FrFT based algorithm spends much longer time
when order-searching accuracy class is increased, while the proposed algorithm can obtain a relatively
accurate velocity in a short period of time.

The sensing matrix is then constructed with the estimated velocity, after the y-axis position and
phase information are reconstructed using the improved OMP algorithm. Reconstructed y-axis position
is shown in Fig. 3(a). It can be seen that migration and distortion are well compensated. Finally,
interferometric processing is conducted to obtain x-axis and z-axis positions. The results are shown in
Fig. 3(b) and Fig. 3(c), respectively. With the reconstructed 3-D positions, a 3-D time-varying image of
target is obtained as Fig. 3(d). The results show that the proposed method can effectively compensate
the distortion and migration introduced by high-speed motion and can recover the phase information
to conduct 3-D imaging of space target.
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Figure 3. The reconstructed positions and 3-D image. (a) Reconstructed y-axis position. (b)
Reconstructed x-axis position. (c) Reconstructed z-axis position. (d) Reconstructed 3-D trajectory.

4.2. Robustness Analysis

In order to analyze the robustness of the proposed method, Gaussian white noise is added to the
signal of 4.1. When signal to noise ratio (SNR) is 10 dB, the reconstructed y-axis, x-axis and z-axis
positions are shown in Figs. 4(a)–4(c), respectively. It can be seen that reconstructed y-axis position is
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Figure 4. The reconstructed positions. (a) Reconstructed y-axis position. (b) Reconstructed x-axis
position. (c) Reconstructed z-axis position.
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little affected by noise, while reconstructed x-axis and z-axis positions are distributed randomly around
theoretical values. In order to refine the reconstructed results, curve fitting operation can be applied to
the reconstructed positions of each scatterer. After curve fitting operation, the reconstructed position of
each scatterer will be a smooth curve. Through independent trials under different SNR values, the mean
square errors (MSEs) of reconstructed positions after curve fitting operation compared with theoretical
values are shown in Fig. 5. It can be seen that reconstructed x-axis and z-axis positions obtained by
interferometric processing are more easily affected by noise than reconstructed y-axis position. When
SNR is below −3 dB, the reconstructed positions seriously deviate from theoretical values. Fig. 6
illustrates the relationship of data compressing ratio and MSE of 3-D position with different SNR values.
It can be seen that MSE increases with the increasing of compressing ratio. And when compressing
ratio is below 0.8, the reconstructed result is relatively accurate.

5. CONCLUSIONS

This paper proposes a 3-D imaging method for high-speed moving space target. Through solving a
joint sparsity model with velocity to be estimated, the estimation of velocity is accomplished, and the
complex range profile is obtained. No extra velocity compensation is needed. Compared with FrFT
based velocity estimation algorithm, the proposed algorithm adopts a sparse sampling mode, thus taking
up fewer resources. Meanwhile, the proposed algorithm has a higher accuracy and faster calculation
speed. Moreover, the construction of the joint sparse parametric model guarantees the phase coherence
of three antennas, which then makes sure that the interferometric 3-D imaging achieve a good result. In
general, the proposed 3-D imaging method can compensate the effect of high-speed motion and realize
time-varying 3-D imaging of space target, which provides a support for measurement, categorization
and recognition of space targets.
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