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Modelling Dispersive Behavior of Excitable Cells

Soheil Hashemi1, 2 and Ali Abdolali1, 2, *

Abstract—Most of the materials have nearly constant electromagnetic characteristics at low
frequencies. Nonetheless, biological tissues are not the same; they are highly dispersive, even at low
frequencies. Cable theory is the most famous method for analyzing nerves though a common mistake
when studying the model is to consider a constant parameter versus frequency. This issue is discussed in
the present article, and the analysis of how to model the dispersion in the cable model is proposed and
explained. The proposed dispersive model can predict the behavior of excitable cells versus stimulations
with single frequency or wide-band signals. In this article, the nondestructive external stimulation by a
coil is modeled and computed by finite difference method to survey the dispersion impact. Also, 5% to
80% difference is shown between the results of dispersive and nondispersive models in the 5 Hz to 4 kHz
investigation. The disagreement expresses the dispersion notability. The proposed dispersive method
assists in accurate device design and signal form optimization. Noise analysis is also achieved by this
model, unlike the conventional models, which is essential in the analysis of single neurons or central
nervous system, EEG and MEG records.

1. INTRODUCTION

In many studies, the behavior of excitable cells is predicted by simulation. Cable equations are proposed
to simulate the activity of nerves [1–3]. External electrical stimulation was studied only by experiments
before Roth and Basser proposed an equation that included induced electrical field (E-field). This
equation is used to predict the effects of stimulator parameters on the activities of nerve cells [4].

Optimization in pulse width and energy of stimulators is also noteworthy in this area. Since these
criteria depend on the geometry of stimulators, most researchers do not introduce the best stimulator,
but the results can be helpful in future designs [5–9]. Obtaining the thresholds of excitability, which
depends on the stimulator parameters, is common in the literature [4, 10–15]. In all of these pieces
of research, diagrams such as excitability thresholds and parameter impact are determined to help
the design of stimulators and cognition of excitable cells. Howell et al. investigated the effects of
dispersive capacitance by a simple model and the significance of dispersion though a more accurate
model was required for expressing the cell behavior [16]. Results of all the mentioned works may vary
after considering the dispersion diagram of materials according to the chosen frequency of analysis.

The interaction of electromagnetic radiation with biological tissues at cellular and molecular levels
eventuates dielectric properties. The mechanisms of the interaction are discussed in the literature.
Biological tissues are highly dispersive and vary versus frequency, even at extremely low frequencies [17].
Both conductivity and permittivity are dispersive in biological tissues. These parameters are equivalent
to resistance and capacitance, respectively, in the cable model of excitable cells. The features of the
dielectric of a biological tissue are briefly reported below.

Dispersion, in the gigahertz region, is associated with the polarization of water molecules. In the
hundreds of kilohertz region, dispersion is due to the polarization of cellular membranes. The membranes
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act as barriers to the flow of ions between the extra and intracellular media. The dispersion in the low
frequency region is due to ionic diffusion processes at the site of the cellular membrane. The membrane
admittance is measured between 100 Hz and 100 kHz, and the dielectric properties of the membrane of
neural cells differ from other biological properties [18–22].

Howell et al. investigated the effect of dispersive capacitance, but their proposed model did
not consider an anomalous inductive reactance behavior [16]. The Howell model considers only the
effect of dispersive capacitance and neglects the dispersive conductance. Our model considers both
the anomalous inductive reactance behavior and dispersive conductance in addition to dispersive
capacitance. The velocity of the movement of ions, due to the electrical field per frequency, defines
the conductance of the ionic materials. This velocity differs by the frequency of the induced E field,
and consequently, the conductance differs by frequency. This issue results in dispersion diagrams
for conductance, as mentioned before. Conductance influences both potential propagation speed and
distribution.

In Figure 1, the capacitance of motor neuron versus frequency is shown [18–22]. This figure
illustrates the concept of dispersion. Therefore, although some assumptions of the quasi-static analysis
are applied, it is necessary to consider the effect of dispersion in the analysis.

Figure 1. Resistance and capacitance diagram of a neuron fiber is retrieved and sketched versus
frequency based on the references. Variations in both characteristics are considerable [18–22].

The measured capacitance is strongly dependent upon frequency. Below 300 Hz, the capacitance
decreases markedly; on the other hand, conductance begins to increase as the frequency further
decreases. This behavior is called an anomalous inductive reactance [18, 20–24]. Above 300 Hz, the
measured capacitance decreases with the increasing frequency, and conductance increases at the same
time as most biological tissues. Measurements of tissue dielectrics at different frequencies are made and
parametric Cole-Cole models are fitted to these measurements [17, 20–25]. However, since Cole-Cole
models cannot be easily expressed in the time domain, Debye and Lorentz models are often used instead
in the simulations.

Most research has declared longitudinal external field as the effective field [26–29]. Other work has
been focused on the analysis of rotationally asymmetric potential, although this scenario is reported
to be less effective than the longitudinal electric field in experiments [30]. Below, we propose and
discuss the basis of the dispersive method. Although it is capable of considering both transverse and
longitudinal external electric fields, we only consider the longitudinal mode to explain the idea clearly.
The finite difference method is chosen in this work due to the demands. Nondispersive and dispersive
models are compared, and the results are shown and studied in the results and discussion sections.

2. METHOD AND ANALYSIS

Although modeling the effects of electric (E) field on the nerve fibers has been discussed since 1990,
dispersion has not been considered in the literature. Consider the modified Hodgkin-Huxley model
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Figure 2. Circuit model of modified cable model by McIntyre including myelinated and Ranvier
sections. Length of myelinated segments is 1.5 mm. The nodal membrane dynamics include fast (GNa)
and persistent (Gna-pers) sodium, slow potassium (GK) and linear leakage (GL) conductance in parallel
with the nodal capacitance (Cm) [31, 32].

by McIntyre in Figure 2 [31, 32]. The capacitance and resistance are the dispersive parameters. This
model is expressed by Equations (1) and (2). Equation (1) describes Ranvier nodes, and Equation (2)
describes myelin nodes.

r0/2ρ
∂2Vm

∂x2
− C

∂Vm

∂t
−

∑
g(Vm)k(Vm − VI−ch.k) = 0 (1)

r0/2ρmyelin

∂2Vm

∂x2
− Cmyelin

∂Vm

∂t
= 0 (2)

where Vm is the membrane potential at each node, Vi−chk the kth source voltage for each of the kth ion
channel, gk the voltage-dependent conductivity due to the kth ion channels, r0 the radius of the nerve
fiber, and ρ the intracellular resistance per unit. These equations are valid for each node of the fibers
and the parameters may be different at each node.

Two terms of 1/ρ∂2Vm

∂x2 and C ∂Vm
∂t in Equations (1) and (2) demonstrate the effect of capacitance

and resistance, respectively. These parameters are equivalent to the permittivity and conductivity of
the tissues. The diagrams in Figure 1 show highly variable capacitance and resistance versus frequency;
thus, a constant value is inaccurate. Magnitude of C is important in C∂Vm/∂t to specify how the
membrane potential changes. Besides, consider the transformation of a single action potential signal
into frequency domain by Fourier transform. By eliminating the constant component of a single action
potential and transform, the Fourier transform of the signal is shown in Figure 3. Considering the
spectrum in Figure 3 and voluntary excitation signal at any frequency, the constant C may not be
appropriate for both action potential and excitation signal.

First, we discuss how to model the dispersion diagram; then, we propose how to use it in the
cable equation. Debye and Lorentz models are the most famous models used to show dispersion versus
frequency. The Debye dispersion is characterized as a function of frequency by the following expression
for relative permittivity [17]:

ε(ω) = ε∞ +
N∑
i

ε0Δεri

1 + jωτpi

(3)

where τpi is the relaxation time of the ith Debye pole, Δεri the corresponding relative permittivity
increment, ε the complex permittivity, and ω the angular frequency. Each ε0Δεri/(1 + jωτpi) is valid
for a limited frequency band and the sum of these terms results the total dispersion diagram. The
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Fourier transform of an action potential signal

Figure 3. Fourier transform of a single action potential signal. The constant component of the signal
is eliminated before transform. The characteristics of the fiber are mentioned in Table 2.

defining expression for the Lorentz dispersion is [33]:

ε(ω) = ε∞ +
N∑
i

jωε0εai

1 + jωτai − ω2/ω2
ai

(4)

where ωai is the undamped resonant frequency of the ith Lorentz pole-pair, τai the corresponding
damping factor, N the required number of terms, ε0 the permittivity of free space, and εai the
corresponding relative permittivity increment. Each denominator has two complex roots. Different
materials may have different dispersion relations and can be fitted by the models in Equations (3) and
(4).

The dispersion relations show the electromagnetic properties of materials according to the properties
at the past time and present potential. The ionic conductance is time- and potential-dependent. These
relations are derived from measurements in a variety of situations in time and show the conductance at
the present time. Dispersion and nonlinearity are already considered in the ionic conductance relations
in the Hodgkin-Huxley equation to simulate the action potential accurately, and it is valid for the
frequencies below 5kHz. Therefore, we discuss dispersive conductance and capacitance.

To discuss dispersion in cable theory, we propose the dispersive model of Equation (1) below since it
is general, and the dispersive model of Equation (2) can be written accordingly by eliminating the ionic
conductance. To express dispersive Hodgkin equation for the nodes of Ranvier, we rewrite Equation (1)
in a general form as Equation (5). The capacitance dispersion of neuronal membrane as Figure 1 can
be fitted by the combination of Debye and Lorentz models. The conductance dispersion of intra and
extracellular media and passive membrane can be fitted by Lorentz model.

r0/2
∂Jm

∂x
− ∂Dm

∂t
−

∑
g(Vm)k(Vm − VI−ch.k) = 0 (5)

Ĵm and D̂m are dispersive as Lorentz and Debye models for membrane characteristics. In the first order
implementation, Equations (6) and (7) show how Ĵm and D̂m are proportional to V̂m in the frequency
domain.

D̂m = C(ω)V̂m =
(

C∞ +
ΔC

1 + jωτp
+

jωΔCa

1 + jωτa − ω2/ω2
a

)
V̂m = C∞V̂m + D̂m1 + D̂ma (6)

Ĵm = σm(ω)
∂V̂m

∂x
=

(
1

ρ∞
+

jωΔσm

1 + jω2δ − ω2/ω2
0

)
∂V̂m

∂x
=

1
ρ∞

∂V̂m

∂x
+ Ĵm1 (7)

σm and C(ω) are the total dispersive conductivity and capacity functions which are expanded in relative
terms in (6) and (7). These equations are in the frequency domain. However, we need to analyze
the model in time domain to study the effects of excitation. By inserting Equations (6) and (7) in
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Equation (4) and rewriting it in the time domain, Equation (8) is obtained.

r0/2ρ∞
∂2Vm

∂x2
+ r0/2

∂Jm1

∂x
− ∂Dm1

∂t
− ∂Dma

∂t
− C∞

∂Vm

∂t
−

∑
g(Vm)k(Vm − VI−ch.k) = 0 (8)

where Jm1, Dma and Dm1 are derived by Equations (9) and (10).

Dm1 + τp
∂Dm1

∂t
= ΔCVm (9)

Dma + τa
∂Dma

∂t
+

1
ω2

a

∂2Dma

∂t2
= ΔCa

∂Vm

∂t
(10)

Jm1 + 2δ
∂Jm1

∂t
+

1
ω2

0

∂2Jm1

∂t2
= Δσm

∂2Vm

∂t∂x
(11)

These three differential equations must be solved at each time step. Jm1,Dma and Dm1 of the last time
step are used in Equation (8) to find Vm. Then, Jm1, Dma and Dm1 are obtained for the next time step
using the obtained Vm.

τp, δ, ΔC, ω0, ωa, C∞, ρ∞ and Δσm are constant values and specify the dispersion diagram. The
accurate values are calculated by measuring. We find the parameters by fitting the relations to the
measured diagrams in this article.

The achieved results for motor neuron in the thoracic region of the spinal cord are illustrated in the
next section. To study the proposed method, a coil as in Figures 4 is considered as the stimulator, and
results of the simulations by both dispersive and nondispersive models are compared. As presented in
Roth and Basser’s method, the induced electrical field (E field) by the coil is entered into the equation
in the nondispersive model as follows [10]:

r0/2ρ
∂2Vm

∂x2
− r0/2ρ

∂Ex

∂x
− C

∂Vm

∂t
−

∑
g(Vm)k(Vm − VI−ch.k) = 0 (12)

where EX is a longitudinal component of E field. According to the above discussion, Equation (12) is
rewritten in the dispersive model as Equation (13) to study the effect of dispersion on the nerve fiber
excitability by the external stimulation.

r0/2ρ∞
∂2Vm

∂x2
+ r0/2

∂Jm1

∂x
− r0/2ρ∞

∂Ex

∂x
− r0/2

∂JE

∂x
− ∂Dm1

∂t
− ∂Dma

∂t

−C∞
∂Vm

∂t
−

∑
g(Vm)k(Vm − VI−ch.k) = 0 (13)

Coil

rcoil
x

Coil

Figure 4. The Gustav human voxel is shown. Dispersive electromagnetic properties are considered
for all the tissues [17] and the surrounding media is air. The coil is located on the thoracic region of a
human voxel (outside the body). Distance of the coil and motor neuron is 50 mm.
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where Jm1, Dma and Dm1 are derived by Equations (9), (10) and (11), respectively, and JE is derived
by Equation (14).

JE + 2δ
∂JE

∂t
+

1
ω2

0

∂2JE

∂t2
= Δσm

∂Ex

∂t
(14)

Equations (9), (10), (11), (13) and (14) should be solved simultaneously. These equations are solved by
the backward method for partial differential equations (PDE) as Equations (15), (16), (17), (18) and
(19).

r0/2ρ∞

(
V n+1

m(i−1) − 2V n+1
m(i) − V n+1

m(i+1)

)
Δx2

+

(
Jn+1
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m1(i−1)

)
2Δx

− r0/2ρ∞

(
En
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)
2Δx

−r0/2

(
Jn+1
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)
2Δx
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Dn+1
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(i)

Δt
− C∞

V n+1
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k

= 0 (15)
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1
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0
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E(i)

Δt
+

1
ω2

0

Jn+1
E(i) − 2Jn

E(i) + Jn−1
E(i)

Δt2
= Δσm

En+1
x(i) − En

x(i)

Δt
(19)

where Δx is the length of the segments.
A motor neuron from thoracic region (T9–T12) of the spinal cord is selected for investigation of

the frequency dispersion impact on neuronal behavior. The motor neuron is responsible for contraction
of abdominal muscles. An electromagnetic circular coil is chosen to stimulate the fiber, and the coil
is located and analyzed on Gustav human voxel in CST software. The coil parameters are shown in
Table 1. CST software is used to extract the incident E fields computationally. It is located in the
vicinity of the spinal cord, and parameter i is the current source. The coil is considered with alternating
current source, and a variety of frequencies and the generated E field are computed. The distance of
the coil and axon fiber is 50 mm. The geometry of the coil in the vicinity of the body is illustrated in
Figure 4. Dispersive and isotropic properties are used in the simulations for all tissues based on Eleiwa’s
work [17].

To determine the mammalian neural cell characteristics, dispersive relation in Equations (6) and
(7) are fitted to the measured capacitance and conductance diagram versus frequency. Properties of
the fibers are demonstrated in Table 2, and the fitted parameters are written in Table 3. The axon is
discrete in two types of segments: myelinated and nonmyelinated. Length of the node of Ranvier is
assumed 1µm, and length of myelinated sections is 1.5 mm [34]. The conductivity coefficients of the ion

Table 1. Parameters of the coil in Figure 4.

Parameter Description Unit Value
i Current kA 3.5
rc Internal radius of coil cm 2.5
N Number of wire turns - 1000
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channels for the nodes of Ranvier, which are discussed above, are as follows [31, 32].

gn
VmNa−fast = gNa−fastm

3h, gn
VmK = gKn, gn

VmL = gL, gn
VmNa−persistant = gNa−persistantp

3 (20)
∂m

∂t
= αm(1 − m) − βm,

∂n

∂t
= αn(1 − n) − βn,

∂h

∂t
= αh(1 − h) − βh,

∂p

∂t
= αh(1 − h) − βp (21)

αm =
−6.57(V + 10.4)
exp(−10.4−V

10.3 )−1

βm =
0.304(V +15.7)
exp(15.7+V

9.16 )−1

,

αh =
0.34(V + 104)
exp(104+V

11 )−1

βh =
12.6

exp(−21.8−V
13.4 )+1

,

αn =
0.3

exp(−43−V
5 )+1

βn =
0.03

exp(−80−V )+1

,

αp =
−0.0353(V +17)
exp

(−17−V
10.2

)−1

βp =
0.000883(V +24)
exp

(
24+V

10

) − 1

(22)

Considering the mentioned parameters, respective code is written in Matlab software to simulate the
activity of the 30 cm axon fiber by the dispersive model. The length of the axon is divided into 500
segments, and the time step is assumed 0.0001 ms for the finite different solution.

Table 2. Parameters of the nondispersive axon fiber [31, 32].

Parameter Description Unit Value
ro Radius of axon µm 10

VNa Sodium Nernst potential mV 50
Vk Potassium Nernst potential mV −90
VL Leakage Nernst potential mV −90

Vrest Rest potential mV −78.5
ρ0 Intracellular resistance per unit Ohm.cm 70

Cmembrane Membrane’s capacitance per unit area µF/cm2 2
Cmyelin Myelin capacitance µF/cm2 0.1
gNa−fast Maximum fast Na conductance S/cm2 3

gK Maximum slow K conductance S/cm2 0.08
gNa−persis tan t Maximum persistent Na conductance S/cm2 0.01

gL Nodal leakage conductance S/cm2 0.007
gMyelin Myelin conductance S/cm2 0.001

gMembrane Membrane conductance S/cm2 0.0001

Results are compared and shown in the next section.

3. APPLICATION AND ANALYSIS/DISCUSSION

In this section, many examples are shown to illustrate when the results differ due to dispersion effect.
Predicting threshold of the excitability of a neuron and noise analysis of a neuron record are discussed
in the following to show the difference. The insufficient accuracy of the conventional models shows the
necessity of considering dispersion. Different cases are discussed below.

To show the validity of the dispersive model for action potential propagation, a propagation of an
action potential (AP), excited by voltage clamp, is considered for both dispersive and nondispersive
models and compared in Figure 5. Since the nondispersive model predicts the action potential of cells
similar to the experiments, it can validate our dispersive model around the frequency bandwidth of
the action potential. More investigation should be achieved by stimulation with higher frequency by
experiment in the lab. Figure 5 illustrates similar results for the propagation of an AP as expected, but
a slight difference is observed in the rising and falling. The gradient is high at these points, and high
gradient is similar to high frequency behavior. The effective capacitance is less at the higher frequencies
of the dispersive model. Thus, the high gradient variations are expected to be quicker in the dispersive
mode; this matter results in a slightly sharper AP signal as shown in Figure 5.
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Table 3. Retrieved dispersive parameters of the axon fiber from dispersion diagrams in the literature.

Parameter Description Unit Value
ρ∞ Intracellular high resistance per unit Ω · cm 0.1929

C∞membrane Membrane high capacitance µF/cm2 0.3
C∞myelin Myelin high capacitance µF/cm2 0.0119

τp Capacitance dispersive constant s 50.2
τa Capacitance dispersive constant s 0.0014

ΔCmembrane Capacitance dispersive constant µF/cm2 113.66
ΔCmyelin Capacitance dispersive constant µF/cm2 5.183

ΔCa-membrane Capacitance dispersive constant µF/cm2 0.0023
δ Conductance dispersive constant s 0.0387

Δσm Conductance dispersive constant S/cm 1.2855
ω0 Conductance dispersive constant 1/s 3756.3
ωa Conductance dispersive constant 1/s 9427

Voltage clammp Read pooint

Figure 5. A motor axon fiber with 10 µm radius is selected. Dispersive and nondispersive model with
characteristics in Tables 2 and 3 are considered. Comparison of action potential at one node of Ranvier
by dispersive and nondispersive models is shown. Simulations show a proper similarity; as expected,
the action potential is triggered by voltage clamp.

After full wave simulation of the mentioned structure, the generated E fields by the coil are shown
at 1 kHz in Figure 6(a). The longitudinal component of the E field in a neuron fiber in the spinal cord
is calculated and shown versus the length of the axon at 1 kHz in Figure 6(b).

Considering the mentioned E field in Figure 6, the behavior of the motor neuron fiber versus time
and length of the fiber is illustrated in Figure 7. It causes maximum 1100 v/m E field in the vicinity of
the axon, which is imported in Equations (13) and (14) as Ex. The simulation shows that the action
potential is triggered by the mentioned electric field and propagated in the cell fiber. In the excitation
form, we have both inhibitory and excitatory behaviors since the neuron is excited at threshold level in
this figure and is due to the spatial E-field form. The excitation and inhibition regions change over time.
Therefore, AP propagates in the direction that is located on the excitatory behavior at the starting
time, and the other direction is inhibited by lower membrane potential according to the inhibitory E-
field form. If the neuron is excited by higher magnitude of E field, AP is excited and propagates on
both sides.
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Figure 6. The electric field radiated by the coil, mentioned in Table 1 and shown in Figure 4. (a) Three
dimensional view of electric fields inside and outside the body is shown. The maximum electric field
is 12 kV/m outside the body, but the maximum value of the electric field inside the body is 1.2 kV/m.
(b) The longitudinal component of the electric field in the mentioned fiber is plotted versus the length
of the motor neuron fiber.

Afterwards, the generated E-field form by the coil is extracted at different frequencies and inserted
in Equations (13) and (14) as an external electric field (Ex) to find the electrical threshold of excitability.
Thresholds are determined by finding the minimum value of longitudinal electrical field on the axon fiber
that excites the action potential. The current source of the coil is in i∗sin(ωt) format, and consequently,
the E fields are in the form of Ps ∗ A(x) ∗ cos(ωt). A(x) is the normalized function of axon length in
Figure 6(b), and the threshold values refer to the maximum value of E field (Ps). The periods of the
simulations are set to 10 stimulation cycle while the frequency of stimulation is lower than 50 Hz; for
the frequencies more than 50 Hz, the period is set to 200 ms. These periods assure us to consider the
whole transient time of neuronal activity and stationary time in the effect of the induced electric fields.

The following study is performed to show the difference between the conventional and dispersive
models. In Figure 8, the required longitudinal E field to excite the cell is depicted versus the frequency
of stimulation. Rate of stimulation influences the results due to the impact of the effective duration of
stimulation in membrane excitability. Impact of stimulation rate is the opposite of the dispersion effect
of the membrane. However, the results indicate that the impact of the stimulation rate is dominant
to the dispersion effect. The figure shows that the predictions of the dispersive and conventional
methods differ at low and high frequencies, which shows the necessity of using dispersive model over
the conventional one. According to the nonlinear behavior of membrane, the exact analysis is hard,
and differences in the results of both models are due to the combination of both anomalous inductive
reactance and higher frequency impact. If the anomalous inductive reactance is neglected, the differences
between the diagrams are less at the frequencies lower than 1 kHz. Slope of the changes in the diagrams
by nondispersive model in Figure 8 increases by the increase in frequency although it differs in the
dispersive model. At less frequencies, the threshold increases with frequency due to both an increase
in the effective capacitance of the membrane and a decrease in the effective duration of excitation, but
the slope of the diagram decreases, and the threshold increases slowly by increasing the frequency due
to the decreasing value of the effective capacitance.
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(a)

(b)

Figure 7. (a) Excitation of membrane voltages versus position in the axon fiber and time by 1 kHz
and 1100 V/m sinusoidal stimulation. The duration of the simulation is 20 ms and action potential
propagation is shown by the white path. (b) Membrane voltages versus the position in the fiber in 3
discrete times after the start of the stimulation.

Figure 8. Sinusoidal signal form for current of stimulator coil in Figure 4 is selected. The form of
incident electric field, according to stimulation signal is shown. Comparison of the predicted required
longitudinal E field for excitation by conventional and dispersive models in two fibers with different
radii of 10 µm and 15 µm are shown. The characteristics are mentioned in Tables 2 and 3.

Figure 8 is useful for investigating the effect of devices which produce permanent fields such as high
voltage transformers. However, most excitation devices use pulses as the signal of excitation. Therefore,
we discuss two pulse excitation signals below. Most works in the literature focus on the time form of
excitation signal as the injection current or voltage clamp, and the investigation of nondestructive
excitation is neglected. There is a difference between the effects of injected current and source current
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(a)

(b)

Figure 9. Two signal forms for current in stimulator coil in Figure 4 are selected. The forms of
incident electrical fields according to stimulation signals are shown. Comparison of the predicted
required longitudinal E field for exciting neurons is shown by conventional and dispersive models. Two
motor neuron fibers are selected. Radii of neurons are 10 µm and 15 µm and the characteristics are
mentioned in Tables 2 and 3.

of a coil or other radiators. The derivative of the current signal of the coil in time results in the time
form of the radiated E field. Therefore, the shape of the effective excitation signal differs from the
source signal in time. Only the impact of signal form in direct injection or potential based excitation
is discussed in the literature. Here, we consider this point by investigating two pulses as the source of
the mentioned coil. Responses of the nerve fiber to two different current signals as the source current
of the coil versus the variety of pulse widths are illustrated in Figure 9. The estimated required E
field for excitation is shown by both dispersive and nondispersive models. Pulses are narrow in time;
the Fourier transforms of the signal are wide in the frequency domain; the peaks of the diagram are
mostly at higher frequencies, which requires dispersive analysis. Therefore, the estimated thresholds by
conventional models differ noticeably from that by dispersive model.

The difference between predicted thresholds in Figure 9 illustrates the use of dispersive modeling
in the pulse analysis. Figure 9 shows that the required E field is increased by increasing excitation
frequency. On the other hand, most radiators generate higher magnitude of E fields by increasing
frequency or shortening the source pulse width. Thus, researchers consider the capabilities of radiators
and, using Figures 8 and 9, can find the best frequency and pulse width for their experiments.

Another advantage of using dispersive modeling is the ability of considering the noise in the
analysis. The noise signal includes a wide frequency spectrum, and the conventional models filter
the high frequency changes. However, dispersive modeling can determine the effect of noise in the
responses of neural fibers, which is depicted in Figure 10. The current is injected into the fiber, and the
membrane potential is plotted by both conventional and dispersive modelings. Injected current signal



84 Hashemi and Abdolali

Injected current 

(a) (b)

Figure 10. Membrane potential changes after the injection of noisy current into the fiber by dispersive
and nondispersive models. Required characteristics of the models are mentioned in Tables 2 and 3.
(a) 400 Hz noisy stimulation, (b) 40 Hz noisy stimulation. Noisy injected current and consequently
membrane potential variation are shown.

is the sum of a sine function of time and noise function. The corresponding membrane response is also
shown. Noise effect is not demonstrated in the conventional model sufficiently while it is obvious in
dispersive modeling. Neuronal noise explains random influences on the transmembrane voltage of single
or a group of neurons. This noise can influence the transmission and integration of signals from other
neurons as well as firing the activity of neural networks.

The main measure of the action of noise is seen in neuronal firing variability. Noise effects are
investigated on different spatial and temporal scales in single neurons, from the molecular level all
the way up to firing activity on the scale of the whole brain as seen in EEG or MEG recordings and
behavioral outputs. Given the number of nonlinear processes in the nervous system and the effects
that noise can have on nonlinear systems, it is not surprising that stochastic neuronal dynamic is a
particularly active area of research, which shows the significance of using dispersive model in direct and
reverse analyses of neurons over the conventional models.

Generally, the generated signals from many therapeutic devices are at the frequency of higher than
1 kHz or have more than 2 kHz bandwidths at low frequencies. Designing stimulator or therapeutic
devices requires authentic determination of the behavior of excitable cell under radiation. More accurate
simulation means more effective treatment. We proposed how to extend the Hodgkin-Huxley model to
consider dispersion. The difference shows the necessity of considering dispersion. Constant conductance
may be approximately authentic for AP propagation, but by inserting an external electrical field with any
frequency, the potential distribution will be different for different frequencies. The potential distribution
specifies the region of excitation, which can change the output. Our model considers both the anomalous
inductive reactance behavior and dispersive conductance in addition to dispersive capacitance unlike
previous model. Neglecting the anomalous inductive reactance behavior means uncertain results under
200 Hz and 30% error.
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4. CONCLUSION

Nondestructive methods are being presented every day. Biological tissues are complex, and accurate
modeling is required to analyze and design new devices. One of the complexities in electrical analysis
is the dispersion of biological tissues. In this paper, a dispersive cable model of excitable cells is
proposed to consider the dispersivity of the tissues. Lorentz and Debye model is used to model the
dispersivity. Axon of the motor neuron is stimulated by induced electric field to study the proposed
model. The estimated required E field is incremented by increasing the frequency in both dispersive and
nondispersive models, although the magnitude and behavior of the threshold E field differ significantly
versus frequency. Changes in both effective resistance and capacitance influence the membrane reaction
to the excitation. Therefore, according to excitation, the signal frequency spectrum results may differ
even more than 100% at the frequencies of higher than 3 kHz. This model results in considering various
external fields and excitation as pulse or continuous forms. Signal form optimization and analysis are
possible based on the model. Since many of the stimulator devices work at various frequencies and
record devices cover wide band signals from neuronal activities, the proposed dispersive method can
assist in accurate device design. Noise analysis is achievable by this model, unlike conventional models.
Researchers are able to investigate noise effects on different spatial and temporal scales in single neurons
or central nervous system, EEG and MEG records.
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