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Pattern Synthesis of Circular Antenna Array with Directional
Element Employing Deterministic Space Tapering Technique

Mavulluri Ganesh* and Konidala R. Subhashini

Abstract—This paper proposes the concept of sparse appended with the space tapering technique
for the synthesis of an antenna radiation pattern. The procedure experiments on a Circular Antenna
Array (CAA) configuration comprising of directional element (1 + cos(ϕ)). The sparse initiates the
minimum number of active elements in the CAA, while the space tapering technique gives the complex
excitations that yield a beam pattern with constraints such as Side Lobe Level (SLL) and Beam Width
(BW) in relation to Dolph-Chebyshev radiation pattern. The phase mode analysis, which is an built-in
procedure in the proposed technique explores the circular antenna array configuration characteristics.
The simulation results justify the effectiveness of the proposed technique for obtaining the desired
radiation pattern synthesis.

1. INTRODUCTION

Antennas play a vital role in communications and radar applications [1–5]. For particular an application,
radiation pattern synthesis of an antenna is an important task. The pattern synthesis is a selection of
antenna parameters, which generates a radiation beam with specified null positions, Side Lobe Level
(SLL) and Beamwidth (BW). The SLL plays a major role in the antenna array design. In fact, antenna
system performance is greatly influenced by SLL which in turn reflects on the performance of antenna
array.

The number of active antenna elements in an array that contributes for the desired radiation pattern
should be minimum opening the avenue of sparse concept as that of signal or image construction [6, 7].
Sparse in the antenna array is defined as activating few antenna elements from a uniformly spaced or
a periodic array in order to generate the desired radiation pattern. This sparse characteristic is very
useful in certain applications such as mobile devices and satellites, particularly for the situation where
the weight and size antenna system is extremely limited. Different approaches of sparsity in the antenna
array have been reported in [8–12].

In an antenna system, the geometry of the antenna array configuration decides the direction of the
radiation pattern. So in order to facilitate the radiation equally in all directions of the azimuth plane
(360◦), the circular geometrical arrangement is preferred. This feature of the circular configuration aids
the evolution of conformal antenna array, hence Circular Antenna Array (CAA) stands as a backbone
for the design of conformal antenna arrays. In [13], the authors give an insight for different beam pattern
synthesis for CAA with isotropic elements by reconstructing the current distribution from desired beam
pattern.

In this paper, we demonstrate a CAA with the directional element acting as an antenna element
and having the element pattern as (1 + cos(ϕ)). When the radiating elements are directive, the array
performance in terms of beam width and pattern stability is usually improved compared to an array
with the isotropic elements [14–16]. The array factor for CAA with directional element pattern differs
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from the CAA with isotropic elements. Here space tapering technique is proposed to obtain sparse in the
CAA with directional element, and the proposed technique mimics the trapezoidal rule [18]. Generally,
the trapezoidal rule focuses on changes between two sample points over a slope of the integral curve,
where the space tapering focuses on the inter element angular positions between the antenna elements.
The proposed technique provides the degrees of freedom to the antenna element placed at any location
in the antenna array and also provides the flexibility between BW and the number of elements (N).
Sparse concept on arrays in relation to the BW and number of elements is reported in [17]. The
antenna array subjected to space tapering technique provides the reconstructed pattern equivalent to
the desired pattern in terms of the main beam and near-side lobes; however the far-out side lobes are
slightly deviated [18].

The radius of CAA decides the physical dimension of the array, hence the radius is an important
parameter in pattern synthesis. In [21], the value of a harmonic is used to determine the radius array,
and in [13], the radius is determined by evaluating a range of values of radii, with analysing the error in
the beamwidth and the maximum side-lobe level resultants with respect to the desired pattern. In this
article, a new approach is proposed for obtaining the radius of the CAA by utilizing the phase mode
concept. The mathematical equations governing the phase mode concept for CAA with both isotropic
and directive elements are clearly described and reported [14, 19–22]. Various deterministic procedures
on antenna arrays suggest various synthesis procedures for far-field analysis [23–27]. However, this paper
aims to relate the far-field analysis in terms of near-field analysis, to synthesize the radiation pattern.

The present paper is organized as follows. Section 2 describes the mathematical formulations for
CAA with the directional element. Section 3 presents the demonstration of the case study. Some
concluding remarks are summarized in Section 4.

2. MATHEMATICAL FORMULATION

A far-field expression M(ϕ) for CAA with directional element function EL and the model function
magnitude Gn and phase αn is given as [14]

M(ϕ) =

N∑
n=1

GnEL(ϕ− ϕn)exp(jkr cos(ϕ− ϕn) + jαn) (1)

where N is the number of antenna elements, Gn the model function excitation amplitude, αn the model
function excitation phase of nth element, EL the radiation element function, r the circular array radius,
ϕ the azimuthal plane, ϕn the nth elements azimuth position, j the imaginary unit, and k = 2π

λ the
free-space wave number, where λ is the wavelength.

In Equation (1), phase (ϕn) is referenced to the center of the circle. As shown in Figure 1, the
antenna elements are spaced ϕn along the circle, with each element pointing in the radial direction,
therefore, the element function cannot be brought outside summation, since it is a function of the
element position. But in the case of isotropic elements, the element pattern radiates uniformly in all
the directions, so put EL(ϕ− ϕn) = 1, thus Equation (1) can be written for isotropic elements

M(ϕ) =
N∑

n=1

Gn exp(jkr cos(ϕ− ϕn) + jαn) (2)

2.1. Reconstruction of Model Function or Continuous Excitation Function

Because reconstruction of the model function a desired radiation pattern is essential, in this paper,
the conventional Chebyshev pattern is considered. To obtain CAA with sparseness characteristics, the
reconstructed model function G(φ) ∈ C, in the interval of −π ≤ φ ≤ π, from a desired chebyshev
radiation pattern is given as

G(φ) =

∞∑
m=−∞

Ĉm exp(jmφ) (3)

where Ĉm is the coefficients of the series expansion and represents a near-field phase mode coefficient,
i.e., m = 0 is the first mode with no phase variation along the circumference, but for other phase modes,
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Figure 1. Circular antenna array (CAA).

the phase varies 2π along the circumference of CAA, and due to phase variation, the distortion terms
may exist in the model function G(φ). exp(jmφ) is orthogonal basis function of order m, and m is the
number of phase modes. With G(φ) being the continuous excitation model function, the continuous
representation of radiated far-field expression for CAA with directional element in the azimuth plane
can be written as [14].

M(ϕ) =
1

2π

∫ π

−π
G(φ)EL(ϕ− φ) exp(jkr cos(ϕ− φ))dφ (4)

where r is the radius of the circular array and ϕ the azimuth plane. The element radiation function EL

is periodic (over 2π), so it can be expanded in a Fourier series given in Equation (5), and its graphical
representation is shown in Figure 2.

EL(φ) =

∞∑
p=−∞

Dp exp(jpφ) (5)

where Dp is element pattern excitation coefficient.
Then, substitute Equation (5) into Equation (4), the obtained far-field pattern expression is given

as

M(ϕ) =
1

2π

∫ π

−π
G(φ)

∞∑
p=−∞

Dp exp(jp(ϕ− φ)) exp(−jkr cos(ϕ− φ))dφ. (6)

Now, by expanding the excitation function in terms of phase modes and interchange the integration
and summation in Equation (6), the resultant far-field expression can be remodeled as

Mm(ϕ) = Ĉm exp(jmϕ)
∞∑

p=−∞

1

2π
Dp

∫ π

−π
exp(j(m− p)(ϕ− φ)) exp(−jkr cos(ϕ− φ))dφ (7)

Therefore, by introducing the Bessel function in Equation (7) the obtained far-field expression is given
as [14].

Mm(ϕ) = [Ĉm

∞∑
p=−∞

Dpj
m−pJm−p(kr)] exp(jmϕ) (8)

where Jm−p(kr) is the Bessel function of order (m− p) and argument kr. Therefore, the total radiation
is the summation of all the phase modes (m). For each phase mode, the sum contributions are from all
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Figure 2. Directional element (1 + cos(ϕ)) pattern in Fourier domain.

components Dp of radiating element expansion. On the other hand, the far-field expression for CAA
with m phase modes is given as

Mm(ϕ) = Âm exp(jmϕ) (9)

Now by comparing Equations (8) and (9), finally it is possible to calculate the coefficients Ĉm given as

Ĉm =
Âm

∞∑
p=−∞

Dpj
m−pJm−p(kr)

(10)

Then, Equation (10) will contribute to the reconstruction of the current distribution through G(φ).

2.2. Selection of Radius for CAA Design

Providing specified far-field directional radiation pattern in CAA configuration must include the array
parameters such as the number of antenna elements (N), array radius (r) and element directional
pattern. In pattern synthesis of a CAA configuration, radius is a critical parameter since the near-field
excitation coefficients Ĉm are used to calculate the model function G(φ). G(φ) is too sensitive to small

variations of r, and also the near-field excitation coefficients Ĉm are influenced by the Bessel function
Jm−p(kr). So in this paper, a suitable radius r is determined for synthesis of radiation pattern and
the analysis in this paper as follows. First, the desired far-field Chebyshev pattern is considered with
constrains such as SLL = −25 dB and beam width 107.4◦. The mathematical expression for the desired
far field in the azimuth plane is given as

M(ϕ) =
∞∑

m=−∞
Âm exp(jmϕ) (11)

where Âm is the far-field excitation coefficient for the desired radiation pattern and ϕ the azimuth plane.
Now by introducing the phase mode analysis on CAA with directional elements discussed in Section 2.1,
the radiation field pattern in terms of the near field excitation coefficients Ĉm is formulated as

M(ϕ) =
∞∑

m=−∞

∞∑
p=−∞

[ĈmDpj
m−pJm−p(kR)] exp(jmϕ) (12)

where Ĉm is the near field excitation coefficient, Dp the element pattern excitation coefficient, and
Jm−p(kr) the Bessel function with order (m− p) and argument kr.
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Now the radius is evaluated by considering the error between the desired radiation pattern near
SLL (dB) value (that is −25 dB our case) and near SLL (dB) values obtained from Equation (12) for
various r values. For example, for r = 0.8555λ the difference between near SLL (dB) value of desired
pattern and the computed pattern from Equation (12) is approximately 0 dB. Similarly for r = 0.88λ,
the difference is 0.66 dB, and for r = 0.82λ the difference is −0.89 dB. Therefore, in this way the suitable
value of radius (r = 0.8555λ) is determined with the minimum error in terms of near SLL (dB) values.
The graphical representation of the described process to evaluate optimum value of radius to an CAA
with minimum error in terms of near SLL (dB) value is shown in Figure 3. This approach conceptually

equates the far-field excitation coefficients Âm to the near-field excitation coefficients Ĉm.
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Figure 3. Graphical representation to find a suitable value of radius (R) in terms of minimum difference
in near SLL (dB) value.

2.3. Space Tapering over Reconstructed Model Function

In this paper, to obtain the complex excitation for a CAA with sparseness characteristics the proposed
space tapering technique procedure is given as below.

Step1: The cumulative current distribution Gc(ϕ) of the reconstructed model function of CAA is
determined by using Equation (13)

Gc(ϕ) =

∫ ϕ

−π
|G(φ)|rdφ (13)

where azimuth plane ϕ is the continuous source dimension in the interval of (−π, π), and r is the radius
of the circular array. In this paper, the angular positions of a CAA can be determined by considering
only the real part of G(φ).

Step 2: The interval (−π, π) of the continuous source dimension is divided into N sub-intervals of

equal lengths, with N +1 boundary points ϕ̂n. Hence the interval boundaries are defined as (ϕ̂n−1, ϕ̂n).
Step 3: The CAA angular positions ϕn can be determined in each sub-interval by using

Equation (14),

Gc(ϕn) =
Gc(ϕ̂n)−Gc(ϕ̂n−1)

2
(14)

the projection of G(φ) on ϕ determines the antenna element angular position ϕn.
Step 4: The complex excitation current in each interval is determined by taking value of G(φ) at

the position of ϕn. Excitation amplitude |G(ϕn)| and excitation phase arg(ϕn) are considered.
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3. DEMONSTRATION OF CASE STUDY

The demonstration methodology for case study is shown in Figure 4. For this case study, the desired
radiation pattern is considered as the Dolph-Chebyshev pattern with constraints such as SLL = −25 dB,
BW = 107.4◦. Here the main lobe region is [−53.7◦ to 53.7◦], the near side lobe range [54.5◦ to 82.6◦]
and the far side lobe range [82.6◦ to 180◦] in the half of the azimuth plane, and the desired pattern in
azimuth plane is shown in Figure 5.

Desired radiation
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Reconstruction of

continuous current

distribution

Space tapering

technique over

reconstructed
current

Obtain the

positions of

the antenna
array elements

Sample the current

distribution

at obtained
element positions

Obtain the excitation

amplitudes and phases

of the antenna array

Figure 4. Methodology for the case study.
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Figure 5. Desired radiation pattern.

Throughout the case study, the number of phase modes is kept constant at m = 9, and kr is fixed
at 5.37254, based on the criteria discussed in Section 2.2. The fixation of the phase modes at m = 9 is
validated as follows [14], for obtaining the desired radiation pattern that is Dolph-Chebyshev pattern
with constraints such as SLL = −25 dB, BW = 107.4◦. In the Linear array with 2N + 1 elements,the
radiation pattern expression is given as [14].

M(ϕ) =

N∑
n=−N

Vn exp(jknd sinϕ) (15)

where Vn is the excitation amplitude of element n, and k is the propagation constant. Similarly for the
circular array with 2M + 1 phase modes, the radiation pattern expression is given as [14].

M(ϕ) =

M∑
m=−M

Am exp(jmϕ) (16)

where Am is the far-field phase mode coefficient. Therefore, by making each phase mode coefficient Am

equal to corresponding element amplitude Vn identical pattern results from [14, 21]. But in the linear
array case, the pattern will be given as a function of kd sinϕ, where as in circular array case, the pattern
will be function of the azimuth angle ϕ. And also the basic difference is that in the linear case element
excitation Vn directly enters into the pattern function, as CAA case phase mode coefficients or far-field
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excitation coefficients Am instead Vn, and also this phase mode coefficients Am are influenced by the
Bessel function Jm−p(kr). So in this paper, based on the above concept, the phase modes m = 9 are
fixed, for obtaining the the desired radiation pattern that is Dolph-Chebyshev pattern with constraints
such as SLL = −25 dB, BW = 107.4◦. The important note is that for obtaining the Dolph-Chebyshev
pattern with constraints such as SLL = −25 dB, BW = 107.4◦, we fix the phase modes m = 9, but for
obtaining different BWs, the phase modes will be changed, for example m = 7 and BW = 141.8◦.

In order to radiate the useful unambiguous mode spectrum in CAA with the directional element, the
commonly stated limit to choose the antenna array size by including the phase modes m and argument
kr is given as [14].

m ≤ 2kr + 1 ≤ N (17)

where m is the number of phase modes and N the number of elements. In our experiment, the number
of phase modes is 9 and argument kr = 5.37254. So according to Equation (7), the number of elements
is initially set as N = 12. But according to the relation formulated between phase modes and number
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Figure 6. Representation of the Space tapering technique over the cumulative current distribution for
N = 12.
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of elements in [21], the minimum requirement of the number of elements N is twice the number of
phase modes m, i.e., N = 2m for obtaining an accurate pattern synthesis. So in our case study, the
number of elements to experiment with the space tapering technique is N = 12, 13, 14, 15, 16, 17 and 18,
in order to complete the overall analysis or observe the effect of phase modes and argument kr value
on the radiation pattern synthesis. A comprehensive analysis of the proposed procedure for N = 12
elements is shown in Figure 6. The corresponding amplitude and phases are shown in Figure 7, and
their respective numerical values are tabulated in Table 1.

Table 1. Excitation coefficients obtained for N = 12 antenna elements.

n ϕn (rad) |G(ϕn)| Arg (ϕn) (rad)

1 −2.784 0.02558 2.753

2 −2.4 0.08835 2.676

3 −1.737 0.1019 −1.013

4 −1.25 0.1524 −2.751

5 −0.7261 0.4409 2.018

6 −0.2304 0.9101 1.331

7 0.2339 0.9075 1.333

8 0.7261 0.4409 2.018

9 1.25 0.1524 −2.751

10 1.74 0.1014 −1.008

11 2.4 0.08835 2.676

12 2.78 0.02659 2.752

The corresponding radiation pattern for N = 12 is shown in Figure 8.

 -150  -100  -50 0 50 100 150
 -50

 -45

 -40

 -35

 -30

 -25

 -20

 -15

 -10

 -5

0

(phi) [deg]

b
e

a
m

 p
a

tt
e

rn
 [

d
B

]

Radiation pattern

 

 

ideal

Circular Array

Figure 8. Pattern synthesis with N = 12
antenna elements.
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Figure 9. Radiation plot for ideal, N = 12,
N = 13.

From Figure 8, the achieved pattern for N = 12 elements has a SLL of −21.75 dB and BW = 107◦,
which varies from the design goal by a value of −3.25 dB in terms of near SLL value and 0.4◦ in terms of
BW. This deviation is possibly due to spurious effects, i.e., additional distortion terms (harmonics) are
not suppressed effectively for N = 12 and m = 9. So the experiment is continued with the increment in
the number of elements (array size) such as N = 13, 14 and N = 15. The synthesized radiation patterns
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by the proposed method are shown in Figures 9, 10, and 11, respectively, and their respective numerical
values are tabulated in Table 2 and Table 3, respectively. From Figure 9, the achieved pattern of N = 13
elements has an near SLL of −22.5 dB and BW = 107◦, which varies from the design goal by a value of
−2.5 dB in terms of difference in near SLL value and 0.4◦ in terms of difference in BW value. Similarly
from Figure 10, the achieved pattern for N = 14 elements has an SLL of −22.95 dB and BW = 107◦,
here the SLL and BW vary from the design goal by a value of −2.05 dB in terms of difference in near
SLL value and 0.4◦ in terms of difference in BW value, respectively. Here, for N = 14 elements, some of
the additional distortion terms (harmonics) are suppressed to obtain the close desired pattern compared
to the N = 13 elements. Therefore, the important observations deduced from Figure 9 and Figure 10,
respectively, are that if the array size is increased (i.e, N=13, 14), the value of near SLL matches the
desired near SLL value.

So the experiment is continued with the increment in array size for obtaining the desired radiation
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Figure 10. Radiation plot for ideal, N = 13,
N = 14.
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Figure 11. Radiation plot for ideal, N = 14,
N = 15.

Table 2. Excitation coefficients obtained for N = 13 antenna elements.

n ϕn (rad) |G(ϕn)| Arg (ϕn) (rad)

1 −2.911 0.009382 −0.4991

2 −2.428 0.08939 2.681

3 −1.824 0.0828 −0.905

4 −1.428 0.1163 −1.924

5 −0.9111 0.3158 2.475

6 −0.4416 0.714 1.518

7 0 1 1.268

8 0.4416 0.714 1.518

9 0.9111 0.3158 2.475

10 1.428 0.1163 −1.924

11 1.824 0.0828 −0.905

12 2.428 0.08939 2.681

13 2.911 0.009382 −0.4991
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Table 3. Excitation coefficients obtained for N = 14 antenna elements.

n ϕn (rad) |G(ϕn)| Arg (ϕn) (rad)

1 −2.972 0.02287 −0.4442

2 −2.457 0.08929 2.686

3 −1.925 0.05094 −0.8394

4 −1.56 0.1149 −1.405

5 −1.068 0.232 2.907

6 −0.6301 0.5238 1.816

7 −0.2059 0.9274 1.318

8 0.2059 0.9274 1.318

9 0.6301 0.5238 1.816

10 1.068 0.232 2.907

11 1.56 0.1149 −1.405

12 1.925 0.05094 −0.8394

13 2.457 0.08929 2.686

14 2.972 0.02287 −0.4442

pattern. Now the array size is increased N = 15 instead of N = 14, and its radiation plot is shown in
Figure 11. From Figure 11, we notice that the variation in SLL value and BW is −1.02 dB and 0.1◦,
respectively with a design goal. Therefore, the observations, deduced from Figures 9, 10, and 11, are
such that the near SLL value and BW obtained for N = 15 elements and m = 9 phase modes are
very close to the desired radiation pattern. So a comprehensive analysis of the proposed procedure for
N = 15 elements andm = 9 phase modes is represented in Figure 12. The current excitation magnitudes
and phases are shown in Figure 13, and their respective statistical values are given in Table 4. The
radiation pattern for N = 15 elements and m = 9 phase modes is shown in Figure 14. Also from
Figure 14, we notice that the obtained pattern is more on the safe side towards the desired radiation
pattern of CAA configuration with the directional element (1 + cos(ϕ)). But for complete analysis or
synthesis of radiation pattern, the experiment is continued with the increment in the array size such as
N = 16, 17 and N = 18. The synthesized radiation patterns by the space tapering technique are shown
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Figure 13. Representation of amplitudes and phases at angular positions for N = 15. (a) Amplitude.
(b) Phase.

Table 4. Excitation coefficients obtained for N = 15 antenna elements.

n ϕn (rad) |G(ϕn)| Arg (ϕn) (rad)
1 −2.998 0.02765 −0.437
2 −2.489 0.08787 2.692
3 −2.161 0.03781 2.67
4 −1.653 0.1119 −1.165
5 −1.211 0.1668 −2.903
6 −0.7994 0.3863 2.191
7 −0.3892 0.7678 1.458
8 0 1 1.268
9 0.3892 0.7678 1.458
10 0.7994 0.3863 2.191
11 1.21 0.1668 −2.903
12 1.649 0.1119 −1.172
13 2.169 0.03781 2.665
14 2.491 0.08787 2.692
15 2.995 0.02765 −0.4378

in Figures 15, 16 and 17, and numerical excitation values are given in Table 5 and Table 6. As shown
in Figure 15, the achieved pattern for N = 16 elements has a near SLL of −23.54 dB and BW = 107.3◦,
but the near SLL value varies from design goal by a value of −1.46 dB in terms of difference in SLL
value and 0.1◦ in terms of difference in BW value. Similarly from Figure 16, for N = 17 elements the
near SLL value and BW deviate from the desired radiation pattern by values of −1.83 dB and 0.1◦,
respectively. Finally, the experiment is performed on N = 18 elements, and the achieved pattern has an
SLL of −22.78 dB and BW = 107.4◦, which varies from the design goal by a value of −2.22 dB in terms
of difference in SLL value and 0◦ in terms of difference in BW value. The observation deduced from
Figure 17 is that BW exactly matches the desired radiation pattern. Also the observations deduced
from the Figures 15, 16, and 17 are the tradeoff between the near SLL value and BW, i.e., if near SLL
value increases, but BW is perfectly matching to the desired radiation pattern.



52 Ganesh and Subhashini

Table 5. Excitation coefficients obtained for N = 16 antenna elements.

n ϕn (rad) |G(ϕn)| Arg (ϕn) (rad)

1 −3.016 0.03044 −0.4337

2 −2.52 0.08495 2.698

3 −2.244 0.06307 2.653

4 −1.728 0.1034 −1.027

5 −1.349 0.1255 −2.3

6 −0.9442 0.297 2.562

7 −0.5568 0.595 1.684

8 −0.1833 0.942 1.308

9 0.1833 0.942 1.308

10 0.5568 0.595 1.684

11 0.9442 0.297 2.562

12 1.349 0.1255 −2.3

13 1.728 0.1034 −1.027

14 2.244 0.06307 2.653

15 2.52 0.08495 2.698

16 3.016 0.03044 −0.4337
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Figure 14. Pattern synthesis with N = 15
antenna elements.
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Figure 15. Radiation plot for ideal, N = 15,
N = 16.

As shown in Figure 17, for N = 18 elements the achieved pattern is very close to the ideal
radiation pattern in terms of BW. Therefore, a comprehensive analysis of the proposed procedure
for the combination, i.e., N = 18, m = 9 and r = 0.8555λ, is represented in Figure 18, and its discrete
excitation amplitudes and phases are shown in Figure 19, respectively. Numerical values are tabulated
in Table 7. The radiation plot for N = 18 antenna elements is shown in Figure 20. From Figure 20, the
achieved pattern has an SLL of −22.78 dB and BW = 107.4◦. Therefore, the space tapering technique
validates the statement given in [21], i.e., for obtaining an accurate narrow beam pattern synthesis, the
minimum requirement of the number of elements N is twice the number of phase modes m.

In this paper, by applying the space tapering technique comparative numerical values in terms of
near SLL and BW obtained for different array sizes along with the remarks are tabulated in Table 8.
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Table 6. Excitation coefficients obtained for N = 17 antenna elements.

n ϕn (rad) |G(ϕn)| Arg (ϕn) (rad)

1 −3.026 0.03196 −0.4321

2 −2.548 0.08167 2.703

3 −2.288 0.07333 2.657

4 −1.789 0.09151 −0.943

5 −1.471 0.1148 -1.731

6 −1.072 0.2302 2.917

7 −0.7086 0.455 1.979

8 −0.3491 0.8075 1.419

9 0 1 1.268

10 0.3491 0.8075 1.419

11 0.7086 0.455 1.979

12 1.072 0.2302 2.917

13 1.471 0.1148 −1.731

14 1.789 0.09151 −0.943

15 2.288 0.07333 2.657

16 2.548 0.08167 2.703

17 3.026 0.03196 −0.4321
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Figure 16. Radiation plot for ideal, N = 16,
N = 17.
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Figure 17. Radiation plot for ideal, N = 17,
N = 18.

From the comparison table, it is clearly seen that the desired radiation pattern is closely achieved by
N = 15 with a minimum error in terms of near SLL and BW instead of N = 18 elements. In the case of
N = 18 elements, the near SLL deviates by a design goal of −2.12 dB where as in N = 15 elements the
near SLL deviates by a design goal of −1.02 dB. So the space tapering technique gives the tradeoff in
objective array sizes in CAA with the directional element. The concept of sparse is clearly observed by
synthesizing the radiation pattern with the space tapering technique for N = 18 elements and N = 15
elements. The N = 15 elements for chosen radius (r = 0.8555λ) gives almost desired pattern in terms
of both SLL and BW.
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Figure 18. Representation of the Space tapering technique over the cumulative current distribution
at N = 18.
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Figure 19. Representation of amplitudes and phases at angular positions for N = 18. (a) Amplitude.
(b) Phase.
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Figure 20. Pattern synthesis with N = 18 antenna elements.
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Table 7. Excitation coefficients obtained for N = 18 antenna elements.

n ϕn (rad) |G(ϕn)| Arg (ϕn) (rad)

1 −3.037 0.03336 −0.4307

2 −2.576 0.0773 2.707

3 −2.314 0.07836 2.661

4 −1.843 0.07746 −0.8871

5 −1.564 0.1149 −1.394

6 −1.187 0.1768 −2.993

7 −0.8465 0.355 2.308

8 −0.5009 0.6522 1.597

9 −0.1641 0.9532 1.299

10 0.1658 0.9522 1.3

11 0.4992 0.654 1.595

12 0.8447 0.3561 2.304

13 1.187 0.1768 −2.993

14 1.566 0.1149 −1.396

15 1.843 0.07746 −0.8871

16 2.313 0.07836 2.661

17 2.574 0.0773 2.707

18 3.035 0.03336 −04307

Table 8. Comparison table for different antenna array sizes.

No. of

elements
Ideal

Space tapering

method
Remarks

BW

(deg)

SLL

(dB)

BW

(deg)

SLL

(dB)

12 107.4 −25 107 −21.75

Not perfectly matched to ideal,

deviated by a design goal of near

SLL = −3.25 dB and BW = 0.4◦

13 107.4 −25 107 −22.5

Not perfectly matched to ideal,

deviated by a design goal of near

SLL = −2.5 dB and BW = 0.4◦

14 107.4 −25 107 −22.95

Not perfectly matched to ideal,

deviated by a design goal of near

SLL = −2.05 dB and BW = 0.4◦

15 107.4 −25 107.3 −23.98
Very closed to ideal

radiation pattern

16 107.4 −25 107.3 −23.54

Not perfectly matched to ideal,

deviated by a design goal of near

SLL = −1.46 dB and BW = 0.1◦

17 107.4 −25 107.3 −23.13

Not perfectly matched to ideal,

deviated by a design goal of near

SLL = −1.87 dB and BW = 0.1◦

18 107.4 −25 107.4 −22.78

Perfectly matched in terms of

BW but error in SLL

by amount of -2.12 dB
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4. CONCLUSION

This paper demonstrates the space tapering technique for a low side lobe and narrow main beam
synthesis of CAA configuration with the directional element (1 + cos(ϕ)). The radius which is an
important parameter of a CAA configuration is modelled in this paper. A good methodology is evolved
to determine the radius of a CAA using the phase mode analysis. The angular placement of the antenna
element is found by the proposed technique which in turn helps to find the complex excitations to be
provided for each individual element in the array. The case study shows that the proposed technique
generates the desired pattern (Dolph-Chebysheve) with a minimum error in terms of SLL and beamwidth
using N = 15 elements instead of N = 18 elements as mentioned in [21] with a sparse of 3 elements.
The method also highlights the proper choice of array size plays an important role in the desired pattern
synthesis. An extensive numerical analysis has been performed with various array sizes, and their effect
on the constraints which are SLL and BW is studied. Throughout the study, the proposed technique is
investigated on a CAA made up of directional element, i.e., (1+cos(ϕ)) to study the practical importance
instead of an isotropic element. As a future scope, this approach can be extended for different desired
radiation patterns with multiple objectives. The simulation is performed on an i5 processor with 4GB
RAM and MATLAB R2013a.
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