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DOA Estimation of Partially Polarized Signals

Minjie Wu*, Tianzhen Meng, and Naichang Yuan

Abstract—In this correspondence, the two-dimensional (2-D) direction-of-arrival (DOA) estimation
problem for partially polarized (PP) signals is considered. In particular, we focus on an array
geometry containing three identical uniform linear arrays (ULAs). Compared with existing methods, the
proposed one has three main advantages. Firstly, the estimation accuracy is higher since it exploits the
polarization information. Secondly, it can work effectively under the coexistence of both noncircular and
circular signals. Finally, pair matching for 2-D DOA is not required which reduces the computational
complexity. Simulation results are presented verifying the efficacy of the algorithm.

1. INTRODUCTION

In the wake of developments in signal processing technology, it is more realistic that the impinging signals
to the array are mixed noncircular and circular ones. Considerable alternatives have been presented to
cope with this case, e.g., [1–3]. One typical method has been discussed in [2], where all the signals are
completely polarized (CP). For CP source, the end point of the electric field traces out an ellipse whose
orientation and axial ratio are constant. However, the polarization state of a partially polarized (PP)
source is a function of time. In previous literature [4, 5], the incident waves were always assumed to be
CP. As a matter of fact, the CP signal is a limiting case of a more general type of signal, that is, the
PP signal [6].

PP signals can be found in many applications such as radar and ionospheric radio. In addition, even
though the original transmitted signal is CP, the state of polarization return received by a radar can
vary during the observation time. In the last several decades, few literature regarding DOA estimation
of PP signals have been addressed. Ko analyzed the reception of PP waves from the standpoint of
coherence theory and established its attendant foundations [6]. Subsequently, Ho et al. presented a
high-resolution ESPRIT-based method [7] using the electromagnetic vector sensors. Nevertheless, the
noncircular properties were not considered. In view of this, Chen proposed a method to take care of
the mixed noncircular and circular signals [1] based on MUSIC. Although the MUSIC algorithm has
substantial performance advantages, it requires considerable costs in terms of computation and storage
for searching over parameter space. Instead, EPSRIT effectively avoids the cumbersome searching
process.

In this paper, an extended ESPRIT algorithm is proposed to estimate the DOAs of PP signals.
Compared with the existing methods, the proposed one has three main advantages. Firstly, it improves
the estimation accuracy by exploiting the polarization information. Secondly, it can still work effectively
for scenarios where noncircular and circular signals co-exist. Finally, it does not require pair matching
for 2-D DOA estimation which reduces computational burden and extensive search efforts.

The rest of this correspondence is as follows. In Section 2, we show how the extended ESPRIT
can be used to estimate the DOAs of PP sources. The Cramer-Rao Lower Bound (CRB) is derived
in Section 3. Simulation results for demonstrating the analysis are given in Section 4, followed by
concluding remarks.
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2. PROPOSED ALGORITHM

We consider a polarization sensitive array with N(N = 9) elements as shown in Fig. 1. The whole
array is composed of Ns (Ns = 3) identical subarrays. Each subarray consists of N/Ns dipoles.We
assume that each dipole in the array is a short dipole whose output voltage is proportional to the
electric field along the dipole. The first element in each subarray is treated as the reference with respect
to other elements, and the corresponding position vectors are (0, 0, 0)T , (0, dy, dz)T and (0, dy,−dz)T

respectively. In addition, the inter-element spacing between two adjacent dipole is less than the half
wavelength to avoid ambiguity problem of angle estimation.
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Figure 1. The array geometry.

Assume that there are M far-field narrow band polarization sources. Among them, there are
M1 non-circular signals and M2 circular signals. θm represents the mth signal elevation angle which
is measured down from the z axis. φm indicates the mth signal azimuth angle, and is measured
counterclockwise from the x axis. The arriving signals are assumed to be narrow-band, so the signals
received on different subarrays differ only by a phase factor. Let a1m denote the steering vector of
Subarray-1 as shown in Fig. 1, then the steering vector of the Subarray-2 and the Subarray-3 are
respectively

a2m = a1mej
2π(dy sin θm sinφm+dz cos θm)

λ (1)

a3m = a1mej
2π(dy sin θm sinφm−dz cos θm)

λ (2)

where

a1m =


u
(9)
m,1

. . .

u
(9)
m,Ns

P(9)Θ(θm, ϕm) (3)

with u
(9)
m,n = ej

2π(n−1)dx
λ

sin θm cosφm representing the spatial phase factor which relates the mth narrow-

band point source to the nth element. P(9) is the polarization sensitive matrix of the first subarray. In
addition, Θ (θm, φm) is the steering vector of the angle field and can be expressed as follows

Θ (θm, φm) =

[ − sinφm cos θm cosφm

cosφm cos θm sinφm

0 sin θm

]
= [ ehm evm ] (4)

where ehm = [− sinφm, cosφm, 0]T and evm = [cos θm cosφm, cos θm sinφm,− sin θm]T represent the
horizontal directional vector and the vertical directional vector of the mth signal, respectively.
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For arbitrary signals, the data model can be rewritten with the form

x(t) = xh(t)eh + xv(t)ev (5)

The superscript T symbolizes the transpose operator.In previous literature, the signals are normally
assumed to be CP, viz., xh(t) and xv(t) are coherent. However, for PP waves, the above two components
are uncorrelated. Similarly, we can constitute a1hm and a1vm be the corresponding steering vectors from
a1m in the same way that xh(t) and xv(t) are formed from x(t).

Combining (11) and (12), we now have

a1hm =


u
(9)
m,1

. . .

u
(9)
m,Ns

P(9)ehm (6)

and

a1vm =


u
(9)
m,1

. . .

u
(9)
m,Ns

P(9)evm (7)

Then, the output of the array can be expressed in matrix notation

x(t) =

[
x1(t)
x2(t)
x3(t)

]
=



M∑
m=1

a1msm(t)

M∑
m=1

a2msm(t)

M∑
m=1

a3msm(t)

+ n(t)

=



M∑
m=1

[
a1hmshm(t) + a1vmsvm(t)

]
M∑

m=1
ej

2π(dy sin θm sinφm+dz cos θm)

λ

[
a1hmshm(t) + a1vmsvm(t)

]
M∑

m=1
ej

2π(dy sin θm sinφm−dz cos θm)

λ

[
a1hmshm(t) + a1vmsvm(t)

]

+ n(t)

=

[
A1

A2

A3

]
s(t) + n(t) (8)

where n(t) denotes the noise vector whose component has a zero mean and a variance which equals to
σ2.

For CP signals, the data model can be written in a similar form, that is

xc(t) =

 xc
1
(t)

xc
2
(t)

xc
3
(t)

 =



M∑
m=1

a1cmsm(t)

M∑
m=1

ej
2π(dy sin θm sinφm+dz cos θm)

λ a1cmsm(t)

M∑
m=1

ej
2π(dy sin θm sinφm−dz cos θm)

λ a1cmsm(t)

+ n(t) =

A
c
1

Ac
2

Ac
3

Ac

 sc(t) + n(t) (9)

where the superscript “c” denotes the CP signal and

a1cm =


u
(1)
m,1

. . .

u
(1)
m,Ns

P(1)Θ(θm, ϕm)h (γm, ηm) (10)
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with

h (γm, ηm) =

[
cos γm

sin γmejηm

]
(11)

Here, the two parameters γm and ηm, respectively, denote the polarization auxiliary angle and the
polarization phase difference of the mth source.

Let’s refer back to Eq. (8), to better demonstrate the rotational invariance relations between
subarrays, and let

Γ1= diag
[
ejς1 , ejς1 , . . . , ejςM , ejςM

]
(12)

Γ2= diag
[
ejξ1 , ejξ1 , . . . , ejξM , ejξM

]
(13)

where

ςi = ej
2π(dy sin θi sinϕi+dz cos θi)

λ (14)

ξi = ej
2π(dy sin θi sinϕi−dz cos θi)

λ (15)

Then A2 = A1Γ1, A3 = A1Γ2. It follows from Eqs. (8), (12) and (13) that the signal direction
cosines are embodied in A1, Γ1 and Γ2. Thus, the DOAs can be estimated through the rotational
invariance relationships between subarrays.

The covariance matrix of x(t) is given by

Rxx = E
{
x(t)xH(t)

}
= ARssA

H+σ2
nIN = RH

xx (16)

where IN is an unit matrix of dimension N × N . Rss = E
{
s(t)sH(t)

}
not only denotes the signal

covariance matrix, but also represents the coherency matrix which completely characterizes the state of
wave polarization. Additionally, Rss can be decomposed into the following form

Rss =
σ2
u

2
I2 + σ2

ch (γ, η)hH (γ, η) (17)

where

σ2
c =

√
(Rss (1, 1)−Rss (2, 2))

2 + 4Rss (1, 2)Rss (2, 1) (18)

σ2
u = Rss (1, 1) +Rss (2, 2)− σ2

c (19)

It follows from Eq. (17) that a PP signal is composed of a CP signal and a randomly polarized
signal. σ2

c and σ2
u represent the power of CP part and randomly polarized part, respectively.

To proceed further, we will introduce the degree of polarization (p). It is defined as the ratio of the
power of the CP component to the total power of the incident wave. Thus, 0 ≤ p ≤ 1. p is independent
of the particular choice of the coordinate axes. When p is zero, we may say that the signal is randomly
polarized. On the other hand, if p equals unity, the wave is said to be CP. Between these two extreme
cases, we have a PP signal. And it shows neither completely regular nor completely irregular variation
in the trace of the end point.

The array manifold A of dimension N ×2M is always assumed to be full column rank. In addition,
let Us be the N × 2M matrix composed of the 2M eigenvectors corresponding to the 2M largest
eigenvalues of Rxx. Thus, there exists a unique nonsingular T with 2M × 2M dimension which relates
the Us with A, that is

Us = AT (20)

Because the subarrays shown in Fig. 1 do not overlap (i.e., share elements), we can get the signal
subspace of each subarray

Usi = Us((i− 1)Ns + 1 : iNs, :) = AiT, i = 1, 2, 3 (21)

Then, let

Us23 = Us2+Us3 = A1(Γ1 + Γ2)T = A1Γ12T (22)

Ψ = A1Γ12A
+
1 = A1Γ12(A

H
1 A1)

−1AH
1 (23)
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where “+” symbolizes the matrix left inverse and

Γ12 = Γ1 + Γ2

= diag

{
2 cos

(
2πdz cos (θ1)

λ

)
ej

2πdy sin θ1 sinφ1
λ , 2 cos

(
2πdz cos (θ1)

λ

)
ej

2πdy sin θ1 sinφ1
λ ,

. . . , 2 cos

(
2πdz cos (θM )

λ

)
ej

2πdy sin θM sinφM
λ , 2 cos

(
2πdz cos (θM )

λ

)
ej

2πdy sin θM sinφM
λ

}
(24)

From Eqs. (21), (22) and (23), the rotational invariance properties between subarrays can be
obtained, that is

ΨUs1 = ΨA1T = A1Γ12A
+
1 A1T = A1Γ12T = Us23 (25)

We can find Ψ by applying the straightforward approach least-squares (LS). However, under noisy
measurements in practical situations, the LS may not be appropriate. Instead, Ψ is often solved by
using the total-least-squares (TLS) method. Here, the specific procedure is omitted and the final results
are given directly,

Ψ = Us23U
H
s1

(
Ξ+Us1U

H
s1

)−1
(26)

where Ξ = IN/Ns
−Us1U

+
s1.

Multiplying A1 by (23),
ΨA1 = A1Γ12 (27)

Then, it is obvious that 2M largest eigenvalues of Ψ correspond to the diagonal entries of Γ12. By
calculating the magnitude and the phase of the eigenvalue, we can obtain the corresponding direction
cosines along the z axis and the y axis respectively, i.e.,

cos θm =
λ cos−1 (|pm|)

2πdz
(28)

sin θm sinφm =
λangle (pm)

2πdy
(29)

where |·| and angle (·) return the modulus (magnitude) and the phase, respectively. And pm represents
the mth eigenvalue.

In addition, the 2M primary eigenvectors of Ψ are proportional to the corresponding 2M column
vectors of A1 as long as the diagonal elements are different from each other, a condition that is satisfied
in most cases. Then, we have

sin θm cosφm =
λangle (vm(2)/vm(1))

2πdx
(30)

Combining Eqs. (29) and (30), the azimuth can be directly given.

tanφm =
dxangle (pm)

dyangle (vm(2)/vm(1))
(31)

Note that azimuth and elevation angles are derived based on the corresponding eigenvalues and
eigenvectors. Thus, pair matching is not required and the cumbersome search efforts are avoided.

3. DERIVATION OF CRB

In the spatial spectra estimation, CRB [8] is always used to measure the estimation accuracy. From
Eq. (3), we know that the unknown variables involve the elevation angle θm, the azimuth angle φm.
In addition, the carrier frequency fm which embodies in the signal, s(t), is unknown as well Thus, we
define

κ =
[
κT1 , κ

T
2 , . . . , κ

T
M

]T
(32)
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where κm = [θm, φm, fm]T . Therefore, y(t) ∼ N(µ(κ), C(κ)), i.e., a Gaussian vector with mean µ(κ)
and covariance C(κ). In [8], the Fisher information matrix is given by

Fim (κ) = 2Re

[(
∂µ (κ)

∂κ

)H

C−1 (κ)

(
∂µ (κ)

∂κ

)]
=

 Fim1,1 . . . Fim1,M
...

. . .
...

FimM,1 . . . FimM,M

 (33)

The M ×M block-matrix form with size 3× 3 can be represented as

Fimi,j =

 Fimθi,θj Fimθi,φj
Fimθi,fj

Fimφi,θj Fimφi,φj Fimφi,fj
Fimfi,θj Fimfi,φj

Fimfi,fj

 i, j = 1, 2, . . . ,M (34)

where

Fimκi,κj = 2Re

[(
∂µ (κ)

∂κi

)H

C−1 (κ)

(
∂µ (κ)

∂κj

)]
(35)

Moreover, it is worthwhile to note that Fimκj ,κi equals Fimκi,κj . Thus, Fimi,j is symmetric which
decreases the computational burden by half. For CRB is found as the (i, j)th element of the inverse of
Fim. Thus, CRB can be obtained.

4. SIMULATION RESULTS

In this section, Monte-Carlo simulation experiments are used to verify the effectiveness of the P-ESPRIT
algorithm. The array structure is shown in Fig. 1. Among which, we select N and Ns as 9 and 3
respectively. Thus, each subarray contains 3 dipoles. The root mean squared error (RMSE) is utilized
as the performance measure and 200 independent simulation experiments are carried out. The RMSE
is defined as

RMSE =

√√√√ 1

200

200∑
i=1

[(
θ̂i − θi

)2
+ (φ̂i − φi)

2

]
(36)

where
{
θ̂i, φ̂i

}
are the estimates of elevation angles and azimuth angles, respectively, at the ith run. In

addition, Li’s method [9] and Tayem’s method [10] are included for comparison.
Provided that one BPSK (noncircular) signal and one QPSK (circular) signal can be received,

the incident angles are respectively (50◦, 35◦), (70◦, 65◦). The snapshot, K, is selected as 200. The
signal-to-noise (SNR) used in the simulations is 20 dB.

Figure 2 displays the simulation results of estimating the DOA of BPSK and QPSK signals using
P-ESPRIT algorithm. Intuitively, the estimation accuracy is high and the peaks appear around (50◦,
70◦), (35◦, 65◦). It is worthwhile to note that the estimation accuracy of the BPSK single is close to
that of the QPSK signal. The reason is that the data model in Eq. (8) does not exploit the noncircular
properties. To proceed further, we can use Eq. (8) to construct the conjugate augmented output vector
by combining the observed signal vector and its complex conjugate counterpart.

xh
1(t) =

M∑
m=1

[
a1hm

e−jϖh
ma1∗hm

]
shm(t) = A1hs

h
1(t) (37)

xv
1(t) =

M∑
m=1

[
a1vm

e−jϖv
ma1∗vm

]
svm(t) = A1vs

v
1(t) (38)

where ϖh
m and ϖv

m stand for the horizontal and vertical components of the mth signal noncircular
phase, respectively. xh

2(t) and xh
3(t) can be obtained in the same way. Then, the noncircular properties

are embodied in the data model. Keep other experimental conditions unchanged, the corresponding
simulation results is shown in Fig. 3. Compared with Fig. 2, it is obvious that the accuracy of the BPSK
signal is improved by exploiting the noncircular properties.
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(a) (b)

Figure 2. Histogram of DOA Estimations (a) azimuth (b) elevation.

(a) (b)

Figure 3. Histogram of DOA Estimations using noncircularity (a) azimuth (b) elevation.

Figure 4 shows that the CRB for multiple parameters estimation of the first source (T1). Fig. 4(a)
displays the CRB versus SNRs with snapshots being 200 while Fig. 4(b) describes the relationship
between CRBs and the number of snapshots with SNR fixed at 20 dB. It is not hard to conclude that
the CRB of all parameters decline with the increase of SNR and the number of snapshots. In particular,
we use the curve of elevation as an analytical model and pick the points with snapshots being 400 and 800
respectively, we may find that the corresponding variances of CRB are −64.95 dB and −67.96 dB. This
means that the former value is nearly twice as much as the latter one. In fact, these improvements can be
predicted from the derivation of CRB. The specific derivation process can refer to the literature [8]. The
number of snapshots can be extracted from the Fisher information matrix. Moreover, the CRB is found
as the element of the inverse of that matrix. So, we can conclude that CRB is inversely proportional to
K. Thus, the estimation precision will be higher.

In addition, since all the information is embodied in the observed data and the underlying
probability distribution function (PDF) for that data, it is not surprising that the estimation accuracy
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(a) (b)

Figure 4. CRB for multiple parameters estimation of the first source (a) CRB versus snapshots with
SNR fixed at 20 dB (b) CRB versus SNRs with snapshots being 200.

depends directly on the PDF. In general, the more the PDF is influenced by the unknown parameter,
the better the estimation accuracy is. From these two figures, we find that the variance of the CRB
for carrier frequency is lower than the CRB for other parameters. These different dependences indicate
that CRB is more sensitive to changes in carrier frequency than to changes in other parameters. Thus,
we can infer that the PDF is more sensitive to the carrier frequency than other parameters.

In Section 3, we assume that there are three unknown parameters. However, in this correspondence,
the estimation accuracies of azimuth and elevation are focuses. Thus, in order to analyze the
performance of the extended ESPRIR quantitatively, we plot the CRB versus azimuth and elevation.
Then, the Fisher Information Matrix can be further simplified. Rewrite Eq. (34)

Fimi,j =

[
Fimθi,θj Fimθi,φj

Fimφi,θj Fimφi,φj

]
; i, j = 1, 2, . . . ,M (39)

The corresponding simulation results are given in Fig. 5. The SNR is 20 dB, and the number of snapshots
equals 200. We find that the estimation accuracies vary with the locations of the source. In some regions,
the estimation accuracies are seriously deteriorated. When the DOAs become larger, the estimation
accuracies get worse. The reason is that when the signal is far away from the normal direction of the
array, the actual aperture of the array is reduced along the direction of signals. As a matter of fact,
compared with Eq. (34), the simulation results using Eq. (39) are improved over the entire range. This
is a quite general result that asserts that the CRB always increases as we estimate more parameters.
The detailed analysis is presented in [8], which is beyond the scope of this paper.

Figure 6 shows the improvements of the proposed algorithm over existing ones, such as Tayem’s
C-SPRIT [10] and Li’s method [9]. We study the performance with a varying SNR from 0dB to 30 dB.
Without loss of generality, we select the first source (T1) and the second source (T2), respectively, to
verify it. As shown in Fig. 6, the proposed method outperforms the other two methods by exploiting
the polarization information of the received data. In [10], the paper claims the conjugate ESPRIT
can estimate the DOAs of BPSK signals. However, the noncircular properties are not considered and
the polarization information is not reflected in the corresponding simulation results. In addition, it
is worthwhile noting that the elevation is given directly in [10] whereas the azimuth is not. And the
accumulative errors are inevitably incurred. To remove these problems, the proposed algorithm combines
Eqs. (29) and (30), and the azimuth and elevation angles are directly given based on the eigenvalues
and the corresponding eigenvectors. Thus, the accumulative errors are effectively averted which results
in the higher estimation accuracy.
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Figure 5. CRB versus azimuth and elevation. Figure 6. Improvements of the proposed
method.

5. CONCLUSION

In this paper, a novel algorithm is proposed to deal with the PP signals. And it effectively estimates the
DOAs of mixed noncircular and circular signals. Compared with the existing methods, the proposed one
has three main advantages. Firstly, it improves the estimation accuracy by exploiting the polarization
information. Secondly, it can still work effectively for scenarios where noncircular and circular signals co-
exist. Finally, it does not require pair matching for 2-D DOA estimation which reduces computational
burden and extensive search efforts. The simulation results also verify the efficacy of the presented
method.
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