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Theoretical Modelling of Modulational Instability of a Lower Hybrid
Wave in a Complex Plasma

Ajay Gahlot*

Abstract—The modulational instability of a lower hybrid wave is investigated in a dusty plasma slab
by developing a non-local theory of this four wave parametric interaction process. The immersed dust
grains modify the dispersion relation and growth rate expression of low frequency unstable mode. A
numerical analysis shows that the frequencies and growth rate of unstable mode is higher in dusty
plasma than in that without dust grains. The growth rate of the unstable mode is proportional to
pump amplitude and has strong dependence on pump frequency.

1. INTRODUCTION

There has been extensive research in the field of parametric instabilities associated with electrostatic [1–
5] and electromagnetic waves [6, 7] of large amplitude. This study and research is significant because of
its profound applicability to space plasma, rf heating of fusion devices [8], and laboratory experiments [9–
12]. Parametric instabilities also play a crucial role in laser interaction with plasma, e.g., laser driven
fusion [13]. Four wave interaction processes such as modulational instability (MI) [14] also belong to
this category.

Considerable emphasis in last three decades has been given for theoretical and experimental
investigation of electrostatic waves in dusty plasma [15–37]. Chow and Rosenberg [17, 18] developed a
model for electrostatic ion cyclotron (EIC) instability using Vlasov theory with dust grains immersed
in plasma which was later found consistent with experimental findings of Barkan et al. [19]. Barkan et
al. showed that growth rate of EIC waves increased with parameter δ (where δ is the ratio b/w ion
and electron density). Sharma and Gahlot [36, 37] showed that drift wave instability is reduced in
cylindrical dusty plasma by using lower hybrid (LH) pump wave with and without incorporating the
effect of collisionality.

The immersed dust particles both in unmagnetized [38–40] and magnetized plasmas [41] influence
parametric process involving three waves. Modulational instability (MI) of Langmuir and ion acoustic
waves have also been analysed with keen interest [42, 43]. Liu and Tripathi [9] considered the MI of
lower hybrid (LH) wave in infinite plasma. Konar et al. [44] have studied the MI of a LH wave in a
plasma slab in absence of dust particles. This manuscript examines the MI of LH waves in presence of
dust particles in a slab of plasma.

The process is explained as: A low frequency plasma mode (ωl, kl) combines with LH pump wave
(ω0, k0) to give LH sidebands (ω1,2 = ωl ∓ ω0, k1,2 = kl ∓ k0) of high frequency. The sidebands thus
produced interact with pump providing pondermotive force at (ωl, kl) that drives original plasma mode
(ωl, kl). Section 2 illustrates the instability analysis using fluid treatment. Results and discussion are
given in Section 3 while conclusion is mentioned in Section 4.
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2. INSTABILITY ANALYSIS

Consider a plasma slab filled with homogeneous dusty plasma that is infinite in Z-direction and bounded

b/w x = 0 and x = a0. It is immersed in a magnetic field B⃗s = Bsẑ. In equilibrium, the charge, densities,
mass and temperature of electrons, ions and dust grains in the plasma slab are denoted by (−e, ne0, me,
Te), (e, ni0, mi, Ti) and (−Qd0, nd0, md, Td) respectively. MI involves four-wave interaction in which a
large amplitude lower hybrid pump wave couples to a electrostatic perturbation (ωl, kl) and two lower
hybrid sidebands (ω1,2, k1,2) (cf. Fig. 1). We assume the potentials of the four waves of the form

ϕ0 = ϕ0(x) exp [−i (ω0t− k0zz)]

ϕ1 = ϕ1(x) exp [−i (ω1t− k1zz)]

ϕ2 = ϕ2(x) exp [−i (ω2t− k2zz)]

ϕ = ϕ(x) exp [−i (ωlt− klzz)]

The mode structure equation for the lower hybrid (LH) pump wave is given as

∂2ϕ0

∂x2
+K2

0ϕ0 = 0, (1)

where K2
0⊥ =

ω2
LHmi

ω2
0me

k20z − k20z, ωLH =
ωpi√
1+

ω2
pe

ω2
ce

, ωpe(=
√

4πne0e2

me
), ωpi(=

√
4πni0e2

mi
), and ωce(=

eBs
mec

) are

the lower hybrid, electron plasma, ion plasma and electron cyclotron frequency, respectively.
The equation of motion for plasma electrons in the case of high frequency LH waves is given by

me
dv⃗

dt
= −eE⃗ − e

c

(
v⃗ × B⃗s

)
(2)

On linearization, Eq. (2) gives perturbed velocity as

Vj =
−e∇ϕj × ω⃗ce

meω2
ce

, (3)

Vjz =
−ekjzϕj

meωj
, where j = 0, 1, 2.

As ωl ≪ ωce, ponderomotive force (Fpz) exerted by LH pump wave and the sidebands (ϕ1,2) on the
electrons is given by

Fpz = −iekzϕp (4)

Figure 1. Schematic diagram of four wave parametric interaction in a plasma slab with negatively
charged dust grains.
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where

ϕp =
−ek20z
2meω2

0

[ϕ0ϕ1 + ϕ∗
0ϕ2] . (5)

Electron response to ϕp and self-consistent potential ϕ turns out to be

ne1 =
−ne0ek

2
l (ϕ+ ϕp)

meω2
l

, (6)

where ne1 is the perturbed density of electrons.
The response of plasma species ion and dust at (ωl, kl) is obtained using eq. of motion and eq. of

continuity as

ni1 =
ni0ek

2
l ϕ

miω2
l

, (7)

nd1 = −
nd0Qd0k

2
l ϕ

mdω
2
l

. (8)

where ni1 and nd1 are the perturbed ion and dust density respectively.
We obtain dust charge fluctuation by following Jana et al. [16] & Varma et al. [45], i.e.,

Qd1 =
|Ie0|

i(ωl + iηdp)

(
ni1

ni0
− ne1

ne0

)
, (9)

where ηdp is the dust charging rate expressed as ηdp = 0.79a(
ωpi

λDi
)( 1

δd
)(mi

me

Ti
Te
)
1
2 ∼ 10−2ωpe(

a
λDe

) 1
δd
. λDi,

λDe and ‘a’ are ion Debye length, electron Debye length and dust grain size, respectively.
In Eq. (9), we have assumed that the dust charging time (η−1

dp ) is nearly equal to wave period (ω−1
l ).

Substituting the perturbed densities of electron and ion from Eqs. (6) and (7) in Eq. (9), we get

Qd1 =
|Ie0| ek2l

i(ωl + iηdp)ω
2
l

[
ϕ

mi
+

(ϕ+ ϕp)

me

]
. (10)

The quasineutrality condition satisfied at equilibrium is

−eni0 + ene0 +Qd0nd0 = 0 (11)

ni0
ne0

= 1 + nd0
ne0

Qd0
e or nd0

ne0
= (δd − 1) e

Qd0
, where δd = ni0/ne0.

Substituting the perturbed quantities in the Poisson’s equation, ∇2ϕ = 4π[ne1e− ni1e+ nd0Qd1 +
Qd0nd1], we obtain

∇2ϕ =
−4πne0e

2k2l (ϕ+ ϕp)

meω2
l

−
4πni0e

2k2l ϕ

miω2
l

+
4πnd0 |Ie0| ek2l
i (ωl + iηdp)ω

2
l

[
ϕ

mi
+

(ϕ+ ϕp)

me

]
−

4πnd0Q
2
d0k

2
l ϕ

mdω
2
l

Substituting ∇2 = −k2l for infinite geometry, we get

ϕ =

−χed

[
1 +

iβdp

(ωl+iηdp)

]
ϕp

εd
, (12)

where

εd = 1 + χed

[
1 +

iβdp
(ωl + iηdp)

]
+ χid

[
1 +

iβdp
(ωl + iηdp) δd

]
+ χd,

χed = −ω2
pe

ω2
l
, χid = −ω2

pi

ω2
l
, χd = −ω2

pd

ω2
l
, ωpd(=

√
4πnd0Q

2
d0

md
) and βdp = |Ie0|nd0

ene0
is the coupling parameter

expressed as βdp = 0.397(1− 1
δd
)( a

vte
)ω2

pi(
mi
me

). χed, χid, χd are electron, ion and dust susceptibility,

respectively, while ωpd is the dust plasma frequency.
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Nonlinear lower and upper sideband electron density perturbation is given by

nnl
1 =

∇ · (ne1v
∗
0)

2iω1
= −ek20zϕ

∗
0ne1

2meω2
0

(13)

and

nnl
2 =

∇ · (ne1v0)

2iω2
= −ek20zϕ0ne1

2meω2
0

, (14)

where ω1 ≈ −ω0 and ω2 ≈ ω0.
Substituting Eqs. (13) and (14) in the Poisson’s equation, the following nonlinear mode-structure

equations for lower and upper sidebands are obtained:

∂2ϕ1

∂x2
+K2

1dϕ1=
e2k40zk

2
l ϕ

∗
0χed

4m2
eω

4
0εdM

[
1 +

iβdp
(ωl + iηdp)

]{
1 + χid

[
1 +

iβdp
(ωl + iηdp) δd

]
+ χd

}
[ϕ0ϕ1 + ϕ∗

0ϕ2] (15)

and

∂2ϕ2

∂x2
+K2

2dϕ2=
e2k40zk

2
l ϕ0χed

4m2
eω

4
0εdM

[
1 +

iβdp
(ωl + iηdp)

]{
1+χid

[
1+

iβdp
(ωl + iηdp) δd

]
+χd

}
[ϕ0ϕ1 + ϕ∗

0ϕ2] , (16)

where

K2
1d =

ω2
pi

ω2
1

mi

me

[
1 +

iβdp
(ωl + iηdp)

]
k21z − k21z

1 +
ω2
pe

ω2
ce

[
1 +

iβdp
(ωl + iηdp)

]
−

ω2
pi

ω2
1

[
1 +

iβdp
(ωl + iηdp) δd

]
−

ω2
pd

ω2
1

, (17)

K2
2d =

ω2
pi

ω2
2

mi

me

[
1 +

iβdp
(ωl + iηdp)

]
k22z − k22z

1 +
ω2
pe

ω2
ce

[
1 +

iβdp
(ωl + iηdp)

]
−

ω2
pi

ω2
2

[
1 +

iβdp
(ωl + iηdp) δd

]
−

ω2
pd

ω2
2

(18)

and

M = 1 +
ω2
pe

ω2
ce

[
1 +

iβdp
(ωl + iηdp)

]
−

ω2
pi

ω2
0

[
1 +

iβdp
(ωl + iηdp) δd

]
−

ω2
pd

ω2
0

.

If the R.H.S of Eqs. (15) and (16) are zero, then these equations represent the linear response at
(ω1,2, k1,2), and solutions are represented by ϕ1n1 and ϕ1n2

, respectively.
Expanding the solutions of Eqs. (15) and (16), i.e., ϕ1 and ϕ2 in terms of a complete set of

orthonormal functions ϕ1n1 and ϕ1n2 , we get

ϕ1 =
∑
n1

A(1)
n1

ϕ1n1 (19)

and
ϕ2 =

∑
n2

A
(2)
n2ϕ2n2 . (20)

When no pump wave is present, Eq. (15) becomes

∂2ϕ1

∂x2
+K2

1dn1
ϕ1 = 0 (21)

Now subtracting Eq. (21) from Eq. (15), we get[
K2

1d −K2
1dn1

]
ϕ1 =

e2k40zk
2
l ϕ

∗
0χed

4m2
eω

4
0εdM

[
1 +

iβdp
(ωl + iηdp)

]{
1 + χid

[
1 +

iβdp
(ωl + iηdp) δd

]
+ χd

}
[ϕ0ϕ1 + ϕ∗

0ϕ2]
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Substituting the values of ϕ1 and ϕ2 from Eqs. (19) and (20), we get[
K2

1d −K2
1dn1

]∑
n1

A(1)
n1

ϕ1n1 =
e2k40zk

2
l ϕ

∗
0χe

4m2
eω

4
0εdM

[
1 +

iβdp
(ωl + iηdp)

]{
1 + χid

[
1 +

iβdp
(ωl + iηdp) δd

]
+ χd

}

×

[
ϕ0ϕ

∗
0

∑
n1

A(1)
n1

ϕ1n1 + ϕ∗
0ϕ

∗
0

∑
n2

A(2)
n2

ϕ2n2

]
Above equation, when multiplied by ϕ∗

1m1
and integrated over ‘x’, gives∫ [

K2
1d −K2

1dn1

]∑
n1

A(1)
n1

ϕ1n1ϕ
∗
1m1

dx =

∫
η1ϕ

∗
1m1

[
ϕ0ϕ

∗
0

∑
n1

A(1)
n1

ϕ1n1 + ϕ∗
0ϕ

∗
0

∑
n2

A(2)
n2

ϕ2n2

]
dx, (22)

where

η1 =
e2k40zk

2
l χed

4m2
eω

4
0εdM

[
1 +

iβdp
(ωl + iηdp)

]{
1 + χid

[
1 +

iβdp
(ωl + iηdp) δd

]
+ χd

}
Taking only one value n1 = m1, we obtain[

K2
1d −K2

1dn1
− η1

∫
ϕ0ϕ

∗
0ϕ

∗
1n1

ϕ1n1dx

]
A(1)

n1
= η1

∑
n2

A(2)
n2

∫
ϕ∗
0ϕ

∗
0ϕ2n2ϕ

∗
1n1

dx. (23)

Similarly we can write for upper sideband[
K2

2d −K2
2dn2

− η1

∫
ϕ∗
0ϕ0ϕ2n2ϕ

∗
2n2

dx

]
A(2)

n2
= η1

∑
n1

A(1)
n1

∫
ϕ0ϕ0ϕ1n1ϕ

∗
2n2

dx. (24)

Multiplying Eqs. (23) and (24) and taking n1 = n2 = n, i.e., the mode number for lower and upperside
bands to be the same, nonlinear dispersion relation for four coupled waves becomes[

K2
1d −K2

1dn − η1

∫
|ϕ0|2 |ϕ1n|2 dx

]
A(1)

n1

[
K2

2d −K2
2dn − η1

∫
|ϕ0|2 |ϕ2n|2 dx

]
A(2)

n2

= η21A
(2)
n2

A(1)
n1

∫
ϕ∗
0ϕ

∗
0ϕ2nϕ

∗
1ndx

∫
ϕ0ϕ0ϕ1nϕ

∗
2ndx

or [
K2

1d −K2
1dn − δ1

] [
K2

2d −K2
2dn − δ2

]
= µ, (25)

where δ1 = η1
∫
|ϕ0|2|ϕ1n|2dx, δ2 = η1

∫
|ϕ0|2|ϕ2n|2dx and µ = η21

∫
ϕ∗
0ϕ

∗
0ϕ2nϕ

∗
1ndx

∫
ϕ0ϕ0ϕ1nϕ

∗
2ndx.

As we know for modulational instability (MI) klz ≪ k0z, ωl ≪ ω0, we can expand K2
1d, K

2
2d using

Taylor’s series for a function of two variables as

K2
1d = K2

1d(−ω0,−k0) + ωl
∂K2

1d

∂ω1

∣∣∣∣
−ω0

+ klz
∂K2

1d

∂k1z

∣∣∣∣
−k0z

+
ω2
l

2

∂2K2
1d

∂ω2
1

∣∣∣∣
−ω0

+
k2lz
2

∂2K2
1d

∂k21z

∣∣∣∣
−k0z

, (26)

K2
2d = K2

2d(ω0, k0) + ωl
∂K2

2d

∂ω2

∣∣∣∣
ω0

+ klz
∂K2

2d

∂k2z

∣∣∣∣
k0z

+
ω2
l

2

∂2K2
2d

∂ω2
2

∣∣∣∣
ω0

+
k2lz
2

∂2K2
2d

∂k22z

∣∣∣∣
k0z

. (27)

Let ωl = ωr + iγ where ωr represents the real part of unstable mode frequency and γ its growth rate.
Now using the condition for modulational instability (MI), i.e., ωr

klz
≈ ∂ω0

∂k0z
, we obtain

ωr =
ω0

k0z

1−

[
1 +

ω2
pe

ω2
ce

(
1 +

iβdp
ωl + iηdp

)]
ω2
0

ω2
pi

[
1 +

iβdp
(ωl + iηdp)

]
mi

me
+ ω2

pi

[
1 +

iβdp
(ωl + iηdp) δd

]
+ ω2

pd

 klz (28)

and

γ =

√
µ− δ1δ2 +B1(δ1 + δ2 −B1)

A1
, (29)
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where

A1 =
2ω2

pimi

ω3
0meM

[
1 +

iβdp
(ωl + iηdp)

]
k20z,

B1 =
3ω2

rω
2
pimi

ω4
0meM

[
1 +

iβdp
(ωl + iηdp)

]
k20z +

k2lz
M

{
ω2
pimi

ω2
0me

[
1 +

iβdp
(ωl + iηdp)

]
− 1

}
.

The dispersion relation of Konar et al. [44] (cf. pages 3799 and 3800) when no dust grain is present is
recovered by putting δd = 1 and βdp = 0.

3. RESULTS AND DISCUSSION

We solve Eqs. (28) and (29) numerically to obtain real frequency (ωr) and growth rate (γ) of the unstable
mode using following parameters: ni0 = 5.0 × 1010 cm−3, nd0 = 2.0 × 104 cm−3, Te = Ti = 0.2 eV,
mi/me ≈ 7.16 × 104 (Potassium), a = 10−4 cm, ω0 = 7.0 × 109 rad/sec., k0z = 3.25 cm−1 and
klz = 0.035 cm−1. We vary δd from 1.0 to 5.0.

Figure 2 shows the variation of ωr (rad./sec.) of the unstable mode with δd(= nio/neo) for magnetic
field values Bs = 2KG and Bs = 3KG. It can be seen from Fig. 2 that ωr increases with δd and gets
saturated for higher values of δd.
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Figure 2. Dispersion curves of the unstable mode
as a function of the density ratio of negatively
charged dust grains to electrons δd(= ni0/ne0) for
different values of magnetic field Bs (in KG). The
parameters are given in the text.
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Figure 3. Growth rate γ (sec−1) of the unstable
mode as a function of δd for the same parameters
as in Fig. 2 and for different values of magnetic
field Bs (in KG).

Figure 3 depicts the variation of γ (sec.−1) as a function of δd for the pump amplitude ϕ0 = 0.023
esu. Fig. 3 shows that γ increases by a factor ∼ 1.73 (for Bs = 2KG) and by a factor ∼ 1.3 (for
Bs = 3.0KG) as δd is varied from one to four. The growth rate results thus obtained are consistent
with the experimental finding of Barkan et al. [19] where growth rate is almost doubled under similar
circumstances. Fig. 3 shows that γ increases initially with increase in δd but starts decreasing for higher
values of δd. Thus the contribution of Landau damping becomes more significant at higher values of δd
and magnetic field (Bs). In Eq. (29), µ ≈ δ1δ2, and since B1 is positive, the growth is only possible

when δ1 + δ2 > B1, and this condition is satisfied when ω2
r > ω2

piI, where I = 1 +
iβdp

(ωl+iηdp)δd
. The

growth rate is found proportional to pump amplitude as δ1 ≈ δ2 and B1 < 2δ1. Thus a lower hybrid
pump can be more modulationally unstable in the presence of dust grains to low frequency quasimode
for reasonable pump power.

Figures 4 and 5 depict the variation of ωr and growth rate (γ) with pump frequency (ω0) for
different values of δd. ωr increases by 2.28% and γ by 31% corresponding to δd = 1.0 (absence of dust
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Figure 4. Real frequency (ωr) of the unstable
mode as a function of pump frequency (ω0) for
the same parameters as in Fig. 2 and for different
values of δd.
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Figure 5. Growth rate γ (sec−1) of the unstable
mode as a function of pump frequency δd = 3.0 for
the same parameters as in Fig. 2 and for different
values of δd.

grains) while they increase by 10.8% and 33.6%, respectively, corresponding to δd = 4.0 when ω0 varies
from 6.0× 109 to 7.0× 109 rad./sec. Thus the impact of pump frequency (ω0) on ωr and γ is enhanced
in the presence of dust grains.

4. CONCLUSION

We developed a nonlocal theory of four wave parametric interaction to study the modulational instability
(MI) of lower hybrid (LH) wave in a dusty plasma slab. Both wave frequency (ωr) and growth rate (γ)
of low frequency mode increase with increase in δd and are strongly dependent on pump frequency (ω0)
and magnetic field (Bs). The ion mass also effects ωr and γ while landau damping has significant effect
at larger values of δd. The growth rate of the unstable mode is proportional to pump amplitude, and it
is observed that instability is possible only if unstable mode frequency ω2

r > ω2
piI.
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