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Identification of Equivalent Circuit Based on Polygon Network

for Nonreciprocal Lossy N -Port Device

Leonardo Zappelli*

Abstract—In this paper, a technique to identify/synthesize an equivalent circuit of nonreciprocal lossy
N -port device is presented. The technique joins the classical procedure discussed in the ’60s to the
polygon network recently proposed in the literature, which permits to draw an equivalent circuit for
reciprocal lossless N -port device in a very simple way. The identification is applied to two microwave
devices, a reciprocal lossy iris in WR90 waveguide and a 3-port nonreciprocal lossy circulator. The
proposed equivalent circuit could give some information about the agreement of the manufactured
device and its design, which usually is developed in the hypothesis of ideal lossless components.

1. INTRODUCTION

In the past, many researchers have studied the equivalent circuits of N -port microwave devices starting
from the knowledge of the impedance matrix Z or scattering matrix S [1, 2]. Carlin proposed in
’50s–’60s an efficient approach to synthesize equivalent circuits based on 2N -ports transformer banks,
which realize the desired circuit [3–6]. Cederbaum [7], Oono [8] and Youla et al. [9, 10] proposed some
refinements to that approach to enhance the realization of the circuit. The main problem lies in the use
of “complex transformers” [11] that cannot be realized in some scenarios. Moreover, the corresponding
network can be very hard to manage if the device has many ports.

Recently, an equivalent circuit for lossless N -port S-matrix has been defined using a very simple
and efficient synthesis technique [12], based on a polygon network, with susceptances placed at the sides
and at the diagonals of N -port polygon, and on N transmission lines connecting the device ports to the
polygon sides. For example, the equivalent circuit for a 4-port device is shown in Fig. 1(a). A square
is drawn, and six susceptances are placed at the sides and at the diagonals (the reciprocal kernel in
Fig. 1(a)). Finally four transmission lines connect the external input ports of the device to the sides
of the polygon. Transformers are used to normalize the susceptances contained in the kernel. The
electrical parameters are ten as the ten scattering coefficients, because the S-matrix is symmetric, and
they can be easily evaluated as described in [12]. This equivalent circuit is able to also include the
presence of evanescent modes [13, 14], and it has been applied to some microwave discontinuities, as
inductive/capacitive irises, bends and T-junctions [15]. Moreover, similar equivalent circuits have been
defined to reconstruct the experimental S-matrix of N -port device with measurements performed only
with 2-port Vector Network Analyzer (VNA) [16].

For N -port reciprocal device, the equivalent circuit contains N input transmission lines and
N(N − 1)/2 susceptances, placed at the sides and at diagonals of N -side polygon. Globally, there
are N(N + 1)/2 electrical parameters, corresponding exactly to the N(N + 1)/2 scattering parameters
of the reciprocal N -port device. The easiness of drawing the equivalent circuit of N -port device should
be appreciated.

Received 3 April 2017, Accepted 12 June 2017, Scheduled 29 June 2017
* Corresponding author: Leonardo Zappelli (l.zappelli@univpm.it).
The author is with the Dipartimento di Ingegneria dell’Informazione, Università Politecnica delle Marche, Via Brecce Bianche,
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(a) (b)

Figure 1. Equivalent circuits of (a) a reciprocal 4-port device and (b) a non reciprocal lossless gyrator.

The aim of this paper is to join these new equivalent circuits and the classical synthesis, replacing
the transformer banks with the polygon network, that is easier to evaluate, to obtain a circuit able to
represent the general case of nonreciprocal lossy N -port device. The equivalent circuit can be used in
circuit synthesis or identification.

The circuit synthesis is the process that starts from the knowledge of a lossless S-matrix with the
desired behavior and ends with the realization of a microwave device, usually assumed lossless in the
design phase. In this case, the synthesized equivalent circuit gives the susceptance values that must be
realized, for example, with irises, or cavities, or other microwave devices. The electrical lengths of the
transmission lines in the circuit are the lengths of the waveguides that connect the N input ports to
the circuit kernel, to obtain the desired phase relationships between ports. Nonreciprocity is obtained
with gyrators connected to the circuit ports, realized with ferrite devices.

The circuit identification is the process that starts from the knowledge of measured lossy S-
matrix and ends with the evaluation of an equivalent circuit that could contain information about
its manufacturing. In fact, actual devices are realized with some mechanical tolerances which can cause
unexpected behavior with respect to the desired response imposed in the design process, often developed
in the hypothesis of lossless devices. The identified equivalent circuit can point out the effect of the
losses and the discrepancies of some realized susceptances with the optimal value obtained in the design.
Hence the identification can help the designer and manufacturer to improve the realized device, with
a feedback process that can focus on the minimization of the losses and/or on the enhancement of the
realization process.
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2. THEORY

2.1. Non Reciprocal Lossless Device

The first step to extend this equivalent circuit to any kind of device is to consider the case of a
nonreciprocal lossless device. The simplest way is to remember that nonreciprocity can be added with
a gyrator. A gyrator is a nonreciprocal lossless device that has the following normalized impedance
matrix [

v1

v2

]
= ζgyr

[
i1
i2

]
=
[

0 α12

−α12 0

] [
i1
i2

]
⇒
{

v1 = α12i2
v2 = −α12i1

(1)

Equation (1) represents two CCVSs (Current Controlled Voltage Source), at the two sides of the gyrator,
which can be put in the form shown in Fig. 1(b). The amplitude α12 must be real to ensure that the
gyrator is lossless.

Hence, to introduce nonreciprocity in the equivalent circuit shown in Fig. 1(a), the current in each
port must control a voltage source at the other ports. This implies the presence of N(N − 1)/2 = 6
gyrators which must be placed at the ports of the circuit reciprocal kernel. Each gyrator relates the
voltage at each nonreciprocal kernel port to the current in the other ports, as shown in Fig. 2(a). With
the gyrators, the number of circuit parameters is N2 = 16, (4 transmission lines, 6 gyrators and 6
susceptances), just as the number of scattering parameters of a 4-port nonreciprocal device (equal to
N2, with N = 4). In this sense, the proposed circuit is a minimal realization.

The kernel circuit in Fig. 2(a) appears complex, but it can be drawn in more readable form, if
the voltage at each port of the gyrators is included in a global CCVS at the same port. In doing so,
four CCVSs are placed at the input ports of the circuit kernel. CCVS placed at port 1 depends on the
current of ports 2, 3 and 4, similarly, for the other CCVSs. Hence, the nonreciprocal equivalent circuit
can be drawn as shown in Fig. 2(b), with:

vnr
1 = α12i2 + α13i3 + α14i4 (2)

vnr
2 = −α12i1 + α23i3 + α24i4 (3)

vnr
3 = −α13i1 − α23i2 + α34i4 (4)

vnr
4 = −α14i1 − α24i2 − α34i3 (5)

or

vnr
k =

N∑
j=k+1

αkjik −
k−1∑
j=1

αjkik k = 1, . . . , N (6)

with N = 4 for Fig. 2(b). The nonreciprocal kernel (nrk) shown in Fig. 2(b) is the combination of
the CCVS’s and the reciprocal kernel (rk), i.e., the polygon susceptance network. The normalized
nonreciprocal Z-matrix of the nonreciprocal kernel, ζnrk, is obtained from the knowledge of ζrk, the
reciprocal normalized Z-matrix of the reciprocal kernel, summing the effects of the gyrators:

⎡
⎢⎣

v1

v2

v3

v4

⎤
⎥⎦ = ζnrk

⎡
⎢⎣

i1
i2
i3
i4

⎤
⎥⎦ =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

ζgyr︷ ︸︸ ︷⎡
⎢⎣

0 α12 α13 α14

−α12 0 α23 α24

−α13 −α23 0 α34

−α14 −α24 −α34 0

⎤
⎥⎦+

ζrk︷ ︸︸ ︷
j

⎡
⎢⎣

x11 x12 x13 x14

x12 x22 x23 x24

x13 x23 x33 x34

x14 x24 x34 x44

⎤
⎥⎦
⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

⎡
⎢⎣

i1
i2
i3
i4

⎤
⎥⎦ (7)

It should be noted that:

• the impedance matrix ζnrk = ζgyr+ζrk is lossless, because the reciprocal part ζrk is purely imaginary,
and ζgyr is lossless.

• ζnrk
ij = −(ζnrk

ji )∗, i.e., ζnrk is a “skew-hermitian” matrix because ζnrk = −(ζnrk)† (symbol † represents
Transpose Conjugate matrix).
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(a)

(b)

Figure 2. (a) The non reciprocal kernel of the equivalent circuit of a non reciprocal 4-port device, with
six gyrators. (b) The equivalent circuit of a non reciprocal 4-port device, where the gyrators of Fig. 2(a)
are replaced by four global CCVS’s. CCVS amplitudes vnr

1 , vnr
2 , vnr

3 , vnr
4 are as in Equations (2)–(5).
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Having defined the equivalent circuits, the identification/synthesis procedure must be defined,
starting from the knowledge of the overall nonreciprocal S-matrix. As discussed in the Introduction, the
synthesis procedure described in [3–11] is very effective, but it makes use of transformer banks which
are not simple to synthesize if the device has many ports. Moreover, it does not respect the geometry
of the device because that network is a combination of reactive elements, transformers and gyrators,
which does not take into account the physical realization of the device. In fact, any microwave device
is realized with input lines which connect the inner kernel to the external ports, in order to delete the
effects of the modes below cutoff excited by the kernel of the device. The synthesis procedure described
in [3–11] includes input lines in the overall device, which is represented with reactive elements and
transformers and putting the nonreciprocal gyrators exactly at the input ports.

On the contrary, the equivalent circuit shown in Fig. 2(b) takes into account the presence of the
input lines and represents only the nonreciprocal kernel with gyrators and a polygon network as should
be, for example, for a waveguide gyrators, where the nonreciprocity is due to the ferrite placed in the
kernel of the actual device.

The synthesis procedure starts from the evaluation of the sum of the voltage drops at the ports of
the nonreciprocal kernel. In fact, from the definition of ζnrk, Equation (7),

v1 + v2 + v3 + v4 =
4∑

i=1

ζnrk
i1 i1 +

4∑
i=1

ζnrk
i2 i2 +

4∑
i=1

ζnrk
i3 i3 +

4∑
i=1

ζnrk
i4 i4 (8)

and from the analysis of the circuit shown in Fig. 2(b) and from Equations (2)–(5)
v1 + v2 + v3 + v4 = v12 + vnr

1 + v23 + vnr
2 + v34 + vnr

3 + v41 + vnr
4

= (v12 + v23 + v34 + v41) + vnr
1 + vnr

2 + vnr
3 + vnr

4 = 0 + vnr
1 + vnr

2 + vnr
3 + vnr

4

=
4∑

i=1

αi1i1 +
4∑

i=1

αi2i2 +
4∑

i=1

αi3i3 +
4∑

i=1

αi4i4 (9)

with αii = 0 and αji = −αij, if j > i. Equations (8) and (9) give
4∑

i=1

ζnrk
i1 i1 +

4∑
i=1

ζnrk
i2 i2 +

4∑
i=1

ζnrk
i3 i3 +

4∑
i=1

ζnrk
i4 i4 =

4∑
i=1

αi1i1 +
4∑

i=1

αi2i2 +
4∑

i=1

αi3i3 +
4∑

i=1

αi4i4 (10)

If we suppose to excite the device at one port at time, we obtain four conditions on each column of ζnrk:

v1 + v2 + v3 + v4

i1
=

4∑
i=1

ζnrk
i1 =

4∑
i=1

αi1 ∈ � if i2 = i3 = i4 = 0 ∀i1 ⇒ Im

[
4∑

i=1

ζnrk
i1

]
= 0 (11)

v1 + v2 + v3 + v4

i2
=

4∑
i=1

ζnrk
i2 =

4∑
i=1

αi2 ∈ � if i1 = i3 = i4 = 0 ∀i2 ⇒ Im

[
4∑

i=1

ζnrk
i2

]
= 0 (12)

v1 + v2 + v3 + v4

i3
=

4∑
i=1

ζnrk
i3 =

4∑
i=1

αi3 ∈ � if i1 = i2 = i4 = 0 ∀i3 ⇒ Im

[
4∑

i=1

ζnrk
i3

]
= 0 (13)

v1 + v2 + v3 + v4

i4
=

4∑
i=1

ζnrk
i4 =

4∑
i=1

αi4 ∈ � if i1 = i2 = i3 = 0 ∀i4 ⇒ Im

[
4∑

i=1

ζnrk
i4

]
= 0 (14)

Equations (11)–(14) are the key to evaluate the electrical lengths θ1, θ2, θ3, θ4, starting from the
knowledge of the S-matrix of the overall non reciprocal lossless device, named Snr. In fact, the electrical
lengths θ1, θ2, θ3, θ4 must have values such that the imaginary part of the normalized impedance matrix
ζnrk must satisfy Equations (11)–(14).

Hence, if we connect numerically four lines with negative electrical lengths −θ1,−θ2,−θ3,−θ4 to
the input ports of Snr, we obtain a new S-matrix which coincides with S-matrix of the nonreciprocal
kernel, Snrk, if and only if the associated Z-matrix, ζnrk, satisfies Equations (11)–(14)

Im

[
N∑

i=1

ζnrk
ij

]
= 0 j = 1, . . . , N N = 4 (15)
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being

ζnrk =
[
I − Snrk

]−1 [
Snrk + I

]
(16)

Snrk = diag
[
ejθ1 , ejθ2, ejθ3 , ejθ4

]
· Snr · diag

[
ejθ1, ejθ2 , ejθ3 , ejθ4

]
(17)

I is the 4×4 Identity Matrix, and diag is a 4×4 Diagonal Matrix with entries contained in the brackets.
Equations (15) represent a system of four equations in four unknowns, θ1, θ2, θ3, θ4, which can be solved
numerically. Equations (15)–(17) replace the condition on the S-matrix (or Z-matrix) discussed in [12]
for the reciprocal case.

Once the values of θ1, θ2, θ3, θ4 have been obtained, ζnrk can be extracted by Equations (16)–(17).
From Equation (7), CCVS’s values and the reciprocal Z-matrix of the polygon network in Fig. 2(b) are⎡

⎢⎣
0 α12 α13 α14

−α12 0 α23 α24

−α13 −α23 0 α34

−α14 −α24 −α34 0

⎤
⎥⎦ = Re

[
ζnrk
]

(18)

ζrk = jIm
[
ζnrk
]

(19)

The susceptances contained in the polygon network can be evaluated solving a linear equation
system, starting from the knowledge of ζrk, Equation (19), as described in [12]. The circuit parameters
evaluated in the identification/synthesis procedure are related to the “kind” of the analyzed device.
Hence, they can be constants or varied with the frequency, depending on the actual device.

Obviously, Equations (15)–(17) can be easily extended to the case of N -port device, replacing 4
with N . In this case, the equivalent circuit contains N2 electrical parameters, just as the number of the
scattering parameters of the N × N S-matrix. In fact, the total number of the circuit parameters are:

• N transmission lines of electrical lengths θk, k = 1, 2, . . . , N , connecting the input ports to the non
reciprocal kernel.

• N N−1
2 gyrators placed at the ports. In fact, in the hypothesis that a gyrator links port i to port j:

– N − 1 gyrators are placed at the first port (to link the first port to the other N − 1 ports).
– N −2 gyrators are placed at the second port (to link the second port to the other N −2 ports,

except the first port that is linked with the gyrator described in the previous item).
– N − 3 gyrators are placed at the third port (to link the third port to the other N − 3 ports,

except the first and the second ports that are linked with the gyrators described in the two
previous items).

– . . ..
– 1 gyrator is placed at port N − 1 (to link the port N − 1 to the last port).

• N susceptances placed at the side of the polygon and N N−3
2 susceptances placed at the polygon

diagonals (overall N N−1
2 susceptances).

The sum of the electrical parameters is: N (electrical lengths) + N N−1
2 (gyrators) +N (susceptances at

sides) +N N−3
2 (susceptances at diagonals) = N2. Hence, the proposed equivalent circuit is a minimal

representation for any N -port non reciprocal lossless device.

2.2. Nonreciprocal Lossy Device

The power loss in actual microwave device is due to the presence of waveguide discontinuities
(inductive/capacitive irises, cavities, . . .) in the device kernel where the field can be very strong. For
example, in a capacitive diaphragm the electric field is perpendicular to the edges of the metallic
partitions of the waveguide. On these edges, the electric field (sum of the incident and reflected
fundamental mode and the excited evanescent modes) tends to be very strong, and it causes a “large”
amount of power loss just on the diaphragm surface.

A second cause of loss is the attenuation that the fundamental mode suffers during propagation in
the cavities, due to the conducting regular waveguide walls. The attenuation can be modeled with
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the classical approaches described in [1, 2]. This effect becomes substantial if the electromagnetic
field propagates up and down many times, as it happens in a cavity, but it can be neglected if the
electromagnetic field travels only one or two times in the waveguide, as in the input lines of the device.
In fact, in these lines the electromagnetic field associated with the fundamental mode travels towards
the kernel of the device is reflected and travels backwards the input port. Hence, for only two travels,
the losses due to the conducting waveguide walls can be neglected, and the input lines can be considered
lossless. Hence, the equivalent circuit should satisfy such a characteristic, and it should include the loss
only in the kernel.

Starting from the circuit developed in Subsection 2.1, we can expect that the Z-matrix of the
kernel device will be a complex quantity. A first hypothesis to define the lossy equivalent circuit can be
to replace the susceptances of the polygon network with admittances, where the conductances should
represent the effect of the power loss. This approach can be easily developed, but it causes a non-
realizable equivalent circuit, because some conductances are positive while others are negative. The
global amount of loss is exactly that imposed by the actual device, but this circuit implies the presence
of active device that is not present in actual device. Hence, this simple approach is not correct.

The solution lies in following the approach developed in [3, 10] which suggests to represent the Z-
matrix of the nonreciprocal lossy kernel, ζ lnrk, which relates voltages vi and currents ii, i = 1, 2, . . . , N ,
at the ports of the nonreciprocal lossy kernel, as the series of two Z-matrices:

ζ lnrk = ζnrk + ζ loss (20)

ζnrk =
1
2

[
ζ lnrk −

(
ζ lnrk
)†]

(21)

ζ loss =
1
2

[
ζ lnrk +

(
ζ lnrk
)†]

(22)

The first, ζnrk, is the Z-matrix of the nonreciprocal lossless kernel relating voltages vnrk
i and currents

ii, and the second, ζ loss, is the Z-matrix of the nonreciprocal lossy kernel of the device relating voltages
vloss
i and currents ii. Some properties of ζnrk and ζ loss should be highlighted:

• from Equation (21), ζnrk is a lossless “skew-hermitian” matrix and satisfies

ζnrk = −
(
ζnrk
)†

(23)

with Re[ζnrk
ii ] = 0, i.e., the elements of the main diagonal are imaginary numbers. Moreover,

ζnrk
ji = −

(
ζnrk
ij

)∗
, or ζnrk

ji = −αij + jxij and ζnrk
ij = αij + jxij .

• from Equation (22), ζ loss is a lossy “hermitian” matrix and satisfies

ζ loss =
(
ζ loss
)†

(24)

with ζ loss
ji = (ζ loss

ij )∗ and Im[ζ lossii] = 0, i.e., the elements of the main diagonal are real numbers.

Hence, ζnrk is the lossless skew-hermitian Z-matrix which has been discussed in Section 2.1, and it can
be identified with the equivalent circuit of Fig. 2(a), with the input lines being lossless, as previously
discussed. Joining this circuit and Equation (20), the 4-port equivalent circuit proposed in this approach
to solve the case of nonreciprocal lossy device is shown Fig. 3, where ζnrk and ζ loss represent the Z-
matrices to be realized.

The four lines with electrical lengths θ1, θ2, θ3, θ4 are obtained applying conditions in Eqs. (15)–
(17) to ζnrk, and ζnrk is represented with gyrators and the susceptances polygon network, as previously
discussed. The second Z-matrix, ζ loss, can be realized with an equivalent circuit with susceptances and
resistance because it is a matrix of positive definite or semi-definite hermitian form [3, 8].

The synthesis of ζ loss is little bit complex, and details are discussed in Appendix A. The following
procedure should be applied to realize ζ loss:
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Figure 3. The equivalent circuit of 4-port non reciprocal lossy device.

• evaluation of the S-matrix Sloss→dia which transforms ζ loss in a diagonal matrix, Equation (A11)

Sloss→dia =
[

04×4 u
u† 04×4

]
(25)

where u is the 4 × 4 matrix containing the eigenvectors of ζ loss, written as columns.
• mathematically connect 2N = 8 admittances −jbz

i , i = 1, 2, . . . , 2N to the 2N ports of Sloss→dia,
obtaining a new S-matrix Sloss→dia

z which can be realized with a 2N -port susceptances polygon
network and 2N transmission lines. The choice of bz

i , i = 1, . . . , 2N is arbitrary.
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• once the polygon network has been evaluated, connect 2N admittances jbz
i , i = 1, . . . , 2N to the

corresponding 2N ports
• load the output N = 4 ports with N resistive loads rload

i , equal to the i-th eigenvalue of ζ loss, for
i = 1, . . . , N .

The resulting equivalent circuit of ζ loss is shown in Fig. 4, where CCVSs are related to the gyrator
amplitudes αloss

kj , evaluated in the identification of ζ loss, as discussed in Subsection 2.1:

vnrl
k = −

k−1∑
j=1

αloss
jk ik +

2N∑
j=k+1

αloss
kj ik k = 1, 2, . . . , 2N (N = 4) (26)

This procedure ends the identification process.

Figure 4. The equivalent circuit of ζ loss for a 4-port device. Susceptances bz
i are placed at ports

1, 2, . . . , 8 to transform Sloss→dia
z in Sloss→dia. rload

1 , rload
2 , rload

3 , rload
4 are equal to the eigenvalues of ζ loss

and are the resistive loads connected to the output ports of the diagonalized impedance matrix ζdia.
The susceptances in the inner diagonals of the octagon are not drawn for simplicity.
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(a) (b)

Figure 5. (a) Square reciprocal iris (side 19 mm, depth 15 mm) inserted between two rectangular WR90
waveguides. (b) 3-port circulator in rectangular WR90 waveguide.

Ls

Cs

Cp
Lp

(a) (b)

Figure 6. (a) The equivalent circuit of 2-port reciprocal lossy iris in WR90 waveguide. The lossless
skew-hermitian part is drawn with red color and the lossy hermitian part with black color. (b)
Realization of the susceptance bp contained in the skew-hermitian lossless part of the equivalent circuit.

3. RESULTS

The first case is the identification of the S-matrix of a reciprocal lossy 2-port waveguide iris, as shown in
Fig. 5(a). A square iris (side 19 mm, depth 15 mm) is placed between two rectangular WR90 waveguides
(a = 22.86 mm, b = 10.16 mm). Agilent 8510C VNA has been used to measure its scattering parameters
in the X band and, with these measurements, the equivalent circuit shown in Fig. 6(a) has been identified,
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and the corresponding electrical parameters are shown in Fig. 7. The normalized susceptances bz
i which

delete the eigenvalue λ = 1 of order 2 in Sloss→dia have been chosen to ensure that the diagonal elements
of Sloss→dia

z have equal magnitude: bz
i = 0.535, i = 1, 2, 3, 4. In doing so, some symmetries in the

equivalent circuit of the lossy part can be obtained. In fact, it can be seen from Figs. 7(a)–7(b) that
θloss
1 = θloss

3 , θloss
2 = θloss

4 and bloss
12 = bloss

14 , bloss
23 = bloss

34 . Obviously, other choices for bz
i are permitted.

The resistive loads shown in Fig. 7(c) are not equal because of the presence of measurement errors
at the two ports of VNA and a non-perfect connection between the iris and the two waveguides.

In fact, a small misalignment causes a different effect on the losses at the two front surfaces of the
iris, producing a small difference between the measured

∣∣∣Sexp lossy
11

∣∣∣ and
∣∣∣Sexp lossy

22

∣∣∣, as shown in Fig. 7(d)
(black and blue dotted lines). This misalignment is confirmed also by the little spike appearing in∣∣∣Sexp lossy

11

∣∣∣ , ∣∣∣Sexp lossy
12

∣∣∣ , ∣∣∣Sexp lossy
22

∣∣∣ at about 11.2 GHz. In fact, modes TE11 and TM11 of the square iris

(a) (b)

(c) (d)

Figure 7. (a)–(c) Electrical lengths, susceptances and resistive loads of the equivalent circuit shown in
Fig. 6(a), relative to the iris of Fig. 5(a). (d) Scattering coefficients of the “experimental lossless” iris
(continuous lines), CST simulations (dashed lines) and the experimental results for the lossy actual iris
(dotted lines).
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have a frequency cutoff at about 11.16 GHz. If the alignment were perfect, these modes should not be
excited by the discontinuity. Hence, the little spike at about 11.20 GHz means that these modes are
excited by a little misalignment between the iris and the two waveguides. The effect of this spike is
evident in the electric circuit parameters shown in Figs. 7(a)–7(d). Finally, the misalignment accounts
for the little difference between θ1 and θ2 in Fig. 7(a), which should be equal for a centered iris.

The normalized susceptances bp relative to the lossless skew-hermitian part can be realized with
the circuit shown in Fig. 6(b), with Ls = 5.63 · 10−12, Cs = 9.95 · 10−9, Lp = 1.49 · 10−12, and
Cp = 1.05 · 10−10. The normalized susceptances bloss

ij and load resistances relative to the lossy hermitian
part have a behavior quite difficult to be realized with the same precision used for bp. Anyway, the effect
of the lossy part is small compared to the lossless part of the circuit, because the iris has a low amount
of loss. Hence, these electrical parameters can be approximated with a constant value obtained with
an integral mean over the whole band: r1 ≈ 0.029, r2 ≈ 0.012, bloss

12 = bloss
14 ≈ 1.42, bloss

23 = bloss
34 ≈ 3.63,

bloss
13 ≈ −2.52, bloss

24 ≈ −3.54. The S-matrix obtained with these inductances/capacitances/resistances is
in a very good agreement with the experimental results shown in Fig. 7(d) (about ±0.15 dB), and they
are not shown for simplicity.

During measurements, the effect of the losses cannot be deleted, because they are inseparable from
the actual device, but it is interesting to wonder what happens if the lossy part of the equivalent circuit
is deleted, replacing rload

1 and rload
2 with short circuits. The readers may think that the “experimental

results for lossless” iris are obtained. Hence, the scattering coefficients for the “experimental lossless”
iris, obtained with that replacement, have been evaluated, and they are shown in Fig. 7(d) with
continuous lines. The “experimental lossless” and the CST simulations (dashed lines) for the lossless
iris are very close in Fig. 7(d). Hence, from the experimental results on lossy device, the “experimental
lossless” results can be evaluated from the equivalent circuit and compared with numerical simulations
in order to understand how close the simulations are to the “experimental lossless” device, which can
never be measured because the losses are unavoidable. If they are very close, the differences between the

Figure 8. The equivalent circuit of 3-port non reciprocal lossy circulator in WR90 waveguide, shown in
Fig. 5(b). The lossless skew-hermitian part is drawn with red color (right side) and the lossy hermitian
part with black color (left side).
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(a) (b)

(c) (d)

(e) (f)
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(g) (h)

(i)

Figure 9. (a)–(f) Electrical lengths, gyrators and susceptances of the equivalent circuit shown in Fig. 8,
relative to the circulator of Fig. 5(b). (g) Resistive loads of the equivalent circuit shown in Fig. 8,
relative to the circulator of Fig. 5(b). (h) The experimental scattering coefficients of the circulator. (i)
The scattering coefficients of the “experimental lossless” circulator, obtained from the circuit of Fig. 8
replacing the resistive loads with short circuits, to delete the effect of the losses.

experimental lossy results and the numerical simulations are simply due to the device loss. Otherwise,
there can be some discrepancy between the realized irises and those obtained in the phase design. This
can enhance the optimization of filters, diplexers and other devices.

The second analyzed device is the 3-port circulator in WR90 rectangular waveguide acting in the
X-band, shown in Fig. 5(b). The experimental results for the 3-port circulator shown in Fig. 9(h)
have been used to identify the circuit shown in Fig. 8: the nonreciprocal lossless skew-hermitian part
is identified with a triangle of susceptances and three CCVSs at its ports (right side of the figure, red
color); the nonreciprocal lossy hermitian part is identified with a polygon network with six sides and
three ports (4, 5, 6) closed on three resistive loads, equal to the eigenvalues of ζ loss (left side of the
figure, black color). The normalized susceptances bz

i which delete the eigenvalue λ = 1 of order 3 in
Sloss→dia have been chosen equal to bz

i = (−1)i0.5i, i = 1, . . . , 6. The electrical lengths, normalized
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susceptances, gyrator amplitudes and resistive loads are shown in Figs. 9(a)–9(g). It is interesting to
evaluate the “experimental lossless” case, obtained replacing the three resistive loads with short circuits:
these results are shown in Fig. 9(i). It should be noted that the “experimental lossless” circulator works
well in the band 9.3–9.5 GHz, where |S12| , |S23| , |S31| are very similar, as declared by the manufacturer
(see Fig. 5(b)). Hence, design is probably correct. On the other hand, comparing 9(h) and 9(i), it is
evident that the losses act on |S12| in a different way from that on |S23| and |S31|. This behavior can be
of interest for the manufacturer, which can enhance the circulator design to make |S12| ≈ |S23| ≈ |S31|
in the band of interest.

4. CONCLUSIONS

The equivalent circuit for nonreciprocal lossy N -port device has been obtained joining the classic
synthesis technique and the recent polygon network, which permits to draw the equivalent circuit in a
very simple way for any number of ports. The technique has been applied to the identification of the
equivalent circuit of a reciprocal lossy iris and of a non reciprocal lossy 3-port circulator. The equivalent
circuit can permit to delete the effect of the losses replacing the resistive loads, which represent the
loss, with short circuits, to enhance the design of the device, which is usually done in the hypothesis of
lossless components.

APPENDIX A.

The procedure to synthesize ζ loss is little bit complex, and some preliminary remarks must be done.
Hermitian nonreciprocal Z-matrix ζ loss, Equation (22), relates the voltages at the input, vloss

i ,
i = 1, 2, 3, 4, to the current ii, as shown in Fig. 3:

vloss =

⎡
⎢⎢⎢⎢⎣

vloss
1

vloss
2

vloss
3

vloss
4

⎤
⎥⎥⎥⎥⎦ = ζ lossi = ζ loss

⎡
⎢⎣

i1
i2
i3
i4

⎤
⎥⎦ (A1)

The identification of ζ loss is not simple as ζnrk, because ζ loss satisfies Equation (24), which implies
that the nonreciprocity afflicts the imaginary part of ζ loss. Hence, non reciprocity of ζ loss cannot be
represented with real gyrators as done for ζnrk.

However, a solution can be found if a transformation on voltages vloss
i and currents ii is applied,

as suggested in [3, 8]. To do this, we must observe that ζ loss is a Positive Definite (PD) matrix of an
hermitian form, because it is related to the dissipated power in the device. In fact, if ζ loss is excited by
N currents, say the vector iexc of dimensions N × 1, the dissipated power in ζ loss, Ploss, is

Ploss = (iexc)
† ζ lossiexc (A2)

which is always a positive real quantity. This is just the definition of a Positive Definite hermitian
matrix that has some properties [17]:

• the eigenvalues of a matrix of an hermitian PD form (ζ loss) are always positive;
• if the eigenvectors of ζ loss are written as the columns of a matrix u, then

u u† = u† u = I ⇒ u−1 = u† (A3)

• a matrix of an hermitian PD form (ζ loss) can be diagonalized with the help of its eigenvectors. In
fact, if the eigenvectors are put in the columns of the matrix u, it is possible to define a diagonal
matrix from ζ loss such that

ζ loss = u ζdia u† ⇒ ζdia = u† ζ loss u (A4)

where the elements of the diagonal matrix ζdia are just the real positive eigenvalues of ζ loss.
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From Equations (A1) and (A4):
vloss = ζ loss i = u ζdia u† i (A5)

or
u−1 vloss = u† vloss = ζdia u† i (A6)

Setting

vdia = u† vloss (A7)

idia = u† i (A8)

we obtain,

vdia = ζdia idia = diag
[
λζloss

1 , λζloss

2 , λζloss

3 , λζloss

4

]
idia = diag

[
rload
1 , rload

2 , rload
3 , rload

4

]
idia (A9)

where λζloss

i is the i-th eigenvalue of ζ loss. Equations (A7)–(A8) represent a linear transformation
between (vloss, i) and (vdia, idia), which are related by Equation (A9), representing a diagonal matrix,
ζdia, that connects the voltage at the i-th port to the current at the same port with a resistor equal to
the i-th eigenvalue of ζ loss, as shown in Fig. A1(a).

(a) (b)

Figure A1. (a) Transformation of the hermitian matrix ζ loss into the diagonal matrix ζdia connected
to resistive loads. (b) Insertion of shunt susceptances at the ports of Sloss→dia to define the S-matrix
Sloss→dia

z which can be realized with a polygon susceptances network.

The linear transformation in Equations (A7)–(A8) can be represented by the following matrix[
vdia

idia

]
=

[
u†

N×N 0N×N

0N×N u†
N×N

][
vloss

i

]
= T loss→dia

[
vloss

i

]
(A10)

where N = 4 and T loss→dia is a lossless 2N × 2N , (8× 8), matrix representing the linear transformation
to diagonalize ζ loss. Hence, the realization of ζ loss has been transformed in the realization of T loss→dia.
This problem has been solved in [3, 8] making use of “complex transformers” which are quite difficult to
realize [11], especially if the number of ports increases. The solution proposed in this approach exploits
the polygon network approach previously defined.
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First of all, the lossless S-matrix corresponding to T loss→dia is:

Sloss→dia =
[

04×4

(
u†)−1

u† 04×4

]
=
[

04×4 u
u† 04×4

]
(A11)

where u is the 4 × 4 matrix containing the eigenvectors of ζ loss, written as columns.
In order to obtain the lossless matrix Sloss→dia, the eigenvectors of ζ loss must be normalized to

ensure that the sum of the squares of the magnitude components of each eigenvector is equal to 1:∑4
k=1 |uki|2 = 1, i = 1, 2, 3, 4. In fact

Sloss→dia ·
(
Sloss→dia

)†
=
[

04×4 u
u† 04×4

] [
04×4 u
u† 04×4

]†
=
[

04×4 u
u† 04×4

] [
04×4 u
u† 04×4

]

= diag

[
4∑

k=1

|uk1|2 ,

4∑
k=1

|uk2|2 ,

4∑
k=1

|uk3|2 ,

4∑
k=1

|uk4|2 ,

4∑
k=1

|uk1|2 ,

4∑
k=1

|uk2|2 ,

4∑
k=1

|uk3|2 ,

4∑
k=1

|uk4|2
]

= I (A12)

Recalling that for a block matrix
det [M ] = det [M22] det

[
M11 − M12M

−1
22 M21

]
(A13)

where Mij are the blocks of matrix M , the eigenvalues of Sloss→dia are obtained from Equations (A3)
and (A11):

det
[
Sloss→dia − λI

]
= det

[ −λI4×4 u
u† −λI4×4

]
= det [−λI4×4] det

[
−λI4×4 − u (−λI4×4)

−1 u†
]

= λ4det
[
−λI4×4 + u

(
I4×4

λ

)
u†
]

= λ4det

[(
1 − λ2

)
I4×4

λ

]
=

=
(
1 − λ2

)4 = 0 (A14)

Hence the eigenvalues of Sloss→dia are λ = ±1 with order 4 and, by this reason, it is not possible to
obtain the corresponding Z-matrix, ζ loss→dia, from Sloss→dia. In fact, the following relation holds

ζ loss→dia =
(
I − Sloss→dia

)−1 (
Sloss→dia + I

)
(A15)

and it is necessary that I−Sloss→dia is nonsingular, i.e., det(I−Sloss→dia) �= 0. If Sloss→dia has eigenvalue
λ = 1, from Equation (A14) it follows that det(I − Sloss→dia) = 0 and ζ loss→dia can not be defined. In
this case, it is not possible to define the polygon network susceptances directly from Sloss→dia, because
such polygon network requires the definition of a Z-matrix.

Anyway, we can put at each port of Sloss→dia a shunt of two admittances, jbz
i and −jbz

i , without
changing Sloss→dia, as shown in Fig. A1(b). If we include the eight admittances −jbz

i in Sloss→dia we
obtain a new S-matrix, Sloss→dia

z , with all eigenvalues other than 1, as discussed in Appendix B. This
ensures that the Z-matrix ζ loss→dia

z exists and that Sloss→dia
z can be identified with the susceptances

polygon network and transmission lines. Actually only four admittances −jbz
i are sufficient to obtain

the S-matrix Sloss→dia
z with all eigenvalues other than 1, but we prefer to include 8 admittances to

impose some symmetry properties to Sloss→dia
z (for example, that all the diagonal elements of Sloss→dia

z
have the same magnitude).

Hence, to realize ζ loss the following procedure applies (N = 4 in Fig. A1):

• evaluation of the scattering matrix Sloss→dia which transforms ζ loss in a diagonal matrix, based on
the eigenvectors of ζ loss, as shown in Equation (A11).

• mathematically connect 2N admittances −jbz
i , i = 1, 2, . . . , 2N to the 2N ports of Sloss→dia,

obtaining the new S-matrix Sloss→dia
z which can be realized with a 2N -port susceptances polygon

network and 2N transmission lines. The choice of bz
i , i = 1, . . . , 2N is arbitrary.
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• once the polygon network has been evaluated, connect 2N admittances jbz
i , i = 1, . . . , 2N to the

corresponding 2N ports.
• load the output N ports with N resistive loads rload

i , equal to the i-th eigenvalue of ζ loss, for
i = 1, . . . , N .

The resulting equivalent circuit of ζ loss is shown in Fig. 4, where the CCVS’s are related to the gyrator
amplitudes αloss

kj , evaluated in the identification of ζ loss, as discussed in Subsection 2.1:

vnrl
k = −

k−1∑
j=1

αloss
jk ik +

2N∑
j=k+1

αloss
kj ik k = 1, 2, . . . , 2N (N = 4) (A16)

APPENDIX B.

In this appendix, it is shown that the 2N -port S-matrix Sloss→dia, which does not posses the
corresponding Z-matrix because Sloss→dia − I is singular, can be transformed in a new matrix Sloss→dia

z ,
with Sloss→dia

z − I not singular, connecting N admittances jbk, k = 1, 2, . . . , N to N ports of Sloss→dia.
The 2N -port S-matrix Sloss→dia has N eigenvalues equal to 1 and N eigenvalues equal to −1, as

discussed in Appendix A, Equation (A14). The matrix can be divided in blocks as follows

Sloss→dia =
[

0N×N uN×N

u†
N×N 0N×N

]
=

⎡
⎢⎣

0N×N uN×N−1 uLC
N×1

u†
N−1×N 0N−1×N−1 0N−1×1

u†,LR
1×N 01×N−1 01×1

⎤
⎥⎦ =

=

[
S11

(2N−1)×(2N−1) S12
(2N−1)×1

S21
1×(2N−1) 01×1

]
(B1)

where u†
N−1×N and uN×N−1 are blocks u†

N×N and uN×N without the last row, u†,LR
1×N , and the last

column, uLC
N×1, respectively. Matrix u satisfies the following conditions:

1) I = u u† =
[

uN×N−1 uLC
N×1

] [ u†
N−1×N

u†,LR
1×N

]
=
[
uN×N−1u

†
N−1×N + uLC

N×1u
†,LR
1×N

]
(B2)

2) rank
[
uN×N−1u

†
N−1×N

]
= N − 1 ⇒ det

[
uN×N−1u

†
N−1×N

]
= 0 (B3)

3) rank
[
uLC

N×1u
†,LR
1×N

]
= 1 ⇒ det

[
uLC

N×1u
†,LR
1×N

]
= 0 (B4)

Condition 2) is obtained recalling that for a matrix A, rank[AA†] = rank[A], [18], and condition 3)
holds because all columns of uLC

N×1u
†,LR
1×N are equal to column vector uLC

N×1 times uk1, being k the column
index, and its rank is equal to 1.

If the last port of Sloss→dia is connected to a shunt admittance jb (Fig. A1(b)), with S-matrix Sb

equal to

Sb =
[

S11
b S12

b

S12
b S11

b

]
=

⎡
⎢⎢⎣

− jb

2 + jb

2
2 + jb

2
2 + jb

− jb

2 + jb

⎤
⎥⎥⎦ (B5)

with

S11
b S11

b − S12
b S12

b = −S11
b − S12

b (B6)
S12

b − S11
b = 1 (B7)

the new overall S-matrix, Sloss→dia
z , is:

Sloss→dia
z =

[
S11 + S11

b S12S21 S12
b S12

S12
b S21 S11

b

]
(B8)
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The eigenvalues of Sloss→dia
z are obtained from (A13):

det
[
Sloss→dia

z − λI
]

= det
[
S11

b − λ
]
det
[
S11 + S11

b S12S21 − λI2N−1×2N−1 − S12S12
b

1
S11

b − λ
S21S12

b

]

=
det
[(

S11
b − λ

) (
S11 + S11

b S12S21 − λI2N−1×2N−1

)− S12S12
b S21S12

b

]
(
S11

b − λ
)2N−2

=
det
[(

S11
b −λ

) (
S11−λI2N−1×2N−1

)
+S12S21

(
S11

b S11
b −S11

b λ−S12
b S12

b

)]
(
S11

b − λ
)2N−2

(B9)

From Equation (B1), S12S21 is the following (2N − 1) square matrix

S12S21 =

[
uLC

N×1u
†,LR
1×N 0N×N−1

0N−1×N 0N−1×N−1

]
(B10)

and, from Equations (B1), (B6) and (B7), the matrix A = (S11
b − λ)(S11 − λI2N−1×2N−1) +

S12S21(S11
b S11

b − S11
b λ − S12

b S12
b ) in Equation (B9) can be written as:

A =

[
uLC

N×1u
†,LR
1×N

(−S11
b − S12

b − S11
b λ
)− (S11

b − λ
)
λIN×N

(
S11

b − λ
)
uN×N−1(

S11
b − λ

)
u†

N−1×N − (S11
b − λ

)
λIN−1×N−1

]
(B11)

Hence, from Equation (A13), (B2), (B6), (B7),

det
[
Sloss→dia − λI

]
=

det
[− (S11

b − λ
)
λIN−1×N−1

]
(
S11

b − λ
)2N−2

det
[
uLC

N×1u
†,LR
1×N

(−S11
b − S12

b − S11
b λ
)

− (S11
b − λ

)
λIN×N +

(
S11

b − λ
)2

uN×N−1
IN−1×N−1(
S11

b − λ
)
λ

u†
N−1×N

]

=

(
S11

b − λ
)N−1 (−λ)N−1(

S11
b − λ

)2N−2
det
[(

S11
b + S12

b + S11
b λ
) (

uN×N−1u
†
N−1×N − IN×N

)

− (S11
b − λ

)
λIN×N + uN×N−1u

†
N−1×N

(
S11

b − λ
)

λ

]

=
det
[
IN×Nλ

(
λ2 − 2S11

b λ − S11
b − S12

b

)
+ uN×N−1u

†
N−1×NS11

b

(
λ2 + 2λ + 1

)]
λ
(
λ − S11

b

)N−1

=
det
[
IN×Nλ (λ + 1)

(
λ − 1 − 2S11

b

)
+ uN×N−1u

†
N−1×NS11

b (λ + 1)2
]

λ
(
λ − S11

b

)N−1

=
(λ + 1)N det

[
IN×Nλ

(
λ − 1 − 2S11

b

)
+ uN×N−1u

†
N−1×NS11

b (λ + 1)
]

λ
(
λ − S11

b

)N−1
(B12)

Equation (B12) has:

• N roots λ = −1, due to factor (λ + 1)N , as the matrix Sloss→dia;
• N − 1 roots λ = 1. In fact, for λ = 1 and from Equations (B2) and (B3), Equation (B12) becomes

det
[
2S11

b

(
−IN×N + uN×N−1u

†
N−1×N

)]
= det

[
−2S11

b uLC
N×1u

†,LR
1×N

]
= 0 (B13)

and λ = 1 is a root with order N − 1 because the N × N matrix uLC
N×1u

†,LR
1×N has rank equal to 1;.
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• one root λ = 1 + 2S11
b . In fact, for λ = 1 + 2S11

b and from (B4), Equation (B12) becomes

det
[
uN×N−1u

†
N−1×NS11

b

(
1 + S11

b

)]
= 0 (B14)

and λ = 1 + 2S11
b is a simple root because the N × N matrix uN×N−1u

†
N−1×N has rank equal to

N − 1.

Hence, the shunt admittance jb connected to port 2N has changed the order of the root λ = 1 to N −1.
If other N − 1 shunt susceptances are connected to other ports, we can delete all the roots λ = 1 from
Sloss→dia

z − I, obtaining det[Sloss→dia
z − I] �= 0. In doing so, Sloss→dia

z possesses a Z-matrix and it can be
represented with the polygon susceptance network.
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