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A Generalized Hybrid Method for Electromagnetic Scattering
Analysis of Multiple Objects

Quang M. Nguyen* and Ozlem Kilic

Abstract—We propose a generalized hybrid method to achieve time efficient and accurate solutions
for electromagnetic scattering and radiation problems involving complex scenes with multiple objects.
The method utilizes frequency domain solutions, and is based on dividing the original computational
domain into smaller sub-domains. Each sub-domain is first solved independently, then the interactions
between the sub-domains are accounted for through an iterative procedure. The main difference of the
proposed hybrid method in comparison with the current hybrid methods or the domain decomposition
methods available in the literature is that the proposed method allows users to have the freedom to
choose from a variety of techniques for each sub-domain; such as integral equation (IE), analytical and
asymptotic methods that suit the problem at hand best. Current hybrid or domain decompositions
methods rely on a predetermined combination of numerical techniques. This flexibility in the choice of
the method employed for each sub-domain in the generalized hybrid method is achieved by creating an
interface capable of interacting between the different sub-domains properly. Furthermore, the method
renders to parallel implementation as each sub-domain is solved independently. The hybrid method
in its current state can be applied to two different scenarios: (i) multiple non-touching homogeneous
objects, and (ii) inhomogeneous objects. Numerical examples of various combinations of IE, analytical
and asymptotic methods are presented to validate the accuracy and the robustness of the generalized
hybrid method.

1. INTRODUCTION

Full-wave methods, such as the method of moments (MoM) [1], finite different time/frequency domain
(FDTD/FDFD) [2], or finite element method (FEM) [3, 4] are the most accurate numerical methods
for analyzing the interactions of electromagnetic fields with complex structures. However, they are
inherently limited to moderately sized structures, because their computation costs (in terms of memory
and CPU time) increase rapidly with the electrical size of the problem.

The past twenty years have witnessed various numerical techniques that were developed to reduce
the overall time and memory requirements of full-wave techniques such as the fast multipole method
(FMM) or its enhanced version, multilevel fast multipole algorithm (MLFMA), impedance matrix
localization (IML), and adaptive integral method (AIM) [5–8]. However, when the problem size becomes
too large to solve on conventional computers within a reasonable length of time, a divide-and-conquer
strategy is the key to overcome this limitation.

The concept behind the proposed generalized hybrid method is similar to the domain decomposition
methods (DDM) [9–12], which is also based on dividing the original computational domain into smaller
sub-domains. However, unlike classical DDM, we do not formulate the interface between sub-domains
in the form of matrix operators, which limit the choice of the solver for the sub-domain. The analytical
solutions can’t be incorporated in DDM since they are not in matrix form. Furthermore, the interface
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between sub-domains in DDM needs to be modified to incorporate different numerical solvers for
individual sub-domains. This is understandable since different solvers have different matrix forms. In
the proposed hybrid method, we create a general interface capable of interacting between the different
numerical and analytical methods properly. The interactions between the sub-domains are predicted
by an iterative approach.

Many researchers have been developing various hybrid methods that utilize combinations of different
numerical techniques; such as MoM-FDTD, MoM-FEM, PO-MoM and so on [13–20]. However, these
efforts typically require a fixed number of sub-domains, and the formulation is developed only for a
specific combination of methods.

The generalized hybrid method overcomes these limitations by allowing the freedom to choose
from a variety of available techniques, i.e., full-wave integral equation (IE), asymptotic or analytical
methods, for any number of sub-domains. By having the ability to choose an appropriate method for
each sub-domain, the user can reduce the complexity as well as the computational time for that sub-
domain while still preserving the accuracy. For instance, analytical solutions can be chosen for canonical
objects, while asymptotic approaches are preferable for electrically large objects. The preliminary results
of the generalized hybrid method have been reported in our previous work [21–23].

The remainder of the paper will present the details of the generalized hybrid method as follows.
In Section 2, we describe the generalized hybrid method in two different scenarios: (i) multiple non-
touching homogeneous objects, and (ii) inhomogeneous objects. Section 3 is devoted for plane wave
decomposition of electromagnetic fields, which is necessary in interfacing the various techniques available
in the generalized hybrid method. Section 4 presents numerical examples of various combinations of
methods to validate the accuracy and demonstrate the robustness of the proposed hybrid method.
Finally, Section 5 provides conclusions.

2. THE GENERALIZED HYBRID METHOD

In this section, the generalized hybrid method is presented to demonstrate its ability to combine various
numerical methods under one umbrella. This is achieved by dividing the original computational domain
into smaller sub-domains. Each sub-domain is then solved independently using one of the most suitable
methods for that domain, and finally the interactions between the sub-domains are accounted for through
the interfacing between the sub-domains. By doing so, the total domain size can be reduced, which
consequently decreases the memory requirements. Also, by providing the user the freedom to choose
a suitable technique for each sub-domain, the computational time for that sub-domain can be reduced
without any loss of accuracy as opposed to using a default full-wave numerical method, especially
for electrically large structures. Furthermore, since each sub-domain can be solved for independently,
the approach renders itself to parallel implementation, which would enable a faster solution. Two
proposed generalized hybrid method is discussed in details in this section. The first approach is applied
to multiple non-touching homogeneous objects, and the second approach is applied to inhomogeneous
objects. Finally, the complexity and memory requirements for the hybrid method are investigated.

2.1. The Hybrid Method for Multiple Non-Touching Homogeneous Objects

The generalized hybrid method can handle multiple sub-domains as shown in Fig. 1. Each sub-domain
can employ any suitable method available, such as MoM, Mie, physical optics (PO), equivalent dipole
model (EDM), spherical wave expansion (SWE), etc. The choice of method is based on the specific
properties of the sub-domain. For instance, if a sub-domain contains a canonical object, an appropriate
analytical solution can be considered as the first priority. On the other hand, if a sub-domain contains
an electrically large object of arbitrary shape, a suitable asymptotic approach such as PO may be
preferred. And if the sub-domain contains a resonant size object, a full-wave numerical technique would
be a good candidate. As shown in Fig. 2, the hybrid method first divides the original problem into a
number of sub-domains; i.e., N as depicted. The user then assigns an appropriate method to each sub-
domain based on its properties. Then an iterative process begins where the fields for each sub-domain
are solved for and updated by interactions between the sub-domains. The procedure stops when the
relative change in all sub-domains is less than the user-defined criteria.
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Figure 1. Scene with multiple non-touching homogeneous objects.

Figure 2. Block diagram of the generalized hybrid method for multiple non-touching homogeneous
objects.

2.2. Iterative Procedure in the Hybrid Method for Multiple Non-Touching Homogenous
Objects

At the time of the first iteration, the incident field on the scene, Einc, is assumed to be the only source
of excitation. For the sake of simplicity, let’s assume, N = 2, i.e., two sub-domains. Let’s also assume
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that MoM and Mie solutions are the methods of choice for sub-domain 1 and 2, respectively. It should
be noted that the concept still holds if any other methods are applied to these sub-domains, and MoM
and Mie are used only for demonstration purposes.

At the first iteration, the incident fields on the sub-domains equal the incident field on the scene.

E(1)
inc(1) (r) = E(1)

inc(2) (r) = Einc (r) . (1)

where the subscript (i) is the sub-domain index; i.e., i = 1, 2, . . . , N , and the superscript (j) refers to the
index of iteration. Then we start the solution for sub-domain 1 using MoM by computing the induced
currents on it, i.e., J(1)

(1)(r), due the incident field, i.e., E(1)
inc(1)(r). The electromagnetic fields radiated

by this current; i.e., e(1)
rad(12)(r), are then calculated to illuminate sub-domain 2. Similarly, we start the

solution for sub-domain 2 by analytically calculating (Mie) the radiated fields due to its illumination by
E(1)

inc(2)(r). Then these scattered fields; i.e., e(1)
rad(21)(r), are computed to illuminate sub-domain 1. The

process for the first iteration is summarized in Fig. 3. It should be noted that in the subscript (ij), the
first index (i) denotes the original domain, and the second index (j) denotes the destination domain.

Figure 3. Generalized hybrid method - first iteration for multiple non-touching homogeneous objects.

For the second iteration, the fields for sub-domain 1 are equal to the sum of the original incident
field and the radiated fields from sub-domain 2 to sub-domain 1 as shown in Eq. (2). Similarly, the
fields for sub-domain 2 are equal to the sum of the original incident field and the radiated fields from
sub-domain 1 to sub-domain 2 as in Eq. (3).

E(2)
inc(1)

(r) = e(1)
rad(21)

(r) + Einc (r) . (2)

E(2)
inc(2) (r) = e(1)

rad(12) (r)+Einc (r) . (3)

The iteration process between the sub-domains continues until the algorithm converges; i.e., the variation
in terms of the induced current between the last two iterations, γ, is within a predetermined percentage.
Finally, the total scattered field from the entire domain is calculated based on the sum of all scattered
fields from the sub-domains at the final iteration.

The same concept is still applicable when the number of sub-domains is greater than two. The
incoming field for any sub-domain is the summation of the original incident field and the radiated fields
from all other sub-domains. The implementation is constructed so that the incoming field to each
sub-domain is updated at the end of every iteration. The ordering of the sub-domains doesn’t make a
difference. This approach renders to a parallel implementation easily.

2.3. Interfacing the Sub-Domains for Multiple Non-Touching Homogenous Objects

The interface algorithm is dependent on the methods used for each-sub-domain pair. For the case of
MoM-Mie as discussed above, the solution for sub-domain 1 (MoM) requires the knowledge of the total
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Figure 4. Interactions between the sub-domains for multiple non-touching homogeneous objects. (a)
Sub-domain 2 to sub-domain 1. (b) Sub-domain 1 to sub-domain 2.

incident field at the center of each mesh element. Therefore, the radiated fields from sub-domain 2 to
sub-domain 1, i.e., erad(21)(r) need to be evaluated at the center of each mesh element of sub-domain 1
as shown in Fig. 4(a). The solution for sub-domain 2 (Mie scattering) requires the incident field to be in
the form of plane waves. Therefore, the radiated fields from sub-domain 1 to sub-domain 2, erad(12)(r),
must be decomposed into plane waves illuminating sub-domain 2, as shown in Fig. 4(b). The details of
decomposing the radiated field into plane waves will be discussed in Section 3.

In general, if the method on a sub-domain requires meshing, grid points, or sampling points, the
incoming fields (from other sub-domains to that sub-domain) should be calculated at those special
points. Similarly, if the method on that sub-domain requires the incident fields to be in the form of
plane waves, the incoming fields from other sub-domains must be decomposed into a set of plane waves.

2.4. The Generalized Hybrid Method for Inhomogeneous Objects

In this section, we present the hybrid method for inhomogeneous objects, as shown in Fig. 5. The block
diagram of the algorithm is demonstrated in Fig. 6 for N sub-domains. The method employed in the
exterior sub-domain, i.e., sub-domain 1, is MoM and the choice of methods for the interior sub-domains,
i.e., sub-domains 2, 3, . . . , N is based on the specific properties of these sub-domains.

Figure 5. Scene with inhomogeneous objects.
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Figure 6. Block diagram of the generalized hybrid method for inhomogeneous objects.

2.4.1. Iterative Procedure in the Hybrid Method for Inhomogeneous Objects

As shown in Fig. 5, a plane wave, Einc, illuminates the computational domain, and is assumed to be
the only source of excitation at the time of the first iteration. For the sake of simplicity, let’s assume
N = 2, i.e., a two-layered dielectric object. Let’s also assume that MoM is the method employed for
both sub-domains. It should be noted that the concept can still be applied to the case of more complex
inhomogeneous objects. The method employed in the exterior sub-domain, i.e., sub-domain 1, is MoM
and the choice of method for the interior sub-domains, i.e., sub-domains 2, 3, . . . , N is based on the
specific properties of that sub-domain. If the interior sub-domains are touching, we can consider them
as one sub-domain.

In the beginning, the inhomogeneous object is decomposed into two homogeneous domains, namely
exterior domain (sub-domain 1) and interior domain (sub-domain 2) respectively, as shown in Fig. 7.
At the first iteration, the field on the exterior domain (sub-domain 1) is equal to the incident field, as
in (4), and the field on the interior domain (sub-domain 2) is 0, as in (5).

E(1)
inc(1) (r) = Einc (r) , (4)

E(1)
inc(2) (r) = 0. (5)

Then we start the solution for sub-domain 1 using MoM by computing the induced currents on it due to
E(1)

inc(1)(r). The internal fields generated by these currents, E(1)
int(1)(r) are then calculated to illuminate

the interior domain (sub-domain 2) as shown in Eq. (6).

e(1)
rad(12) (r) = E(1)

int(1)
(r) . (6)
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Figure 7. Decomposition of the inhomogeneous object.

Figure 8. Generalized hybrid method — first iteration for inhomogeneous objects.

Sub-domain 2 receives these fields, e(1)
rad(12)(r), as the incident fields, E(1)

inc(2)
(r), and then re-radiates

them towards sub-domain 1 as shown in Eq. (7).

e(1)
rad(21) (r) = E(1)

scat(2)
(r) . (7)

The process for the first iteration is summarized in Fig. 8.
For the second iteration, the total incident field for sub-domain 1 is the combination of the original

plane wave, Eincand the radiated field, e(1)
rad(21)(r), which was radiated from sub-domain 2 to 1. The

incident field for domain 2 is then updated by e(2)
rad(12)

(r) as shown in Eq. (8).

E(2)
inc(2) (r) = e(2)

rad(12) (r) = E(2)
int(1) (r) . (8)

The iterative process continues until the algorithm converges, i.e., the variation in terms of the induced
currents between the last two iterations, γ, is within a predetermined percentage. The internal fields
and the radiated fields from sub-domains 1 and 2 are evaluated at the center of the mesh elements of
sub-domains 2 and 1, respectively. If the solution of sub-domain 2 requires the incident field to be in
the form of plane waves, the radiated fields from sub-domain 1 need to be decomposed into plane waves
as discussed above.

2.4.2. Interfacing the Sub-Domains for Inhomogeneous Objects

As discussed for the case of multiple non-touching objects, the updated total fields simply are the
sum of the original incident field, Einc, and the radiated fields from other sub-domains. However, for
the case of inhomogeneous objects, since the radiated fields from sub-domain 2 to 1, erad(21)(r), are
considered as the internal fields of the sub-domain 1, as shown in Fig. 8, the updated total fields of the
sub-domain 1 is the combination of the original incident field, Eincand the internal fields, Escat(2)(r).
Hence, when MoM is employed for sub-domain 1, the boundary condition must be modified by adding
the new internal fields, Escat(2)(r), to it. For the sub-domain 2, the updated incident fields are the
internal fields calculated from sub-domain 1 to 2, as shown in Eq. (8).
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2.5. Computational Complexity and Memory Requirements for the Hybrid Method

In this section, we investigate the complexity and memory requirements of the proposed hybrid method,
and compare it to a full-wave solution, such as MoM. The computational resources required for the
hybrid method depend on the choice of methods employed in the sub-domains.

We assume that the original problem decomposes into p sub-domains. If we employ MoM to
solve the entire problem, (i.e., without decomposing it), the complexity and memory requirements of
the problem would be O(N3) and N2 respectively, where N is the total number of mesh elements in
the original problem. For our proposed hybrid method with p sub-domains, the overall complexity
would be the sum of the complexities of the sub-domain calculations and interfacing the sub-domains.
The complexity of the sub-domain calculations would be determined by the worst case scenario; i.e.,
by accounting for the sub-domain that takes the longest computations, and can be expressed as
Niter ×max{O(N3

1 ), O(N3
2 ), . . . , O(N3

p )}, where Niter is the number of iterations required for the hybrid
method to converge, and Ni is the total number of mesh elements of the ith sub-domain. The complexity
for interfacing the sub-domains depends on the complexity of calculating the radiated fields, which is
approximately N for one observation point. For multiple observation points, the calculation of radiated
fields can be constructed as a system of linear equations; i.e., where A is the matrix which represents the
relationship between source points and observation points, x is the induced current, and B represents
the radiated fields. The A matrix needs to be calculated only once for the first iteration, and can
be reused for further iterations. Thus, the complexity of interfacing the sub-domains would be O(N2).
Similarly, the memory requirements for the hybrid method would depend on the worst case scenario; i.e.,
max{N2

1 , N2
2 , . . . , N2

p }, which will be, as expected, less than solving the problem without decomposing
into sub-domains. It should be noted that an inherent benefit for the proposed hybrid method is
that it renders to parallel computing as each sub-domain can be solved for independently before the
interactions among them are computed. Furthermore, the calculation of radiated fields for different
observation points also renders to parallel implementation since the currents in the mesh elements and
the observation points are independent of each other.

Next, we use a simple example to analyze the complexity and memory requirements in the hybrid
method. We assume that the original problem is decomposed into two sub-domains of the same size,
and MoM is employed for both sub-domains. The complexity would be O(Niter

N3

8 ) + O(N2

4 ) while the
memory requirements are in the order of N2

4 . Thus, the hybrid method performs better than MoM
in terms of computational time when Niter < 8. Based on various numerical results, which will be
discussed in Section 4, this is a likely scenario. The hybrid method only needs a few iterations to
converge in the case of two sub-domains. Although the hybrid method may not gain much advantage
compared to MoM in terms of computational time in the case of two sub-domains, it can save four times
as much memory compared to MoM. Furthermore, each sub-domain can be solved in parallel to reduce
computation time.

It is expected that as the number of sub-domains increase, the hybrid method would take longer to
converge. To investigate the performance for problems with more than two sub-domains, and analyze
the relationship between the number of iterations, Niter and the number of sub-domains, p in the hybrid
method, we devised a test case as shown in Fig. 9, where we added more sub-domains (spheres) to for
each test case. Fig. 10 shows the relationship between the number of sub-domains and the number of
iterations required to converge as the number of sub-domains is increased from 1 to 7. As we observe,
the number of required iterations to converge increases rapidly with the number of sub-domains. We

Figure 9. 7 spheres.
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Figure 10. The number of iterations to converge, Niter vs the number of sub-domains, p.

observe that for this test case when the number of sub-domains, p, is more than 3, the generalized hybrid
method starts to slow down. However, the savings in memory requirements becomes more prevalent.
The generalized hybrid method can save p2 times as much memory compared to MoM for the test case
as shown in Fig. 9. Thus there is a tradeoff between the complexity and memory requirement in the
generalized hybrid method. Although the scenario is selected for the case of multiple non-touching
objects, similar results are found for the case of inhomogeneous objects.

3. THE PLANE WAVE DECOMPOSITION OF ELECTROMAGNETIC FIELDS

Many analytical solutions and numerical methods available for electromagnetics assume the incident
field to be in the form of a plane wave. Hence, plane wave decomposition becomes an important issue
for interfacing the sub-domains in the generalized hybrid method. By utilizing the spherical wave
expansion, (SWE), we can decompose any arbitrary electromagnetic field into a set of plane waves.
The suggested method involves three steps: (i) the electromagnetic fields are transformed into a series
summation using SWE, (ii) SWE is converted to PWE, and (iii) the unknown SWE coefficients are
obtained using a numerical technique.

Let us start by expressing the electromagnetic fields as an infinite series of discrete spherical waves
as in [24]

E (r) =
∞∑

n=1

n∑
m=−n

Q(1)
mnF

(1)
mn (r) + Q(2)

mnF
(2)
mn (r), r > r0, (9)

where Q
(i)
mn are the unknown expansion coefficients, F(i)

mn are the normalized spherical vector wave
functions, and m,n are the indices of spherical order mode. The vector r is the observation point,
and r0 is the minimum radius of a sphere that contains the radiating object. The infinite summation
in Eq. (9) is truncated at the finite index N , which is based on the relationship N ≈ kr0. Next, the
spherical vector wave functions can be expanded into a sum of plane waves in the spectral αβ-domain
as in [25] as:

F(1)
mn (r) =

(−i)n+1

2π
√

n (n + 1)

π∫
−π

∫
B

Ymn (α, β) eik·r sin (α) dαdβ,

F(2)
mn (r) =

(−i)n

2π
√

n (n + 1)

π∫
−π

∫
B

(
k̂× Ymn (α, β)

)
eik·r sin (α) dαdβ,

(10)

where β is the spectral variable belonging to the interval [−π, π], α is the spectral variable belonging to
the complex contour B, as described in [26]. The unit vector k̂ is defined as:

k̂ = k/k = sin (α) cos (β) x̂ + sin (α) sin (β) ŷ + cos (α) ẑ. (11)
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The real values of α correspond to propagating waves, while the imaginary values correspond to
evanescent waves. The terms F(1)

mn(r) and F(2)
mn(r) in Equation (10) are substituted in Equation (9)

and the order of summation and integration is interchanged to obtain:

E (r) =

π∫
−π

∫
B

( ∞∑
n=1

n∑
m=−n

(−i)n+1

2π
√

n (n + 1)
Q(1)

mnYmn (α, β) +
(−i)n

2π
√

n (n + 1)
Q(2)

mn

(
k̂ × Ymn (α, β)

))

·eik·r sin (α) dαdβ. (12)

The integral in Equation (12) can be evaluated numerically by using a numerical technique such as
the Gaussian quadrature [27, 28]. Equation (12) enables us to express any electromagnetic field as a
superposition of plane waves in the αβ-spectral domain. Finally, applying Fourier series technique can
solve the unknown SWE coefficients. The more details of plane wave decomposition method can be
found in [29].

4. NUMERICAL RESULTS

This section demonstrates the ability of combining various techniques without modifying the formulation
in the generalized hybrid method. Several examples are presented to validate the accuracy, as shown
in Fig. 11 and Fig. 12. Scenario 1, as depicted in Fig. 12, considers two specific cases for multiple
non-touching homogeneous objects: (i) one PEC sphere and one dielectric sphere, and (ii) a finite wall
and a PEC sphere. Scenario 2 includes two test cases, as shown in Fig. 12: (i) a two-layered dielectric
sphere, (ii) a three-layered dielectric sphere.

Figure 11. Test cases for multiple non-touching homogeneous objects.

Figure 12. Test cases for inhomogeneous objects.
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We will investigate each scenario by employing two different combinations of methods to solve
for all test cases. We will also investigate the effects of different error margins for each method: i.e.,
γ < 5% and γ < 10%. For all test cases in both scenarios, the scene is excited by a 45◦-polarized
plane wave operating at 1 GHz and propagating along the z direction. The results of the generalized
hybrid method, and comparisons for different methods and error margins are provided in the following
sub-sections. All results will be run using a personal computer (Intel Core i7 @ 1.7 GHz, 8 GB RAM)
and will be compared to the commercial software package FEKO.

4.1. Scenario 1 — Multiple Non-Touching Homogeneous Objects

Two test cases are considered in Scenario 1 to demonstrate its applicability to scenes with different
features. We aim to demonstrate suitable methods and their applicability for objects of various size and
nature. For the first test case, the problem is chosen so that one sub-domain contains an electrically
small object (sub-domain 1), and the other sub-domain contains a canonical object (sub-domain 2).
Fig. 13 shows the configuration for the first case. Full-wave methods (i.e., MoM) and the analytical
solutions (i.e., Mie) are good candidates for the sub-domains in this scenario. Thus, we will study two
methods: (i) MoM-MoM, and (ii) MoM-Mie, where the first method (MoM in both cases) is associated
with sub-domain 1, and the second method (MoM or Mie) refers to sub-domain 2.

Figure 13. Test Case 1: One PEC sphere and
one dielectric sphere.

Figure 14. Test Case 2: A finite wall (2.5×2.5×
0.1 m, εr = 4) and a sphere (r = 0.25 m).

For the second test case, we have a PEC sphere (sub-domain 1) and an electrically large object
of arbitrary shape (sub-domain 2). The configuration of the second test case is shown in Fig. 14.
An asymptotic approach (i.e., PO) is suitable for the large object. Since we already investigated the
applicability of the full wave method for the PEC sphere in test case 1, for this test case as an alternative,
we employ generalized multipole techniques (i.e., SWE, EDM) for the small PEC sphere. Hence, we
will study two methods for this test case: (i) SWE-PO, and (ii) EDM-PO.

4.1.1. Iterative Results for Test Case 1: One PEC Sphere and One Dielectric Sphere

For the first test case, sub-domain 1 consists of the PEC sphere with radius of 0.15 m (λ/2) and sub-
domain 2 consists the dielectric sphere (εr = 4) with radius of 0.25 m (≈ 0.83λ). They are separated by
a distance, d = 0.65 m, along the z direction as shown in Fig. 13. We consider two methods, i.e., MoM-
MoM and MoM-Mie, as described before. For the first method (MoM-MoM), both sub-domains employ
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the full-wave method (MoM). The mesh size is λ/10, corresponding to approximately 900 unknowns for
the smaller PEC sphere, and 2.3 K unknowns for the dielectric sphere.

For the second method (MoM-Mie), we employ MoM for the first sub-domain (mesh size:
λ/10, Nmesh ≈ 900) and we employ the Mie solution for sub-domain 2. In this case we need to apply the
PWE procedure, described in Section 3 to interface MoM with Mie solution. We use M = 800 for the
plane waves in the PWE step. It should be noted that the number of plane waves will be proportional
to object’s size and M = 800 is a good choice for a sphere with r = 0.25 m at 1GHz regarding to the
accuracy and processing time.

We show the results for the backscattered fields on a half circle (R = 1 m from the origin) on the x-z
plane for both methods in Fig. 15 for the error, γ < 5%, and in Fig. 16 for γ < 10%. The red solid line
and the dashed blue line show the fields calculated using the two hybrid methods, i.e., MoM-MoM, and
MoM-Mie respectively. The dotted green line shows the fields obtained from the commercial software
package FEKO. We observe that both hybrid methods offer a good agreement with FEKO.

The performance of the hybrid methods for this test case is shown in Table 1. As we can see, for
MoM-MoM combination, the generalized hybrid method converges after 4 iterations and 125 seconds
for γ < 5%, and 3 iterations and 110 seconds for γ < 10%. The total number of unknowns is roughly
2.3 K. FEKO took 110 seconds to solve the same problem with the same total number of unknowns.
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Figure 15. Backscattered field of one PEC sphere and one dielectric at f = 1GHz using MoM-MoM
and MoM-Mie for γ < 5%. (a) Er component magnitude and phase. (b) Eθ component magnitude and
phase. (c) Eφ component magnitude and phase.
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Figure 16. Backscattered field of one PEC sphere and one dielectric at f = 1GHz using MoM-MoM
and MoM-Mie for γ < 10%. (a) Er component magnitude and phase. (b) Eθ component magnitude
and phase. (c) Eφ component magnitude and phase.

Table 1. Performance of the hybrid method for scenario 1, test case 1.

Methods MoM-MoM MoM-Mie
# Unknowns (Maximum) ∼ 2.3 K ∼ 900

# Iterations γ < 5% γ < 10% γ < 5% γ < 10%
4 3 4 3

Time 125 s 110 s 60 s 50 s

In this test case, sub-domain 2 is much larger than sub-domain 1 (∼ 2.3 K unknowns vs. ∼ 900
unknowns), and it consumes most of the time in the hybrid method. Thus, the performance of the
hybrid method is slower than that of FEKO due to the required iterations to interface the sub-domains.
Dividing the domain into two sub-domains and still using MOM for both cases would not necessarily be
the best approach for this case. We would like to demonstrate the advantage of being able to choose a
suitable approach with this test case, as we demonstrate below by using a better choice for sub-domain 2.
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For the second method, we employ Mie scattering for the larger sphere (sub-domain 2), which helps
improve the performance of the hybrid method. It should be noted that the PWE needed to interface
the two methods renders to reduced computation time since one only needs to scale the amplitudes and
phases of the M plane waves incident on sub-domain 2. Thus, the scattered fields from sub domain 2
need to be calculated only once at the first iteration. Furthermore, each plane wave is independent so the
analytical method can be parallelized. These properties provide considerable relief in the computation
time since the analytical method needs to be called only once during the entire process. With the
choice of MoM-Mie for this test case, the generalized hybrid method took 4 iterations and 60 seconds
for γ < 5%, and 3 iterations and 50 seconds for γ < 10% offering a speed up factor of 2 compared to
FEKO.

4.1.2. Results for Test Case 2: A Finite Dielectric Wall and PEC Sphere

For the second test case, sub-domain 1 consists of a PEC sphere with radius of 0.25 m (≈ 0.83λ), and sub-
domain 2 consists of a dielectric wall (εr = 4) with dimensions, 2.5×2.5×0.1 m (≈ 8.3λ × 8.3λ × 0.33λ).
The dielectric wall resides on the x-y plane, positioned at z = 1 m as shown in Fig. 14.

We consider two methods, i.e., SWE-PO and EDM-PO. In both methods, we need to apply the
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Figure 17. Backscattered field of a finite wall and a sphere at f = 1 GHz using SWE-PO and EDM-PO
for γ < 5%. (a) Er component magnitude and phase. (b) Eθ component magnitude and phase. (c) Eφ

component magnitude and phase.
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PWE procedure. We employ M = 800 for the plane waves in the PWE step. For the first method
(SWE-PO), we employ SWE for sub-domain 1 (PEC sphere) and PO for sub-domain 2 (finite dielectric
wall). The number of spherical modes is N = 10 for the SWE. For the second method (EDM-PO),
EDM is employed for the sub-domain 1 and PO is employed for the sub-domain 2. The surface of the
sphere is discretized uniformly by choosing M = 961 points, and the number of dipoles is chosen as
N = 225.

The total backscattered field from the scene on the x-z plane is shown in Fig. 17 for γ < 5% and
Fig. 18 for γ < 10%. The red solid and dashed blue lines show the results of both hybrid methods.
The dotted green line shows the fields obtained from FEKO. We observe that both hybrid methods
show good agreement with FEKO. The performance of the hybrid methods for this test case is shown
in Table 2. As we can see, for SWE-PO combination, the generalized hybrid method converges after
5 iterations and 150 seconds for γ < 5%, and 3 iterations and 100 seconds for γ < 10%. It should be
noted that, the PO method needs to be called only once during the entire process as discussed above.
The total number of unknowns is roughly 21 K. FEKO took approximately 24 hours to solve the entire
problem since the number of unknowns exceeds the memory for in-core solver.
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Figure 18. Backscattered field of a finite wall and a sphere at f = 1 GHz using SWE-PO and EDM-PO
for γ < 10%. (a) Er component magnitude and phase. (b) Eθ component magnitude and phase. (c)
Eφ component magnitude and phase.
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Table 2. Performance of the hybrid methods for scenario 1, test case 2.

Methods SWE-PO EDM-PO
# Unknowns (Maximum) ∼ 500 ∼ 500

# Iterations γ < 5% γ < 10% γ < 5% γ < 10%
5 3 5 3

Time 150 s 100 s 400 s 250 s

For the second method, EDM-PO, the generalized hybrid method converges after 5 iterations and
400 seconds for γ < 5%, and 3 iterations and 250 seconds for γ < 10%. As we can see, EDM-PO
combination is slower than SWE-PO combination. It is due to the number of dipoles required in EDM
are larger than the number of spherical mode in SWE.

4.2. Scenario 2 — Inhomogeneous Objects

Two test cases are considered in this scenario. The first test case consists of a two-layered dielectric
sphere. The configuration of the first test case is shown in Fig. 19. In this test case, we present
two methods; MoM-SWE, and MoM-EDM where sub-domain 1 (interior sphere) employs MoM, and
sub-domain 2 (exterior sphere) employs either SWE or EDM. For the second test case includes a three-
layered dielectric sphere. The configuration of the second test case is shown in Fig. 20. In this test case,
we employ MoM in all sub-domains.

Figure 19. Geometry of test case 1 with a two-
layered sphere (r1 = 0.3 m, r2 = 0.2 m).

Figure 20. Geometry of test case 2 with a
three-layered sphere (r1 = 0.3 m, r2 = 0.2 m,
r3 = 0.1 m).

4.2.1. Results for Test Case 1: A Two-Layered Sphere

For the first test case, sub-domain 1 consists the exterior sphere with a radius of 0.3 m (λ) and sub-
domain 2 consists of the interior sphere with a radius of 0.2 m (≈ 0.67λ). The interior sphere will be
considered PEC and the exterior sphere has a permittivity of εr = 2. For the first method (MoM-
SWE), we employ MoM for the first sub-domain and SWE for the sub-domain 2. The mesh size is
λ/8, corresponding to approximately 2.2 K unknowns for the MoM. The number of spherical modes is
N = 10 for the SWE. For the second method (MoM-EDM), we employ MoM for the first sub-domain
(mesh size: λ/8, Nmesh ≈ 2.2 K) and EDM for the sub-domain 2. The surface of the sphere is discretized
uniformly by choosing M = 961 points, and the number of dipoles is chosen as N = 225.
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Figure 21. Backscattered field of test case 1 with a two-layered sphere using MoM-SWE and MoM-
EDM for γ < 5%. (a) Er component magnitude and phase. (b) Eθ component magnitude and phase.
(c) Eφ component magnitude and phase.

We show the results for the backscattered fields on a half circle (R = 1 m from the origin) on the x-z
plane for both methods in Fig. 21 and Fig. 22 for γ < 5% and γ < 10%. The red solid line and dashed
blue line show the fields calculated using the two hybrid methods, i.e., MoM-SWE, and MoM-EDM
respectively. The dotted green line shows the fields obtained from the commercial software package
FEKO. We observe that both hybrid methods show a good agreement with FEKO. The performance of
the hybrid methods for this test case is shown in Table 3. As we see, for both combination, i.e., MoM-
SWE, and MoM-EDM, the generalized hybrid method converges after 7 iterations and 142 seconds for
γ < 5%, and 6 iterations and 123 seconds for γ < 10%. The total number of unknowns is roughly 3.1 K.
FEKO took 125 seconds to solve the same problem with the same total number of unknowns. Thus,
both methods can help save memory while their performances are comparable to FEKO.

4.2.2. Results for Test Case 2: A Three-Layered Dielectric Sphere

For the second test case, the problem is decomposed into three sub-domains such that the first sub-
domain corresponds to the exterior sphere (r1 = 0.3 m, ε1 = 2), the second sub-domain corresponds
to the middle-layer sphere (r2 = 0.2 m, ε2 = 4), and the third sub-domain corresponds to the interior
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Figure 22. Backscattered field of a two-layered sphere at f = 1 GHz using MoM-SWE and MoM-EDM
for γ < 10%. (a) Er component magnitude and phase. (b) Eθ component magnitude and phase. (c)
Eφ component magnitude and phase.

Table 3. Performance of the hybrid methods for scenario 2, test case 1.

Methods MoM-SWE MoM-EDM
# Unknowns (Maximum) ∼ 2.2 K ∼ 2.2 K

# Iterations
γ < 5% γ < 10% γ < 5% γ < 10%

7 6 7 6
Time 142 s 123 s 139 s 121 s

sphere (r3 = 0.1 m, ε3 = 6) as shown in Fig. 20. In this test case, we employ MoM in all sub-domains.
The results from the original problem are compared to the full-wave solution using commercial software
package FEKO. The total backscattered field on the x-z plane is shown in Fig. 23 and in Fig. 24 for
γ < 5% and γ < 10% respectively. The solid red line shows the fields calculated using the hybrid method,
i.e., MoM-MoM-MoM. The dashed blue line shows the fields obtained from FEKO. We observe that
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the hybrid method offers a good agreement with FEKO. Table 4 shows the performance of the hybrid
method for this test case. As we can see, for the MoM-MoM-MoM combination, the generalized hybrid
method converges after 35 iterations and 500 seconds for γ < 5%, and 25 iterations and 365 seconds for
γ < 10%. The total number of unknowns is roughly 5.1 K. FEKO took 360 seconds to solve the same
problem with the same total number of unknowns.
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Figure 23. Backscattered field of a three-layered dielectric sphere at f = 1 GHz using MoM-MoM-
MoM for γ < 5%. (a) Er component magnitude and phase. (b) Eθ component magnitude and phase.
(c) Eφ component magnitude and phase.

Table 4. Performance of the hybrid method for scenario 2, test case 2.

Method MoM-MoM-MoM
# Unknowns (Maximum) ∼ 2.2 K

# Iterations γ < 5% γ < 10%
35 25

Time 500 s 365 s
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Figure 24. Backscattered field of a three-layered dielectric sphere at f = 1 GHz using MoM-MoM-
MoM for γ < 10%. (a) Er component magnitude and phase. (b) Eθ component magnitude and phase.
(c) Eφ component magnitude and phase.

5. CONCLUSION AND FUTURE WORK

In this paper, a generalized hybrid method is proposed to solve electromagnetic scattering problems
in two different scenarios: (i) multiple non-touching homogeneous objects, and (ii) inhomogeneous
objects. This is achieved by dividing the original problem into separate sub-domains. The solution
for the entire domain is found by using either an analytical or numerical approach as appropriate for
each sub-domain, followed by an iterative procedure between the sub-domains. The generalized hybrid
method shows a good agreement in terms of accuracy with the commercial software package, FEKO.
In this paper, we have limited our analysis to isotropic scatterers. More complex geometries, including
anisotropic scatterers and scatterers with cavities, will be considered in the future. Furthermore, the
parallel implementation details of the generalized hybrid method will also be addressed in the future.
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