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Data-driven Strategies for Cross-Track Motion Compensation
in Synthetic Aperture Radar Imaging

Po-Chih Chen and Jean-Fu Kiang*

Abstract—Nine different strategies are proposed to compensate the cross-track motion errors in
synthetic aperture radar (SAR) imaging, based on estimating the phase coefficients of the phase history.
A spline interpolation method and a subaperture reconstruction method are used to derive the phase
history over the whole aperture, based on the phase coefficients previously estimated. Four different
scenarios are designed to compare the performance of these nine strategies.

1. INTRODUCTION

Motion compensation (MOCO) is critical to the quality of airborne synthetic aperture radar (SAR)
imaging. The flight path of the platform during a SAR mission is inevitably perturbed by local weather
condition, resulting in motion errors that will affect the received signal and deteriorate the imaging
quality. The motion information of the platform can be provided, to certain degree of accuracy, by an
inertial navigation system (INS) [1] or the global positioning system (GPS) [2]. In [3], the information
derived from INS / GPS was used to compensate for the first-order range-independent motion error,
and then a reflectivity displacement method (RDM) was applied to estimate the second-order range-
dependent residue motion errors.

As an alternative, motion errors can be estimated from the received signal itself [3–13]. In [4],
a two-step MOCO approach was implemented on an extended chirp scaling (ECS) algorithm. In the
first step, the deviation from a reference point is corrected before range compression. In the second
step, a range-dependent phase correction is applied after range compression and RCM correction, before
azimuth compression.

In [5], a 3D MOCO method was proposed. First, the instantaneous Doppler rate and the Doppler
centroid are estimated by using a subaperture method. Then, the forward velocity and the displacement
in the line-of-sight (LOS) direction are extracted from the instantaneous Doppler rate. A weighted least-
square (WLS) method was proposed by taking multiple Doppler rate data at different range gates to
minimize the error in estimating the acceleration vector. In [6], two coefficients in each azimuth gate
are derived from the Doppler rates estimated at all the range gates via a straight-line fitting method,
which are then applied to estimate the forward velocity and displacement in the LOS direction.

In conventional two-step MOCO algorithms, along-track motion errors are usually neglected, except
when the SAR system operates at a large squint-angle or in a wide-beam mode [7]. In [8], three Fourier-
based MOCO algorithms were implemented on range Doppler, extend chirp scaling (ECS) and ωK
algorithms. A precise topography and aperture-dependent (PTA) algorithm [9, 10] was applied to correct
the residual phase error associated with a target. A subaperture topography and aperture-dependent
(SATA) algorithm [7, 8], which is a variant of PTA, implemented MOCO before azimuth compression.
A frequency division (FD) algorithm [11, 12], which is similar to SATA, applied subaperture technique
in the frequency domain instead of the time domain. In [7], the SATA algorithm was applied after

Received 19 March 2017, Accepted 4 June 2017, Scheduled 14 June 2017
* Corresponding author: Jean-Fu Kiang (jfkiang@ntu.edu.tw).
The authors are with the Graduate Institute of Communication Engineering, National Taiwan University, Taipei, Taiwan, R.O.C.



60 Chen and Kiang

the standard two-step MOCO. However, SATA can only partially compensate the azimuth-dependent
motion errors since the phase is corrected only in the middle of subapertures. The first-order motion
error in each subaperture is accounted for by using a scaled Fourier transform (SFT).

In [13], the phase error was attributed to some parameters, including azimuth velocity and radial
acceleration, and the problem of motion compensation was converted to the estimation of these
parameters. The whole aperture was divided into multiple subapertures, with the motion parameters
approximated as constants in each subaperture.

In this work, the phase history is expanded in a Taylor’s series up to the third-order terms, as
compared to the second-order terms in [5, 6]. The whole aperture is divided into multiple subapertures,
and the phase coefficients are estimated at the middle of each subaperture. A spline interpolation
method and a subaperture reconstruction method are proposed to derive the temporal profiles of phase
coefficients over the whole aperture. Nine strategies are then proposed to compensate the motion error,
and four different scenarios are designed to analyze and compare the performance of these strategies.

This work is organized as follows. A polynomial representation of phase history is presented in
Section 2, in an airborne zero-squint SAR mission; three models for estimating the phase coefficients in
subapertures are presented in Section 3; two methods to derive the slow-time profiles of phase coefficients
over the whole aperture are presented in Section 4; nine strategies for cross-track MOCO are proposed
in Section 5. Four simulation scenarios are described in Section 6; imaging performance of these nine
strategies in these four scenarios are compared and discussed in Section 7. Finally, some conclusions
are drawn in Section 8.

2. POLYNOMIAL REPRESENTATION OF PHASE HISTORY

(a) (b)

Figure 1. (a) Flight path of a SAR platform with a look angle θ� towards the target area, solid line:
ideal flight path, dashed curve: actual flight path. (b) Flowchart of MOCO, based on a conventional
RDA. The processes enclosed with parentheses are designed for MOCO.

Figure 1(a) shows the flight path of a SAR platform with a look angle θ� towards the target area,
where the solid line and the dashed curve represent the ideal and the actual flight paths, respectively.
The ideal and the actual position of antenna phase center (APC) at azimuth time η are denoted as
Q0(0, Vpη, h) and Q(x(η), y(η), z(η)), respectively. The motion error vector, which is the difference
between the actual flight path and the ideal one, is (x(η), y(η)−Vpη, z(η)−h), where x(η) and z(η)−h
are the cross-track motion errors and y(η) − Vpη is the along-track motion error. In this work, the
squint angle is set to zero and the target area is assumed to be a flat surface. The beam center
point (BCP) is at C(xc, 0, 0), with xc = h tan θ�. The range from the BCP to the ideal flight path is
R0 =

√
x2

c + h2. The slant ranges from a point target at P (xp, yp, 0) to the actual and the ideal flight

paths are Rs(η) =
√

[x(η) − xp]2 + [y(η) − yp]2 + z2(η), and R =
√

x2
p + h2, respectively. If the motion
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errors are small, the slant range can be approximated as

Rs(η) � R +
[y(η) − yp]

2

2R
− x(η) sin θ� + [z(η) − h] cos θ� (1)

which is composed of an along-track component and two cross-track components.
Figure 1(b) shows the flowchart of implementing motion compensation (MOCO), based on a

conventional range-Doppler algorithm (RDA). The transmitted linear frequency modulation (LFM)
signal is expressed as st(τ) = we(τ)ej2πf0τ+jπKrτ2

, where f0 is the carrier frequency, Kr is the FM rate,
τ is the range (fast) time, we(τ) = rect(τ/Tr) is the range envelope with duration Tr, and rect(τ) is a
rectangular function, which equals one when |τ | ≤ 1/2 and zero otherwise. The received signal scattered
from the point target at P (xp, yp, 0) is first demodulated, then Fourier transformed with respect to τ
to become

Srb(fτ , η) = b1A0e
−j4πf0Rs(η)/cwe(fτ/Kr)e−jπf2

τ /Kre−j4πfτRs(η)/c (2)
where A0 is a complex amplitude, which is set to one. The radiation pattern of the SAR radar towards
the point target is approximated as one, and b1 is a constant of integration. Next, the signal in Eq. (2)
is multiplied with a range compensation filter Hrc(fτ , η) = ejπf2

τ /Kr , then inverse Fourier transformed,
with respect to fτ , to obtain

src(τ, η) = b1A0e
−j4πRs(η)/λ0KrTrsinc{KrTr[τ − 2Rs(η)/c]} (3)

where sinc(α) = sin(πα)/(πα). The phase in Eq. (3) at τ − 2Rs(η)/c is called the phase history, with
the explicit form

φ(η) = −4πRs(η)/λ0 (4)
The peak amplitude of src(τ, η) in the τ domain occurs at τ ′(η) = maxτ {|src(τ, η)|}, at which src(τ, η)
is reduced to

s(η) = src(τ ′(η), η) � b2e
jφ(η) (5)

where b2 = b1A0KrTr.
The whole azimuth aperture is divided into S subapertures, each containing Ns azimuth samples.

The signal s(η) and its phase history φ(η) are represented in these S subapertures as
s(η) = [s1(η), s2(η), . . . , ss(η), . . . , sS(η)] , φ(η) = [φ1(η), φ2(η), . . . , φs(η), . . . , φS(η)]

with ss(η) = b2e
jφs(η). In the sth subaperture, ηsb ≤ η ≤ ηse, φs(η) can be approximated by a Taylor’s

series as
φs(η) � cs + αs(η − ηs) + βs(η − ηs)2 + γs(η − ηs)3 (6)

where ηs = (ηsb+ηse)/2, cs = φs(ηs), αs = φ′
s(ηs), βs = φ′′

s(ηs)/2 and γs = φ′′′
s (ηs)/6. The corresponding

signal can thus be represented as

ss(η) � b2e
j[cs+αs(η−ηs)+βs(η−ηs)2+γs(η−ηs)3] (7)

By substituting the expression of Rs(η) in Eq. (1) into Eq. (6), we have

cs = −4π
λ0

{
R +

[y(ηs) − yp]2

2R
− x(ηs) sin θ� + [z(ηs) − h] cos θ�

}
(8)

αs = −4π[y(ηs) − yp]vy(ηs)
λ0R

+
4πvr(ηs)

λ0
(9)

βs = −2πv2
y(ηs)

λ0R
− 2π[y(ηs) − yp]ay(ηs)

λ0R
+

2πar(ηs)
λ0

(10)

γs = −2πvy(ηs)ay(ηs)
λ0R

− 2π[y(ηs) − yp]by(ηs)
3λ0R

+
2πbr(ηs)

3λ0
(11)

where the radial kinematic parameters of the platform are expressed as
vr(η) = vx(η) sin θ� − vz(η) cos θ�, ar(η) = ax(η) sin θ� − az(η) cos θ�

br(η) =
dar(η)

dη
= bx(η) sin θ� − bz(η) cos θ�

with bx(η) = dax(η)/dη and bz(η) = daz(η)/dη.
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3. ESTIMATION OF PHASE COEFFICIENTS IN SUBAPERTURES

Three different models are proposed to represent the phase history in each subaperture.

3.1. First-Order Model

If only the first-order term in the phase history is considered, Eq. (7) is reduced to

ss(η) � b3e
jαsη (12)

where b3 = b2e
j(cs−αsηs). By taking the Fourier transform of the signal in Eq. (12) with respect to η,

we obtain

Ss(fη) � b3Tasinc {[fη − αs/(2π)]Ta} (13)

where Ta = NaΔη is the synthetic aperture time span. Eq. (13) implies that a peak occurs at
fηp1 = α̃s/(2π). Hence αs is estimated as α̃s = 2πfηp1.

3.2. Second-Order Model

If the phase history is expanded up to the second-order term, Eq. (7) is reduced to

ss(η) � b4e
j(α′

sη+βsη2) (14)

where b4 = b3e
jβsη2

s and α′
s = αs − 2βsηs. Define a product w(η, η′) = s∗s(η)ss(η + η′) = b5e

j2βsη′η,
where b5 = b4b

∗
4e

j(α′
sη′+βsη′2). The Fourier transform of w(η, η′) with respect to η is W (fη, η

′) =
b5Tasinc [(fη − βsη

′/π)Ta], in which a peak occurs at fηp2 = β̃sη
′/π. Thus, βs is estimated as

β̃s = πfηp2/η
′. By multiplying a second-order compensation filter Hc2(η) = e−jβ̃s(η−ηs)2 to the signal in

Eq. (14), we obtain

s′s(η) = ss(η)Hc2(η) = b2e
j[cs+αs(η−ηs)+(βs−β̃s)(η−ηs)2] � b2e

j[cs+αs(η−ηs)] (15)

of which the phase is a linear function of η, as in Eq. (12).

3.3. Third-Order Model

If the phase history is expanded up to the third-order term, Eq. (7) is rewritten as

ss(η) � b6e
j(α′′

s η+β′
sη2+γsη3) (16)

where b6 = b4e
−jγsη3

s , α′′
s = α′

s + 3γsη
2
s and β′

s = βs − 3γsηs. Define a product w1(η, η′) =
s∗s(η)ss(η + η′) = b7e

jβ′′
s η+jγ′

sη2
, where b7 = b6b

∗
6e

j(α′′
s η′+β′

sη′2+γsη′3), β′′
s = 2β′

sη
′ + 3γsη

′2 and
γ′

s = 3γsη
′. Next, derive another product w2(η, η′, η′′) = w∗

1(η, η′)w1(η + η′′, η′) = b8e
j2γ′

sη′′η, where
b8 = b7b

∗
7e

j(β′′
s η′′+γ′

sη′′2). By taking the Fourier transform of w2(η, η′, η′′) with respect to η, we obtain
W2(fη, η

′, η′′) = b8Tasinc [(fη − γ′
sη

′′/π)Ta], in which a peak occurs at fηp3 = γ̃′
sη

′′/π. Thus, γ′
s is

estimated as γ̃′
s = πfηp3/η

′′, and γs is estimated as γ̃s = γ̃′
s/(3η′). By multiplying a third-order

compensation filter Hc3(η) = e−jγ̃s(η−ηs)3 to the signal in Eq. (16), we obtain

s′′s(η) = ss(η)Hc3(η) = b2e
j[cs+αs(η−ηs)+βs(η−ηs)2+(γs−γ̃s)(η−ηs)3] � b2e

j[cs+αs(η−ηs)+βs(η−ηs)2](17)

of which the phase is a quadratic function of η, as in Eq. (14).

4. SLOW-TIME PROFILES OF PHASE COEFFICIENTS

An interpolation method and a reconstruction method are proposed to derive the slow-time profile of
each phase coefficient over the whole aperture, based on the phase coefficients estimated in the last
Section.
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Figure 2. Schematic of estimating α̃′(η) between centers of subapertures.

4.1. Interpolation Method

The phase history at each slow-time instant can be expanded in the same form as Eq. (6), and the
coefficient αs will become a function of η. Fig. 2 shows the schematic of estimating α̃(η). Intuitively,
by shifting the original sth subaperture an integer number of Δη, a new subaperture is formed, having
a new coefficient α̃′

s at its center. The new coefficient α̃′
s changes continuously from αs to αs+1 as the

sth subaperture is shifted gradually by 0 to NsΔη. Thus, a spline interpolation method is applied to
derive the slow-time profile α̃(η) from coefficients α̃s’s at the centers of the original subapertures.

4.2. Reconstruction Method

The coefficient α(η) in ηsb ≤ η ≤ ηse can be expanded into a Taylor’s series, centered at ηs, as

α̂s(η) � αs +
d2φs(η)

dη2

∣∣∣∣
η=ηs

(η − ηs) +
1
2

d3φs(η)
dη3

∣∣∣∣
η=ηs

(η − ηs)2 � α̃s + 2β̃s(η − ηs) + 3γ̃s(η − ηs)2 (18)

Similarly, β(η) in ηsb ≤ η ≤ ηse can be expanded as

β̂s(η) � βs +
d

dη

[
1
2

d2φs(η)
dη2

]∣∣∣∣
η=ηs

(η − ηs) = β̃s + 3γ̃s(η − ηs) (19)

5. STRATEGIES FOR CROSS-TRACK MOCO

In this work, along-track motion error is neglected, which implies that y(η) = Vpη, vy(η) = Vp and
ay(η) = by(η) = 0. To correct the cross-track motion errors, a MOCO filter is applied, which is
represented as

Hct(fτ , η) = e−j4π(f0+fτ )ΔR(η)/c (20)

where ΔR(η) is the motion error in the radial direction, which will be estimated from the received
signal.

Figure 3 lists nine strategies for motion-error estimation. The roman numeral indicates the order
of model used to estimate the phase coefficients, and the arabic numeral indicates the order of phase
coefficient chosen for motion-error estimation. Strategies initial with roman numeral and R indicates
the use of interpolation method and reconstruction method, respectively, to derive the slow-time profile
of phase coefficients over the aperture.

5.1. Strategies I-1, II-1, III-1, R-1 and R-2

The radial velocity of the platform is derived by using Eq. (9) as

ṽr(η) =
λ0

4π

[
α̃(η) +

4π(Vpη − yp)Vp

λ0R

]
(21)
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Figure 3. Nine strategies for motion-error estimation.

Then, the motion error in the radial direction is derived by integrating ṽr(η) over η as

ΔR(η) =
∫ η

ηb

ṽr(s)ds + ΔR(ηb) (22)

where ΔR(ηb) is the motion error at η = ηb, the initial azimuth time of the first subaperture. Note that
the magnitude of α̃(η) in strategy I-1 is different from that in strategies II-1 or III-1 and that of α̂(η)
in strategies R-1 or R-2.

5.2. Strategies II-2, III-2 and R-3

The radial acceleration of the platform is derived by using Eq. (10) as

ãr(η) � λ0

2π

[
β̃(η) +

2πV 2
p

λ0R

]
(23)

Then, the velocity error in the radial direction is derived by integrating ãr(η) over η as

ṽr(η) =
∫ η

ηb

ãr(s)ds + vr(ηb) (24)

where vr(ηb) is the radial velocity of the platform at η = ηb. By using Eqs. (22) and (24), the motion
error in the radial direction is derived as

ΔR(η) =
∫ η

ηb

ṽr(s)ds + ΔR(ηb) =
∫ η

ηb

[∫ s

ηb

ãr(u)du + vr(ηb)
]

ds + ΔR(ηb) (25)

Note that the magnitude of β̃(η) in strategy II-2 is different from that in strategy III-2 and that of β̂(η)
in strategy R-3.

5.3. Strategy III-3

The radial acceleration rate of the platform is derived by using Eq. (11) as

b̃r(η) � 3λ0

2π
γ̃(η) (26)

Then, the acceleration error in the radial direction is derived by integrating b̃r(η) over η as

ãr(η) =
∫ η

ηb

b̃r(s)ds + ar(ηb) (27)

where ar(ηb) is the radial acceleration of the platform at η = ηb. By using Eqs. (25) and (27), the
motion error in the radial direction is derived as

ΔR(η) =
∫ η

ηb

[∫ s

ηb

ãr(u)du + vr(ηb)
]

ds + ΔR(ηb)

=
∫ η

ηb

{∫ s

ηb

[∫ u

ηb

b̃r(w)dw + ar(ηb)
]

du + vr(ηb)
}

ds + ΔR(ηb) (28)
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6. SIMULATION SCENARIOS

Table 1 lists the parameters used in the simulations [14], where αos = 8 is the oversampling ratio. Four
different scenarios are considered as follows.

Table 1. Parameters of SAR mission [14].

parameter symbol magnitude unit parameter symbol magnitude unit

effective radar velocity Vp 150 m/s
azimuth sampling

rate
Fa 300 ×αos Hz

carrier frequency f0 10 GHz
azimuth sampling

interval
Δη 3.33 /αos ms

chirp pulse duration Tr 1 μs
number of

azimuth samples
Na 256 ×αos

range chirp rate Kr 300 THz/s number of subapertures S 16

bandwidth Br 300 MHz height of the platform h 3 km

range sampling rate Fr 660 ×αos MHz look angle θ� 53 deg.

range sampling interval Δτ 1.52 /αos ns squint angle θs 0 deg.

number of range samples Nr 1,024 ×αos

6.1. Scenario S1: dbr/dη �= 0

The tip of motion-error vector moves in the xz plane along a circle of radius rs, at a frequency of fs,
leading to a track ⎡

⎢⎢⎢⎣
x(η)

y(η)

z(η)

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

0

Vpη

h

⎤
⎥⎥⎥⎦ +

⎡
⎢⎢⎢⎣

rs cos(2πfsη)

0

rs sin(2πfsη)

⎤
⎥⎥⎥⎦ (29)

The associated kinetic parameters in the radial direction are

vr(η) = 2πfsrs [− sin(2πfsη) sin θ� − cos(2πfsη) cos θ�]

ar(η) = 4π2f2
s rs [− cos(2πfsη) sin θ� + sin(2πfsη) cos θ�]

br(η) = 8π3f3
s rs [sin(2πfsη) sin θ� + cos(2πfsη) cos θ�]

6.2. Scenario S2: dar/dη �= 0, dbr/dη = 0

The motion error increases in the x direction at a constant acceleration rate B1, leading to a track

⎡
⎢⎢⎢⎣

x(η)

y(η)

z(η)

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

0

Vpη

h

⎤
⎥⎥⎥⎦ +

⎡
⎢⎢⎢⎣

B1η
3/6

0

0

⎤
⎥⎥⎥⎦ (30)

The associated kinetic parameters in the radial direction are

vr(η) = B1η
2 sin θ�/2, ar(η) = B1η sin θ�, br(η) = B1 sin θ�
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6.3. Scenario S3: dvr/dη �= 0, dar/dη = 0

The motion error increases in the x direction has a constant acceleration A1, leading to a track⎡
⎢⎢⎢⎣

x(η)

y(η)

z(η)

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

0

Vpη

h

⎤
⎥⎥⎥⎦ +

⎡
⎢⎢⎢⎣

A1η
2/2

0

0

⎤
⎥⎥⎥⎦ (31)

The associated kinetic parameters in the radial direction are

vr(η) = A1η sin θ�, ar(η) = A1 sin θ�, br(η) = 0

6.4. Scenario S4: dvr/dη = 0

The motion error increases in the x direction at a constant velocity V1, leading to a track⎡
⎢⎢⎢⎣

x(η)

y(η)

z(η)

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

0

Vpη

h

⎤
⎥⎥⎥⎦ +

⎡
⎢⎢⎢⎣

V1η

0

0

⎤
⎥⎥⎥⎦ (32)

The associated kinetic parameters in the radial direction are

vr(η) = V1 sin θ�, ar(η) = br(η) = 0

6.5. Magnitude of Kinetic Parameters

Proper kinetic parameters will be chosen in the simulations, comparable to the data found in the
literatures. In [5], the radial acceleration ranged from −0.3 to 0.3 m/s2. In [6], the motion error ranged
from −5 to 5 m, and the radial acceleration ranged from −0.25 to 0.15 m/s2. In [13], the motion error
ranged from −0.2 to 0.2 m. The whole aperture was divided into five subapertures, with the radial
accelerations of 0.3, −0.3, −0.2, 0.2 and 0.1 m/s2, respectively. In [15], the motion error in the x
direction followed a sinusoidal from with an amplitude of 3m. In [16], two different track drifts of 0.7
and 1.23 m, respectively, per 100 m were assumed. In [17], the motion error ranged from −0.1 to 0.1 m.
In [14], the motion error followed the form of ΔR(η) = 0.2 cos(πη/2) m, with x and z components of
ΔRx(η) = ΔR cos(π/3) and ΔRz(η) = ΔR sin(π/3), respectively.

Referred to these data, the radius and rotating frequency in scenario S1 are chosen as rs = 0.2 m
and fs = 2 Hz, respectively. The kinetic parameters in scenarios S2 to S4 are determined, comparable
to those in scenario S1, as

br(η)|S2
= max {|br(η)|}S1

, ar(η)|S3
= max {|ar(η)|}S1

, vr(η)|S4
= max {|vr(η)|}S1

leading to B1 = 8π3f3
s rs/ sin θ� = 496.95, A1 = 4π2f2

s rs/ sin θ� = 39.55 and V1 = 2πfsrs/ sin θ� = 3.15.

7. SIMULATION RESULTS AND DISCUSSIONS

Figure 4 shows the reconstructed images in scenario S1, with strategies I-1, II-1 and III-1, respectively.
These three images reveal similar characteristics in the x direction, but distinct characteristics in the y
direction. The other six strategies also reveal similar characteristics in the x direction.

Figure 5 shows the profiles along y axis of the reconstructed images in scenario S1, with the proposed
nine strategies. Strategy I-1, based on the first-order model of phase coefficient, does not work well.
With strategy III-3, the motion error is obtained by triple integration of γ̃(η), and the poor result
may be attributed to the accumulation error. In general, higher-order model of phase coefficients can
estimate the motion error more accurately, at the cost of more computational load. Hence, strategy
III-1 outperforms strategy II-1, and the latter outperforms strategy I-1. Similarly, strategy R-2 performs
better than strategy R-1. The result with strategy III-2 is close to that with strategy II-2.
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(a) (c)(b)

Figure 4. Reconstructed images in scenario S1 with strategy (a) I-1, (b) II-1 and (c) III-1.

(b)(a) (c)

(e)(d) (f)

(h)(g) (i)

Figure 5. Profiles along y axis of the reconstructed images in scenario S1, with strategy (a) I-1, (b)
II-1, (c) II-2, (d) III-1, (e) III-2, (f) III-3, (g) R-1, (h) R-2 and (i) R-3.

Table 2 lists the performance indices of the reconstructed images with all the proposed nine
strategies, where the impulse response width (IRW) is defined as the separation between the two half-
power points on both sides of the peak-intensity point; the peak sidelobe ratio (PSLR) is defined as
the ratio of the peak intensity to that of the strongest sidelobe; the integrated sidelobe ratio (ISLR) is
defined as the ratio of energy in the main lobe to that in all the sidelobes; and the target offset (TO)
is defined as the offset of the peak position in the reconstructed image from that of the actual point
target.
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Table 2. Performance indices of different strategies.

I-1 II-1 II-2 III-1 III-2 III-3 R-1 R-2 R-3 unit

scenario S1: IRWx � 0.555 m, PSLRx � −13.243 dB, ISLRx � −9.681 dB, TOx � 0.018 m

IRWy 0.496 0.487 0.723 0.516 0.766 2.051 0.509 0.515 0.594 m

PSLRy −2.952 −2.656 −6.801 −12.927 −6.664 −0.051 −7.717 −12.35 −0.192 dB

ISLRy 4.874 −0.122 −4.369 −9.471 −4.601 4.734 −5.807 −9.439 1.252 dB

TOy −0.031 0.094 1.781 −0.031 2.031 17.531 −0.031 −0.031 0.719 m

scenario S2: IRWx � 0.555 m, PSLRx � −13.244 dB, ISLRx � −9.679 dB, TOx � 0.018 m

IRWy 3.495 0.514 1.641 0.515 0.514 1.672 0.514 0.515 0.514 m

PSLRy −0.01 −12.058 −0.875 −12.508 −13.109 −3.728 −12.259 −12.51 −13.111 dB

ISLRy 8.584 −9.542 1.283 −9.59 −9.797 3.1 −8.744 −9.605 −9.789 dB

TOy 0.094 −0.969 1.969 0.031 0.469 0.906 0.594 0.031 0.469 m

scenario S3: IRWx � 0.555 m, PSLRx � −13.249 dB, ISLRx � −9.685 dB, TOx � 0.018 m

IRWy 1.045 0.513 0.514 0.513 0.514 0.516 0.513 0.513 0.514 m

PSLRy −0.004 −11.213 −13.255 −11.213 −13.255 −13.191 −11.24 −11.24 −13.257 dB

ISLRy 1.095 −9.268 −9.897 −9.268 −9.897 −9.779 −9.288 −9.288 −9.898 dB

TOy −9.219 −0.031 0.219 −0.031 0.219 −0.031 −0.031 −0.031 0.219 m

scenario S4: IRWx � 0.555 m, PSLRx � −13.25 dB, ISLRx � −9.687 dB, TOx � 0.018 m

IRWy 0.514 0.515 0.539 0.515 0.539 0.514 0.515 0.515 0.539 m

PSLRy −12.996 −11.697 −9.965 −11.697 −9.965 −13.096 −11.709 −11.709 −9.965 dB

ISLRy −9.615 −9.591 −7.163 −9.591 −7.163 −9.878 −9.61 −9.61 −7.163 dB

TOy −0.031 0.031 0.469 0.031 0.469 −0.031 0.031 0.031 0.469 m

(b)(a) (c)

(e)(d) (f)

Figure 6. Profiles along y axis of the reconstructed images in scenario S2, with strategy (a) I-1, (b)
II-2, (c) III-1, (d) III-3, (e) R-1 and (f) R-2.

Figure 6 shows the profiles along y axis of the reconstructed image in scenario S2. Strategies I-1
and III-3 do not work well by similar reasons mentioned in scenario S1. Strategy II-2 does not work
well, either. Strategies III-1 and R-2 outperform the other strategies. The results with strategies II-1,
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III-2 and R-3 appear similar to those with strategies III-1 and R-2, except the reconstructed target is
offset in the y direction by 0.5 to 1 m, as listed in Table 2. The results with strategy R-1 appear similar
to those with strategies III-1 and R-2, except the reconstructed target is offset in the y direction by
0.594 m and has higher ISLR by about 1 dB, as listed in Table 2.

Figure 7 shows the profiles along y axis of the reconstructed image in scenario S3. The phase
coefficient γ̃(η), derived by using (26), is close to zero, hence the third-order compensation filter, Hc3(η),
is approximately equal to unity. This implies that strategies III-1, III-2 and R-2 reduce to strategies
II-1, II-2 and R-1, respectively.

(b)(a) (c)

Figure 7. Profiles along y axis of the reconstructed images in scenario S3, with strategy (a) I-1, (b)
II-1 and (c) III-3.

Strategy I-1 does not work well by similar reasons mentioned in scenario S1. Strategy III-3 works
well because γ̃(η) is zero, hence possible accumulation error from triple integration becomes negligible.
Strategies II-1, III-1, III-3, R-1 and R-2 outperform the other strategies. The results with strategies
II-2, III-2 and R-3 look similar to those with strategies II-1, III-1, III-3, R-1 and R-2, except the
reconstructed target is offset in the y direction by 0.219 m, as listed in Table 2.

Figure 8 shows the profiles along y axis of the reconstructed image in scenario S4. Similar to
scenario S3, strategies II-1, III-1, III-3, R-1 and R-2 work well. The results with strategies II-2, III-2
and R-3 appear similar to those with strategies II-1, III-1, III-3, R-1 and R-2, except the reconstructed
target is offset in the y direction by 0.469 m and has a higher ISLR of about 3 dB, as listed in Table 2.
It is interesting to notice that strategy I-1 works well in this scenario.

(b)(a) (c)

Figure 8. Profiles along y axis of the reconstructed images in scenario S4, with strategy (a) I-1, (b)
II-1 and (c) II-2.

In summary, strategies III-1 and R-2 work satisfactorily in all these four scenarios. In addition,
strategy R-2 is more efficient than strategy III-1 in deriving the slow-time profiles of phase coefficients.

The robustness of strategies III-1 and R-2 are further tested under two types of noises. The first
type is a Gaussian noise added to the received baseband signal srb(τ, η) to demonstrate the immunity
of these two strategies to signal noise. Under scenario S1 for example, with signal-to-noise ratio (SNR)
equal to 10, 3 and 0dB, respectively, the reconstructed images appear almost unaffected by the noise.

The second type of noise is added to the flight-path to simulate platform jittering, which may be
caused by turbulence. Under scenario S1, a Gaussian noise is added to rs at each η, with SNR equal
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to 40, 30 and 20 dB, respectively. The reconstructed images by using strategies III-1 and R-2 become
slightly blurred. Note that at SNR = 20 dB, the change of rs over one slow-time interval Δη = 41.67 ms
is on the order of 0.08 m, equivalent to an instantaneous velocity of 192 m/s. In other words, the
platform changes its cross-track position by a relatively large amount of 0.08 m as it flies over a distance
of 0.0625 m. Similarly, at SNR = 40 dB, the platform changes its cross-track position by 0.008 m when
it flies over 0.0625 m.

8. CONCLUSION

Nine different strategies are proposed to compensate cross-track motion errors in synthetic aperture
radar (SAR) imaging, by estimating the phase coefficients of the phase history. Four different scenarios
are designed to compare the performance of these nine strategies in terms of spatial resolution, PSLR,
ISLR and target offset to better understand the pros and cons of these strategies. By simulations over
these four scenarios, the reconstructed images show similar characteristics in the cross-track direction,
but in some scenarios, quite different characteristics in the along-track direction. Strategies III-1 and
R-2 turn out to be most robust in all these four scenarios. In addition, strategy R-2 is more efficient
than strategy III-1 in deriving the slow-time profiles of phase coefficients.
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