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A Novel Non-Coherent Micro-Doppler Imaging Method Using
Hybrid Optimization
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Abstract—Conventional radar imaging methods use coherent analysis which highlights the necessity
of signal phase measurement setups and complex inverse algorithms. To mitigate these drawbacks, this
paper proposes a novel phase-less imaging algorithm. A nonlinear over-determined system of equations
based on signal Doppler shift is developed, and a new error function originated from least square method
is introduced. To obtain the exact position of targets, hybrid optimization is applied to the achieved
error function. Simulation results demonstrate that the proposed method is well capable of detecting the
targets containing strong point scatterers, even with the distance of 1 cm. Also, the resolution of imaging
algorithm for point scatterer circumstances is obtained in the order of millimeter. Concurrent with the
priory imaging algorithms with the same imaging setups using proposed method reduces complexity
and increases imaging swiftness.

1. INTRODUCTION

Doppler shift phenomenon is used as a foundation for different imaging methods. It is mostly used to
determine the speed of moving targets such as wind speed [1]. However, it is the basis of SAR (synthetic
aperture radar) and ISAR (inverse synthetic aperture radar) imaging using phase variation obtained
from coherent devices [2]. With the advent of imaging, there has been a focus in the literature on the
advantages of this method and its supplementary method to make imaging methods capable of imaging
moving targets. Also, there is a group of studies on different geometries of radar movement in the
literature, which present imaging with circular SAR and ISAR [3, 4]. In this paper, a novel algorithm
is proposed which can work along with the existing methods to improve imaging processes. Moreover,
there are different complicated methods for solving inverse problems, namely inverse scattering [18–21],
MUSIC [5], time reversal [19, 22], etc. The main disadvantages of the mentioned imaging methods are
complexity, cost, and computational time; however, they are capable of reconstructing high-resolution.
Since the inverse scattering methods reconstruct high-resolution images, they are suitable for medical
imaging [19]. In this paper, novel method using non-coherent analysis is proposed which is capable
of fast reconstruction of accurate images using new error function. One of the studies on imaging
thin PECs using MUSIC algorithms was presented in [5]. In this paper, we present a new method for
imaging stationary objects using Doppler phenomenon which uses time-dependent Doppler shift and
phase less analysis. The proposed method uses moving transmitter and receiver and the relative speed
between the object and radar in different positions to find the objects location. One of the advantages
of the current method over others is its simplicity and computational time. Even without applying
optimization to the mentioned method, the proposed error function is capable of constructing realtime
images, as presented in the results. Also, the method can be used as an additional method along
with other methods to gain higher resolution and reduce calculation time with the same setups. One
well-cited assertion in the literature is the effect of moving target on imaging and abolishing image

Received 22 February 2017, Accepted 9 April 2017, Scheduled 19 April 2017
* Corresponding author: Ali Abdolali (abdolal@iust.ac.ir).
The authors are with the Department of Electrical Engineering, Iran University of Science and Technology, Narmak, Tehran, Iran.



54 Safari and Abdolali

blurring due to target maneuvering by time-frequency analysis [6–11]. However, little attention has
been paid to the advantages of using moving radars and micro-Doppler for the imaging or location of
static objects. The issues of using Doppler phenomenon for imaging in ultrasound and its resolution
improvement have been addressed by several authors [12]. However, the current method can work aside
with these methods in ultrasound domain to gain more accuracy than operating in the microwave which
is suitable for under-water sonar systems. The reason of achieving higher accuracy in the ultrasound
wave is the difference between sound and light speeds. Since lower speed causes higher frequency shift
in this method, the accuracy of imaging in ultrasound domain is higher which we will discuss later in
this study. Nevertheless, an unresolved issue is imaging by non-coherent devices and analysis based on
the known radar movement path. Some disadvantages of the former methods have been the costs of
receiving, analyzer devices, resolution of phase estimation, and estimation error of Doppler frequency
shift. Also, it is worth mentioning that the current method is capable of detecting the angular position
of scatterers without any optimization by locating the points with zero Doppler shift. The purpose
of the current study is to present a new and simple method with less time and financial costs using
Doppler shift for imaging the stationary objects containing scattering points in general based on the
known radar movement path. We choose circular radar movement and 2-dimensional (2D) imaging for
representation and validation; however, other geometries, namely multipath geometries, would be more
accurate.

2. METHOD

The current method relies on the relative speed between radar and the object in different positions. In
this section, we choose the geometry to validate the method. However, the current method is applicable
to different geometries based on the movement of radar, namely linear, circular, etc. Symmetry and
simplicity are the reasons for the chosen geometry; other geometries probably would give us more precise
results. Fig. 1 illustrates the circular geometry of radar movement. The origin of Cartesian coordinates
is located on the center of radar orbit. Scattering wave equation from point scatterer with distance

Figure 1. Imaging geometry.
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vector R(t) related to point source radar is as follows [13]:

s(t) = ρ
e−ik.R(t)

|R(t)| (1)

Since the rotational movement of radar is time-dependent and can be presented as |R(t)| =
(rj

2 + a2 − 2rja cos(ωt − ϕj))
1/2, and also the phase of the signal is:

θ = −2πf

c
2R(t), (2)

the Doppler shift due to the radar movement in circular geometry with the presence of scatterers in the
radar orbit plane is:

Δfi =
1
2π

dθ

dt
=

2aωf

c

rj sin (ωti − ϕj)√
(rj

2 + a2 − 2rja cos (ωti − ϕj)
(3)

Here, Δfi is the frequency shift in the ith sampling position, a the radius of radar orbit, C the speed
of light in medium, f carrier frequency, ω the angular speed of radar, ti the time at which we sample
frequency shift, and (r, ϕ) the scatterer position in cylindrical coordinates. It is clear from Equation (3)
that when radar and scatterer are in the same angular position, the resulting Doppler shift would be
zero. The mentioned fact can help us to find the exact angular positions of the scatterers, by locating
the radar sampling positions with zero frequency shift. If we sample frequency shift in N different
positions, we will have N equations with 2 unknowns, which is an over-determined system of equation.
A common solution for over-determined systems is the least square method which is used to find the
values which minimize error [14]. Sum of squared error for the frequency shift system of the resulting
equation is as follows:

n∑
i=0

(
Δfi − 2aωf

c

rj sin (ωti − ϕj)√
(rj

2 + a2 − 2rja cos (ωti − ϕj)

)2

(4)

in which n is the number of sampling positions. To find (r, ϕ) values which minimize the error, we use GA
(genetic algorithms) [15]. Also, it is worth noting that the aforementioned error function is just suitable
for single point scatterer scenario. It is clear from the equations that in the multi-point object, each
point results in separate (different) time-dependent frequency shift signals, and we use optimization on
these signals separately to find each point. To validate the imaging method, we use computer simulation
using wave equation and STFT (short time frequency transform) to gain time-dependent frequency shift
in the radar receiver due to several strong scattering points [16]. In this formula, ρij is the reflectivity
function of point scatterer, k the wave number, and R(t) the displacement vector between radar and
point scatterer. As mentioned earlier and considering the effect of multi-point scatterer, the return
signal becomes:

s(t) =
Nr∑

m=1

Nϕ∑
n=1

ρmn e
i2πf

c
2(rm

2+a2−2rma cos(ωt−ϕn))1/2

2(rm
2 + a2 − 2rma cos (ωt − ϕn))1/2

(5)

To gain the time-varying spectrum of the receiving signal, we should use time-frequency transform.
STFT is one of the simplest time-frequency transforms defined as [9]:

STFT (t, ω) =
∫ +∞

−∞
s (τ)w (τ − t) e−iΩτdτ (6)

Here, w(τ − t) is the window of STFT transform; in other words, it is the width of time samples for
STFT. To gain information about the reflectivity function of point scatterer and strength of scatterer,
we use the square modulus of STFT which is called spectrogram and defined as follows [17]:

spectrogram(t, ω) = |STFT (t, ω)|2 (7)
So, the spectrogram of the returned baseband signal becomes:

spectrogram(t, ω) =
∫ +∞
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We can also replace sigma and integral:

spectrogram(t, ω) =
Nr∑

m=1

Nϕ∑
n=1
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−∞
ρmn
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1
2

2(rm
2 + a2 − 2rma cos(ωt − ϕn))

1
2

w(τ − t)e−iΩτ (9)

In this formula, ρmn is the element of Nr×Nϕ reflectivity matrix ρ, and our aim is to image this matrix.

3. RESULTS

To attain the position of the objects, we use the time-varying spectrum obtained from STFT of receiving
signal, replace time and frequency at the sampling points in the Doppler frequency shift error function,
and use GA to find the (r, ϕ) values which minimize the error function of least square method. The
imaging occurs in 2 different circumstances: point scatterer and multi-point scatterer.

3.1. Point Scatterer

This circumstance takes place when the radar is far enough from the object, which makes point
scatterer’s assumption feasible. In other words, the time-varying spectrum of receiving signal contains
only one non-negligible component. To validate the imaging method in the point scatterer context, we
set the previously-mentioned geometry properties by setting the radars orbiting around the circle with
the radius of 2m and angular speed of 12.57 rad/sec and point scatterer located in (x, y) = (20 cm, 20 cm)
or (r, ϕ) = (28.28 cm, 0.7854 rad) position with the carrier frequency of 6 GHz. Fig. 2(a) demonstrates
the spectrogram of the receiving signal due to the referred setup. We use maximum power spectrum to
gain least square method’s residual function and find (r, ϕ) which minimizes it. Fig. 2(b) demonstrates
the logarithm of inverse residual function which is a suitable demonstration for scatterer’s position and
imaging.

(a) (b)

Figure 2. Point scatterer imaging. (a) Returned signal spectrum. (b) Inverse square error function.

As illustrated in Fig. 2(a), Doppler shift frequency is in 0–200 Hz range which is in the micro-
Doppler range. Also, it is worth mentioning that according to the speed of sound in media such as
water, ultrasound Doppler shift range will be increased and make this method more accurate. Due to
least square method, (r, ϕ) which minimizes residual function is obtained as follows.

According to Table 1, imaging error is in mm which is one of the advantages of this method
along with its simplicity. Also, it is worth noting that according to Doppler frequency shift’s nonlinear
equation, error is nonlinear and depends on the target position.
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Table 1. Point scatterer and image position.

Point scatterers’ position Image position
(x, y) = (0.20m, 0.20m) (x, y) = (0.199m, 0.199m)

3.2. Multi-Point Scatterer

Multi-point scatterers refer to the scatterers which have several points with high scattering, such as
sharp edges. In other words, when the spectrum of a receiving signal contains more than one significant
component, it can be reckoned as a multi-point scatterer. The recent method is applicable to the objects
with strong point scatterers, such as a group of thin PECs or imaging of dielectrics with high contrasts.
To achieve the positions of scatterers in the multi-point scenario, we introduce a new residual function
based on least square method and point scatterer residual function. Multi-point residual function is
represented as follows:

image(r, θ) =
∑

f

∑
t

log
(

1
error2

)
(10)

error = Δfi − 2aωf

C

r sin (ωti − ϕ)√
(r2 + a2 − 2ra cos(ωti − ϕ)

(11)

In the aforementioned function, the summation is operated on the frequency and time of the receiving
signal spectrum. Figs. 3(c), (d) illustrate that the returned signal spectrum contains 4 components due
to the imaging of 4-point scatterer at each sampling time. As (r, ϕ) approaches one of the scatterers’
positions, the aforementioned error function approaches zero. Hence, local maximum is caused in the
defined residual function which is illustrated in Fig. 3(b) for the 4-point scatterer scenario. To show
the effect of the multi-point scatterer, we demonstrate the imaging of the random multi-point object
in Fig. 4. The returned signal spectrogram is illustrated in Fig. 4(c), which shows different Doppler
shifts due to different scatterer positions. To find the exact positions of the scatterers, we optimize the
residual function using GA after deriving the angular positions of scatterers locating the radar sampling
points with zero Doppler shift. Table 2 demonstrates the positions of the point scatterers and image.
Also, it is worth noting that when the radar and scatterer have the same angle, Doppler shift becomes
zero which means that the objects angle can be obtained from zero Doppler shifts in the returned signal
spectrum components.

Table 2. Multi-point scatterers object and image positions.

Scatterer (x(m), y(m)) Image position
(0.4, 0.06) (0.3983, 0.0596)
(0.2,−0.2) (0.1949,−0.1947)

(0, 0.4) (0.0081, 0.4153)
(−0.36, 0.38) (−0.3814, 0.4023)
(−0.2, 0.2) (−0.2119, 0.2109)

(0.2, 0) (0.2119, 0.0102)
(0.12, 0.06) (0.1271, 0.0642)
(−0.2,−0.2) (−0.2119,−0.2112)

As presented in Table 2, the presented method is capable of multi-point imaging. Imaging errors
are negligible compared with the radars orbit radius. It is also clear that the angular positions of the
scatterers are derived rather exactly. At the end, it is worth mentioning that the residual function is
the only criterion for presenting the position of objects; however, more accurate results are obtained
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(a) (b)

(c) (d)

Figure 3. Imaging of a square (4 thin PEC). (a) Square scatterer. (b) Image. (c) Spectrum of the
returned signal. (d) 4 components of Doppler shift at t = 0.2 s.

from optimization and illustrated in Table 2. It is also the reason for the opacity of Fig. 3(b) in the
region of 2 near objects; however, Table 2 presents the separation of objects using the recent method.
Table 3 illustrates the computational efficiency of the method.

The reason behind the less computation time and error is that the current method is capable of
deriving the angular positions of the scatterers rather exactly using zero Doppler shifts; therefore, the

Table 3. Computational efficiency of the proposed method.

method Root mean square error (m) Computation Time (s)
Current method 0.0116 6.9

MUSIC [5] 0.0281 8.1
Conventional SAR 0.0664 5.2
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(a)
(b)

(c)

Figure 4. Random multi-point scatterer imaging. (a) Random multi-point scatterer. (b) Image. (c)
Spectrum of the returned signal.

optimization does not operate on 2D function. Also it is worth mentioning that using nonsymmetric
trajectories, this method will be capable of deriving the scatterers positions by locating the radar
sampling points with zero Doppler shifts.

4. CONCLUSION

The aim of the study was to develop a novel and modest method for imaging the objects with strong
scattering points based on Doppler phenomenon. The main advantages of the mentioned algorithm were
novelty, simplicity, less computational time, and capability of operation as an additional method with
the purpose of resolution improvement using unchanged setups. The method used radar movements and
different Doppler shifts detected in the receiver in different sampling positions to obtain the scatterers’
positions. Also, it is worth mentioning that the current method derives the angular position of objects by
locating the radar sampling positions with zero Doppler shift before using optimization. The mentioned
fact reduces the computational time of the method. This method is theoretically practicable using both
coherent and non-coherent devices; however, according to the frequency resolution of the non-coherent
devices, the results of the non-coherent devices would be more accurate. In the current paper, we
study the imaging in 2D using circular geometry for radar path; however, this method is replicable
for 3D imaging and other geometries, and it is possible to gain higher resolution using optimized
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path. 3D imaging and optimization of radar path are recommended for further works. This method is
applicable to different circumstances in the far field, so it is practical for remote sensing, navigation,
and medical imaging in simple and high-contrast media, as mentioned earlier. Likewise, it can be used
along with ultrasound technology in sonar and oceanography applications with higher resolution than
the microwave.
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