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Formation of Radiation Fields of Linear Vibrator Arrays
by Using Impedance Synthesis

Yuriy M. Penkin, Victor A. Katrich, and Mikhail V. Nesterenko*

Abstract—A new method of impedance synthesis of antenna array radiation fields based on a single
methodological conception is presented. At first, an approximate solution for the current in the thin
vibrator with variable impedance was obtained using the partial averaging operation of the integral-
differential equation. The variable impedance of the vibrator was taken into account in the form of
an integral coefficient averaged along the vibrator length. The approach turns out to be common for
radiators with impedance coatings of different configurations and/or different distributions of lumped
impedances. It is established that the shape of the vibrator radiation pattern (RP) does not depend
on the form of the impedance distribution function, and it is determined only by the averaged value
of the impedance distribution along the vibrator axis. The solution shows that the impedance coating
of a symmetrical thin vibrator excited at the center by the voltage δ-generator affects the shape of the
radiation pattern in the wave zone, and the effect is directly proportional to the small natural parameter
of the problem. The synthesis problem of the radiator impedances for the spatial scanning of the RP
was solved for the linear vibrator array. The analytical solution of the problem was obtained for the
equidistant array of symmetric vibrators with equal excitation currents. The possibility of changing the
RP shape over a wide range by varying the intrinsic complex impedances of the vibrators is demonstrated
for an equidistant linear array consisting of 5 half-wave vibrators located at a distance of one eighth
wavelength from each other in the free space.

1. INTRODUCTION

The problem of antenna array (AA) synthesis consists in finding a form, dimensions and amplitude-
phase distribution (APD) of currents in the array elements by using a RP in the wave zone [1].
Since the shape of the antenna array is supposed to be known in most cases, the problem solution
is reduced to determining numbers of the radiators, distances between them and complex current
amplitudes in them. At present, the problems of current APD synthesis is fairly well understood
theoretically, but unfortunately, it cannot help practical implementation of a particular antenna array
design. Alternative problems of an AA constructive synthesis, which were apparently first considered
in [2], are still poorly covered in the literature, since they are much more complex than the problems
in a conventional formulation. Taking into account constraints arising in practice, these problems are
usually inverse boundary value problems, which can often be reduced to nonlinear and multiextremal
problems. Therefore, the problem can be solved by sophisticated numerical methods, whose results
cannot be directly applied as a basis for array control algorithms required, e.g., for spatial scanning of
the RP in the wave zone. Therefore, the solutions of the constructive synthesis problems in a spatial
frequency representation can be obtained by using analytical or numerical analytic methods. In the
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latter case, the current practice is to obtain satisfactory results by using analytical or numerical and
analytical methods.

On the other hand, the problems of constructive synthesis are actual for issues of electromagnetic
compatibility of electronic equipment. In that case, field profiles in the wave and near-field radiation
zones are studied (see, for example, [3–6]). Complex structures containing several integrated circuits
can often be modelled based on the use of dipole arrays. The electromagnetic radiation in the near
zone can be defined by using direct numerical methods developed for frequency-time domain. However,
extrapolation of these methods to simulation of fields in the wave zone may encounter considerable
difficulties [4].

In this article, a new approach to scanning of the RP of a linear vibrator arrays is presented based
on impedance synthesis of radiators. This conception has been aroused from the analysis of impedance
vibrator arrays [7, 8], and it can be considered as an improved method for synthesis of antenna arrays
with reactive loads [9, 10].

2. ANALYTICAL CURRENT PRESENTATION ON A VIBRATOR WITH
VARIABLE IMPEDANCE

Consider a problem of electromagnetic wave excitation by a thin impedance vibrator in infinite medium
with material parameters (ε1;µ1). The vibrator intrinsic impedance is supposed to be an arbitrary
complex-valued function of the vibrator length. The initial integral equation of the problem satisfying
a boundary condition on the vibrator surface S can be written as [4]

1

iωε1
(graddiv + k21)

∫
S

Ĝ(r⃗, r⃗′)J⃗(r⃗′)dr⃗′ = −E⃗0(r⃗) + zi(r⃗)J⃗(r⃗), (1)

where zi(r⃗) is the intrinsic linear impedance ([Ohm/m]), E⃗0(r⃗) the field of extraneous sources, Ĝ(r⃗, r⃗′)
the tensor Green’s function of a free space for electric vector potential k1 = k

√
ε1µ1, k = 2π/λ, and λ

the wavelength in a free space. The equation was derived under conditions that all quantities depend
on time t as eiωt.

In the thin wire approximations, Equation (1) can be reduced to an integral equation with a
quasi-one-dimensional kernel [8](

d2

ds2
+ k21

) L∫
−L

J(s′)
e−ik1R(s,s′)

R(s, s′)
ds′ = −iωε1E0s(s) + iωε1zi (s) J(s), (2)

where L is the vibrator half-length, R(s, s′) =
√

(s− s′)2 + r2, r the vibrator radius, and E0s(s) a
projection of extraneous source fields at the vibrator axis. We will solve Equation (2) by a small
parameter method [11]. Let us isolate a logarithmic singularity of the Equation (2) kernel with the help
of an artificial technique [8, 11]

L∫
−L

J(s′)
e−ik1R(s,s′)

R(s, s′)
ds′ = Ω(s)J(s) +

L∫
−L

J(s′)e−ik1R(s,s′) − J(s)

R(s, s′)
ds′. (3)

Here

Ω(s) =

L∫
−L

ds′√
(s− s′)2 + r2

= Ω+ γ(s), (4)

where γ(s) = ln
[(L+s)+

√
(L+s)2+r2][(L−s)+

√
(L−s)2+r2]

4L2 is a function which is equal to zero at the vibrator
center and reaches maximal values at the vibrator end. The current at the vibrator ends is zero since
the boundary conditions J(±L) = 0 are fulfilled, and Ω = 2 ln 2L

r is the large parameter. Then, taking
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into account Equation (3), Equation (2) can be converted to the integral-differential equation for the
vibrator electric current

d2J(s)

ds2
+ k21J(s) = α {iωε1E0s(s) + F [s, J(s)]− iωε1zi (s) J(s)} , (5)

where α = 1
2 ln[r/(2L)] is the natural small parameter of the problem (|α| ≪ 1). A functional

F [s, J(s)] = −dJ(s′)

ds′
e−ik1R(s,s′)

R(s, s′)

∣∣∣∣∣
L

−L

+

[
d2J(s)

ds2
+ k21J(s)

]
γ(s)

+

L∫
−L

[
d2J(s′)

ds′2
+ k21J(s

′)

]
e−ik1R(s,s′) −

[
d2J(s)

ds2
+ k21J(s)

]
R(s, s′)

ds′ (6)

defines the vibrator self-field in the spatial domain. Let us introduce a denomination

k̃2 (s) = k21
[
1 + iαωε1zi (s) /k

2
1

]
= k21

[
1 + i2αZ̄S (s) /(µ1kr)

]
, (7)

where
Z̄S (s) = 2πrzi (s) /Z0 (8)

is distribution of surface impedance, normalized to the characteristic impedance of the medium
Z0 =

√
µ1/ε1 [Ohm]. Then, Equation (5) can be written as

d2J(s)

ds2
+ k̃2 (s) J(s) = α {iωε1E0s(s) + F [s, J(s)]} . (9)

The integral-differential Equation (9) has a variable parameter k̃(s); therefore, it cannot be solved by
methods proposed for vibrators with a constant impedance [8, 11]. However, an approximate analytical

solution of Equation (9) can be obtained, since parameter k̃(s) in expression (7) has two terms, and
the second term is proportional to the small parameter α. Therefore, it would be appropriate to
approximately represent the vibrator impedance Z̄s(s) by its mean value along the vibrator length.
Equation (9) can be written as

d2J(s)

ds2
+ k̃2mJ(s) = α {iωε1E0s(s) + F [s, J(s)]} . (10)

where k̃2m = k21(1 +
i2α
µ1kr

· 1
2L

L∫
−L

Z̄S(s)ds) is the mean value of coefficient k̃(s). The solution of

Equation (10) can be called the first approximation to the solution of Equation (9) [12, 13].
The differential Equation (10) can be solved by the series expansion in the small parameter α

d2J1(s)

ds2
+ k̃2mJ1(s) = iωε1E0s(s),

d2J2(s)

ds2
+ k̃2mJ2(s) = F [s, J1(s)],

. . .

d2Jn(s)

ds2
+ k̃2mJn(s) = F [s, Jn−1(s)].

(11)

The solution of differential equations at each step should be determined by taking into account the
boundary conditions for the currents J1(±L) = J2(±L) = . . . = Jn(±L) = 0. The general solution for
the current can be obtained as an expansion in powers of the small parameter α

J(s) = αJ1(s) + α2J2(s) + . . . (12)
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If the system in Eq. (11) is formally supplemented by homogeneous equation for the zero-approximation

of the current J0, it will have a solution J0(s) = C1 cos k̃ms+ C2 sin k̃ms, which does not depend upon
the exciting field E0s(s).

If any losses are present in the medium or vibrator, the trigonometric functions in the solution
become complex and, hence, cannot be equal to zero for any arguments. Then to satisfy the boundary
conditions J0(±L) = 0, the constants C1 and C2 should be equal to zeroes. Therefore, identities J0 ≡ 0
and F [s, J0(s)] ≡ 0 hold for any vibrator length, and the first approximation of the vibrator current
becomes equal to

J(s) ≈ αJ1 (s) = −α
iωε1/k̃

sin 2k̃mL
×


sin k̃m (L− s)

s∫
−L

E0s

(
s′
)
sin k̃m

(
L+ s′

)
ds′

+sin k̃m (L+ s)

L∫
s

E0s

(
s′
)
sin k̃m

(
L− s′

)
ds′,

(13)

and one can see that it does not depend upon the vibrator eigenfield in Eq. (6).
If the vibrator is excited in the middle by a δ-generator with the voltage amplitude V0, i.e.,

E0s(s
′) = V0δ(s− s′), Formula (13) can be reduced to

J(s) ≈ αJ1 (s) = − iωε1αV0

2k̃m cos k̃mL
sin k̃m (L− |s|) = J0 sin k̃m (L− |s|) = J0f(s). (14)

As can be seen, the approximate solution for the current on the vibrator with the variable impedance
in Eq. (14) automatically ensures that the vibrator current continuity is preserved even for piecewise-
constant impedance distributions. A characteristic property of the solution consists in that the variable

impedance is taken into account as averaged integral coefficient 1
2L

L∫
−L

Z̄S(s)ds. Unlike the current

distribution functions known from [14, 15], function f(s) in Equation (14) contains the information
about the impedance distribution along vibrator Z̄S(s). Moreover, this approach is valid for vibrators
with one or several local inclusions of lumped impedance loads.

3. RP OF A SYMMETRICAL VIBRATOR WITH VARIABLE IMPEDANCE

When the vibrator current and RP are known, the vibrator radiation field, i.e., the dependence of the
radiated field intensity upon the direction can be obtained by summation of fields produced by all
vibrator sections. The field in the wave zone at a distance R (R ≫ λ1, λ1 is the wavelength in the
medium) induced by the current element J(s′)ds′ can be calculated by neglecting terms, which decrease
with distance faster than 1/R. Under this condition, the field induced in the wave zone by a symmetrical
vibrator whereby the current flows in Eq. (14) can be represented as

E = Eθ =
60πi

λ1

L∫
−L

sin θS
e−ik1RS

RS
J(s′)ds′. (15)

The formula is written in a spherical coordinate system whose axis coincides with the vibrator axis
(Fig. 1).

Since distance RS can be expanded in powers of the variable s′ so that RS = R−s′ cos θ+ (s′)2 sin2 θ
R −

. . ., we can assume that RS ≈ R and RS ≈ R − s′ cos θ in the denominator and exponent of Formula
(15), respectively. If the distance to the observation point is large, we can assume that sin θS = sin θ.
Taking into account the above approximation, we can rewrite Eq. (15) as

Eθ =
60πi

λ1
· e

−ik1R

R
sin θ

L∫
−L

J(s′)eik1s
′ cos θds′. (16)
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Figure 1. The problem geometry.

Analysis of expression (16) shows that small deviations of the current distribution J(s′) from the exact
shape are averaged during the integration and do not significantly affect the spatial shape of the RP.
Therefore, we can use the approximate current distribution in Eq. (14). After substituted Eq. (14) into
Eq. (16), we obtain the following formula

Eθ =
120πi

λ1
· e

−ik1R

R
J0

cos (k1L cos θ)− cos
(
k̃mL

)
k̃2m − (k1 cos θ)

2 k̃m sin θ. (17)

Before proceeding to the synthesis problem, we perform some identical transformations in Eq. (17).

Let us introduce the notation β̄ = 1
2Lµ1kr

L∫
−L

Z̄S(s)ds. Then, taking into account the relations

in Eq. (7), the expression k̃2m − (k1 cos θ)
2 in the denominator of Eq. (17) can be written as

k21(1 + 2iαβ̄) − k21cos
2θ = k21(sin

2 θ + 2iαβ̄). Since the parameter α is small, we can write k̃2m =

k21(1 + 2iαβ̄) ≈ k21(1 + 2iαβ̄ − α2β̄2) = k21(1 + iαβ̄)2 and, hence, k̃m = k1(1 + iαβ̄). Thus, the

multiplier cos(k1L cos θ)−cos(k̃mL)

k̃2m−(k1 cos θ)2
k̃m sin θ in Eq. (17) can be represented as

cos (k1L cos θ)− cos
(
k̃mL

)
k̃2m − (k1 cos θ)

2 k̃m sin θ =

(
1 + iαβ̄

)
sin θ

k1
(
sin2 θ + 2iαβ̄

) [cos (k1L cos θ)− cos (k1L+ iαβk1L)] . (18)

Taking into account the series expansions of trigonometric functions sinx = x− x3/3! + x5/5!∓ . . . and
cosx = 1−x2/2!+x4/4!∓ . . ., we can write expression (18) with an accuracy up to the parameter α as(

1 + iαβ̄
)
sin θ

k1
(
sin2 θ + 2iαβ̄

) [cos (k1L cos θ)− cos (k1L) + iαβ̄k1L sin (k1L)
]

=

[
Fc (θ) + iαβ̄ (Fc (θ) + k1L sin (k1L))

]
sin θ

k1
(
sin2 θ + 2iαβ̄

)
=

1

k1 sin
3 θ

[
Fc (θ) + iαβ̄ (Fc (θ) + k1L sin (k1L))

] (
sin2 θ − 2iαβ̄

)
=

1

k1 sin θ

[
Fc (θ)− iαβ̄

(
Fc (θ)

1 + cos2 θ

sin2 θ
− k1L sin (k1L)

)]
,

(19)

where Fc(θ) = cos(k1L cos θ)− cos(k1L). The final expression for the electric field Eθ can be presented
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as

Eθ =
120π

λ1
· e

−ik1R

R
· J0
k1 sin θ

[
iFc (θ) + αβ̄

(
Fc (θ)

1 + cos2 θ

sin2 θ
− k1L sin (k1L)

)]
=

e−ik1R

R
· 60J0√

ε1µ1 sin θ

[
iF c (θ) + αβ̄

(
Fc (θ)

1 + cos2 θ

sin2 θ
− k1L sin (k1L)

)]
.

(20)

The first term in square brackets of expression (20) determines the RP of a perfectly conducting vibrator,
and the second term defines contribution of the impedance vibrator coating to the radiation field. If
Z̄S(s) = 0, expression (20) is reduced to the well-known formula for the RP of a symmetric perfectly
conducting vibrator in the wave zone (see, for example, [8]). This fact confirms a correctness of the
approximation.

Formula (20) directly allows us to make two important conclusions. First, the impedance coating
of a thin symmetrical vibrator excited in the center by a voltage generator influences the RP in the
wave zone. The effect is directly proportional to the product of the parameter α = 1

2 ln[r/(2L)] and the

mean value of the variable impedance 1
2L

L∫
−L

Z̄S(s)ds, and it is inversely proportional to the coefficient

(µ1kr). Consequently, the shape of the vibrator RD cannot be varied in wide limits by applying the
impedance coating to the vibrator. Second, the form of the RP does not depend upon the function

ZS(s) if the mean value of the impedance is 1
2L

L∫
−L

Z̄S(s)ds.

4. PROBLEM OF IMPEDANCE SYNTHESIS OF A LINEAR VIBRATORY ARRAY

Let us consider a linear array ofN symmetrical impedance vibrators (Fig. 2). The array spacing is d, and
all vibrators are of length 2L and characterized by the variable impedances Z̄Sn(s). If the vibrators are
resonantly tuned by selecting intrinsic resistors of the δ-generators, mutual influences between them can
be neglected, and the total field radiated by the array becomes equal to the sum of the field radiated by
all vibrators, taking into account the phases of waves arriving to an observation point A. The difference
of propagation paths between neighboring vibrators and the observation point in the wave zone is equal
to d sin θcosφ.

Let us introduce a notation u = kd sin θcosφ. Then, taking into account Eq. (20), we can write the

Figure 2. A linear vibrator array.



Progress In Electromagnetics Research M, Vol. 57, 2017 7

expression for the resulting field in the free space as [7, 10]

Eθ = 60
e−ikR

R
e−i(N−1)u/2



J1
sin θ

[
iF c (θ) + αβ̄1

(
Fc (θ)

1 + cos2 θ

sin2 θ
− kL sin (kL)

)]
+
J2e

iu

sin θ

[
iFc (θ) + αβ̄2

(
Fc (θ)

1 + cos2 θ

sin2 θ
− kL sin (kL)

)]
+
J3e

i2u

sin θ

[
iFc (θ) + αβ̄3

(
Fc (θ)

1 + cos2 θ

sin2 θ
− kL sin (kL)

)]
. . .

+
JNei(N−1)u

sin θ

[
iFc (θ) + αβ̄N

(
Fc (θ)

1 + cos2 θ

sin2 θ
− kL sin (kL)

)]


,

(21)

where β̄n = 1
2Lkr

L∫
−L

Z̄Sn(s)ds and {Jn} is the current of the n-th vibrator (n = 1, 2, . . . , N).

If the vibrators are perfectly conducting and the vibrator currents are equal, i.e., J1 = J2 = . . . =
JN = J0, expression (21) can be reduced to

Eθ = 60iJ0
e−ikR

R

Fc (θ)

sin θ
e−i(N−1)u/2

{
1 + eiu + ei2u + . . .+ ei(N−1)u

}
. (22)

According to Formula (22), the maximum of the array RP is reached in direction (θ = π
2 ;φ = π

2 ) when
u = 0. On the other hand, it is known [7, 10] that if the phase shift between neighboring vibrators is
equal to −∆u, the maximum of the array RP is shifted in the direction (θmax;φmax) determined from
the relation sin θmaxcosφmax = ∆u/kd [3, 6]. In this case, we can write

Eθ = 60iJ0
e−ikR

R

Fc (θ)

sin θ
e−i(N−1)(u−∆u)/2

{
1 + ei(u−∆u) + ei2(u−∆u) + . . .+ ei(N−1)(u−∆u)

}
. (23)

Since amplitudes of the vibrator currents are arbitrary, we rename J0e
i(N−1)∆u/2 by J0, perform several

identical transformations in Eq. (21), and obtain

Eθ = 60iJ0
e−ikR

R

Fc (θ)

sin θ
e−i(N−1)(u−∆u)/2



[
1− iαβ̄1

(
1+cos2 θ
sin2 θ

− kL sin (kL)

Fc (θ)

)]
+eiu

[
1− iαβ̄2

(
1 + cos2 θ

sin2 θ
− kL sin (kL)

Fc (θ)

)]
+ei2u

[
1− iαβ̄3

(
1 + cos2 θ

sin2 θ
− kL sin (kL)

Fc (θ)

)]
. . .

+ei(N−1)u

[
1− iαβ̄N

(
1 + cos2 θ

sin2 θ
− kL sin (kL)

Fc (θ)

)]


.

(24)
Expressions (23) and (24) become identical if

e−i(n−1)kd sin θ cosφ =

[
1− iαβ̄n

(
1 + cos2 θ

sin2 θ
− kL sin (kL)

Fc (θ)

)]∣∣∣∣
θ=θmax;φ=φmax

, (25)

for every n = 1, 2, . . . , N . The relations in Eq. (25) for the predefined angles (θmax;φmax) can be
used to uniquely find a solution vector for unknowns {β̄n}. Thus, we can affirm that the maximum
of the antenna RP in the wave zone can be redirected to predefined position by synthesizing certain
impedances on the array vibrators.

5. NUMERICAL RESULTS

Let us consider the vibrator array consisting of five (N = 5) symmetrical half-wave (2L = λ/2; kL = π)
impedance vibrators with equal radii (r = L/25 = λ/100). The problem can be formulated as searching
such impedances Z̄Sn(s) that the maximum of the RP in the main plane θmax = π/2 will be in the



8 Penkin, Katrich, and Nesterenko

direction of the predefined angle φmax. In this case, it is not difficult to verify that the relations in
Eq. (25) can be simplified and reduced to

e−i(n−1)kd cosφmax = 1− iαβ̄n. (26)

Without losing the approach commonality, we assume that the complex vibrator impedances Z̄Sn(s) =

R̄Sn + iX̄Sn do not depend upon the variable s. Then, taking into account that β̄n = R̄Sn+iX̄Sn
kr , the

relations in Eq. (26) can be represented in the following form

cos (kd (n− 1) cosφmax)− i sin (kd (n− 1) cosφmax) = 1− iα
R̄Sn + iX̄Sn

kr
. (27)

Equating the real and imaginary components of the left and right sides of Equation (27), we finally
obtain the formulas ready for the numeric computing

R̄Sn = 2kr ln[r/(2L)] sin [kd (n− 1) cosφmax] ,

X̄Sn = −2kr ln[r/(2L)] {1− cos [kd (n− 1) cosφmax]} .
(28)

Formulas (25) and (28) are valid for any number of vibrators in the array and for arbitrary distances
between the vibrators. However, in general, we cannot guarantee that the impedances computed in such
a way and defined here as effective physical quantities have the positive real parts, R̄Sn ≥ 0. Namely, this
condition, put forward from the energy considerations, determines the possibility of practical realization
of the impedance Z̄Sn = R̄Sn+ iX̄Sn as the vibrator intrinsic impedance. From physical considerations,

Table 1. The estimated values of the impedances Z̄Sn for various angles of radiation maxima.

n
φmax = 100◦ φmax = 110◦ φmax = 120◦ φmax = 130◦

R̄Sn X̄Sn R̄Sn X̄Sn R̄Sn X̄Sn R̄Sn X̄Sn

1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

2 0.0081 0.089 0.031 0.172 0.066 0.246 0.107 0.306

3 0.032 0.175 0.121 0.323 0.246 0.426 0.382 0.479

4 0.072 0.255 0.258 0.432 0.492 0.492 0.705 0.443

5 0.124 0.327 0.424 0.487 0.737 0.426 0.934 0.213

Figure 3. The normalized RP of the linear antenna array: 1 — φmax = 90◦; 2 — φmax = 100◦; 3 —
φmax = 110◦; 4 — φmax = 120◦; 5 — φmax = 130◦.
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we can assume that the conditions R̄Sn ≥ 0 can be satisfied for arrays with a single directional lobe.
The study of more exact requirements for the array dimensions is beyond the scope of this article. As
known, the antenna array can have a single label RP oriented in the direction φmax in the range of real
angles under condition d

λ < 1
1+| cosφmax| [10, 16]. Therefore, we select the distance between the vibrators

equal to λ/8, (kd = π/4). Following from formula (28), if the direction of the RP main lobe is defined by
the angle φmax = 90◦, the impedances Z̄sn should be equal to zeros. Estimated values of the impedance
Z̄Sn for φmax equal to 100◦, 110◦, 120◦ and 130◦ are shown in Table 1.

Table 1 shows that to direct the main lobe maximum at the angle other than 90◦, the modulus of
the impedances |Z̄Sn| should be increased. Note, the impedance Z̄Sn of the vibrator with the number
n = 1 must be equal to zero for all angles φmax. The normalized RPs, |F̄ |, obtained using Eq. (24) as
function of the angle φ ∈ [0, 2π] are plotted for the angle φmax given in Table 1. As can be seen from
Fig. 3, the results of calculations confirm the possibility of varying the shape of the RP by changing the
intrinsic impedances of the vibrators. The radiation pattern can be varied over a wide range: from a
quasi-homogeneous to table-like form, directed along the longitudinal axis of the array.

6. CONCLUSION

A new method of impedance synthesis of antenna array radiation patterns based on a single
methodological conception is presented. At first, an approximate solution for the current in the thin
vibrator with variable impedance was obtained using the partial averaging operation of the integral-
differential equation. The variable impedance of the vibrator was taken into account in the form of
an integral coefficient averaged along the vibrator length. The approach turns out to be common for
radiators with impedance coatings of different configurations and/or different distributions of lumped
impedances. It was established that the shape of the vibrator RP does not depend on the form of
the impedance distribution function, and it is determined only by the averaged value of the impedance
distribution along the vibrator axis. The solution shows that the impedance coating of a symmetrical
thin vibrator excited at the center by the voltage δ-generator affects the shape of the radiation pattern
in the wave zone, and the effect is directly proportional to the small natural parameter of the problem.
The synthesis problem of the radiator impedances for the spatial scanning of the RP was solved for the
linear vibrator array. The analytical solution of the problem was obtained for the equidistant array of
symmetric vibrators with equal excitation currents. The possibility of changing the RP shape over a
wide range by varying the intrinsic complex impedances of the vibrators was demonstrated.
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