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Eliminate Crosstalk Using Symmetry in MIMO Arrays of Inductive
Antennas: An Introduction to Pie-Chart Antennas

Jean-Philippe Douarville-Blaise1, *, David Pouhè2, and Junji Hirai1

Abstract—We present a topology of MIMO arrays of inductive antennas exhibiting inherent
high crosstalk cancellation capabilities. A single layer PCB is etched into a 3-channels array of
emitting/receiving antennas. Once coupled with another similar 3-channels emitter/receiver, we
measured an Adjacent Channel Rejection Ratio (ACRR) as high as 70 dB from 150 Hz to 150 kHz.
Another primitive device made out of copper wires wound around PVC tubes to form a 2-channels
“non-contact slip-ring” exhibited 22 dB to 47 dB of ACRR up to 15 MHz. In this paper we introduce
the underlying theoretical model behind the crosstalk suppression capabilities of those so-called “Pie-
Chart antennas”: an extension of the mutual inductance compensation method to higher number of
channels using symmetries. We detail the simple iterative building process of those antennas, illustrate
it with numerical analysis and evaluate there effectiveness via real experiments on the 3-channels PCB
array and the 2-channels rotary array up to the limit of our test setup. The Pie-Chart design is primarily
intended as an alternative solution to costly electronic filters or cumbersome EM shields in wireless AND
wired applications, but not exclusively.

1. INTRODUCTION

What if we could increase data rate while reducing bit error rate, development time and production
cost of wired and wireless signal transmissions systems? In this paper we introduce our piece of answer
to those concerns in the form of a simple concept: the Pie-Chart antenna.

Suppose a bunch of sensors mounted on the blades of a wind turbine. How to supply power to those
sensors and monitor them in real-time? This type of problem is commonly addressed using batteries,
slip rings and/or wireless technologies such as W-LAN, Bluetooth, ZigBee, etc. [1, 2]. In paper [3], Bieler
et al. propose a very simple and compact solution: power and information are transmitted by induction
on two physically distinct channels. The beauty of his solution lies in that, however the power coil is
almost wound into the data coil, crosstalk is almost null. When dealing with crosstalk, such a solution
can significantly reduce the need for magnetic guides, shielding or electronic components [11], hence
potentially lowering weight, size, complexity, cost and increasing reliability of transmission systems.

The Pie-Chart antenna concept is an extension of T. Bieler’s solution to higher number of channels.
It is similarly based on the method of mutual inductance cancellation using symmetries. This concept is
indeed extendable well beyond the limited frame of electromagnetism (acoustic, vibrations and any wave-
signals in general). Yet, in this introductory paper we will focus on the very limited case of filamentary
antenna working in the magneto-static domain. A more complete electromagnetic model along with its
implications as well as a variety of concrete applications of this concept will be presented later in two
dedicated papers entitled “Eliminate Crosstalk using Symmetry in MIMO Arrays of Inductive Antenna:
Miscellaneous Properties of Pie-Chart Antennas.” and “Eliminate Crosstalk using Symmetry in MIMO
Arrays of Inductive Antenna: Miscellaneous Applications of Pie-Chart Antennas.”.
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Fig. 1 can also be seen as the cross-section of a 4 channels Pie-Chart cable, or that of 4 channels
Pie-Chart non-contact linear sliding connection: plus and minus signs would then indicate the location
of the conductors and the orientation of their current along the k̂ axis while the oriented paths would
indicate the corresponding magnetic field’s orientation. In the case of a cable however, the 1st channel
is incomplete (only one wire represented by the white plus sign). A concentric cylindrical conductive
sleeve braided around the whole cable would provide an ideal return line for this channel as it will also
provide additional shielding to the cable.

Ĵ

 Î

Figure 1. This Pie-Chart array looks like. . . a pie. This figure can be seen as the conductor layout of a
flat (e.g., tracks of a PCB) 4 channels Pie-Chart inductive emitter (or receiver). Red and green oriented
paths would respectively represent the 2nd and 3rd channels emitter’s (receiver’s) track. They both are
2nd order Pie-Chart arrays. Blue oriented path would represent the 4th channel emitter’s (receiver’s)
track. It is a 3rd order Pie-Chart array. White oriented outer circle would represent the 1st channel
emitter’s (receiver’s) track. It is a special 1st order Pie-Chart antenna: it has infinite number of plane
of anti-symmetry. Plus and minus signs indicate the magnetic field’s orientation along the k̂ axis given
the correspondingly colored current paths.

2. THEORETICAL ANALYSIS

In the following we consider a working medium of linear homogeneous isotropic electromagnetic
properties filling an infinite tridimensional euclidean space. The medium has a magnetic permeability
μ = μ0μr, where μr is its relative permeability and μ0 = 4π × 107 Tm A−1. The default Cartesian
frame of reference is defined as (O; ı̂, ĵ, k̂).

2.1. Definitions

2.1.1. Reflexive Symmetry Function

Suppose a plane Q�n, �A normal to a vector �n = nx̂ı + ny ĵ + nzk̂ �= �0 and including a point A located by
�A =

−→
OA = Ax̂ı + Ay ĵ + Azk̂. The function Z(�P , �n, �A) which associates to any point P its orthogonal

symmetric
�n, �A

P̃ by the plane Q�n, �A (Fig. 2) is defined by:

Z : (R3, R3, R3) → R3

(�P , �n, �A) �→ P̃ =
1
�n2

(2[B] �A + [C]�P )
(1)
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Figure 2.
�n, �A

P̃ symmetric of P through Q�n, �A.

where [B] = �nT × �n (�n is a row vector) and [C] = �n2 × [I]3 − 2[B] ([I]3 is the 3× 3 unit matrix). Then:

• Z is an isometry of the euclidean space.

• For any given vectors �U and �V :

�n, �A

Ũ −
�n, �A

Ṽ =

�n, �A

�̃U − �V (2)

�n,�0

Ũ ×
�n,�0

Ṽ = −
�n,�0

�̃U × �V (3)
�n,�0

Ũ ·
�n,�0

Ṽ = �U · �V (4)

2.1.2. Antenna

The term antenna refers to any closed oriented 3D path. We model it as a parametric curve:

ζ :]a, b[ → R3

t �→ �ζ(t) =

⎛⎝x(t)
y(t)
z(t)

⎞⎠
ı̂,̂j,k̂

(5)

differentiable on ]a, b[ where limt→a
�ζ(t) = limt→b

�ζ(t) are respectively the positive and negative
antenna’s terminals.

The electric current �i(t) through ζ is defined at each point �ζ(t) by:

�i(t) = i(t) ·
�ζ ′(t)

‖�ζ ′(t)‖
(6)

where i(t) ∈ R is the current intensity and �ζ ′(t)/‖�ζ ′(t)‖ is the curve’s orientation vector at �ζ(t).

2.1.3. Array

An array [of antennas] refers to a tuple of n antennas �ζi, where n ∈ N, all linked to a common signal S

via transfer functions of their electric current �ii(t, S) or electric potential Vi(t, S) at each point �ζi(t).

2.1.4. Magneto-Static Approximation

In this paper, we consider that, at any instant, the current’s wavelength is long enough to be consider of
uniform intensity along each individual filamentary antenna it flows in. Therefore the mutual inductance
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Mi,j between two antennas ζi and ζj can be determined using the following Neumann Equation [4]:

Mi,j =
μ

4π
·
∮

ζi

∮
ζj

−→
dl i · −→dl j

‖�ri,j‖ (7)

where
−→
dl i =

−→
ζ ′

i(ti)dti,
−→
dl j =

−→
ζ ′

j(tj)dtj and �ri,j =
−→
ζ j(tj) − −→

ζ i(ti). Given that
−→
dl i and

−→
dl j are

independent, this equation leads to Mi,j = Mj,i.

2.2. Model

In this subsection parameters �n and �A are constants. Readers may refer to Fig. 3 of Subsection 3.3 for
visual reference.

Q n,  A

ζE1  H1 G1 F 1

 H2 G2

 E1a

 E1b

 n

A

 F1a

 F1b

Pt x y z Pt x y z Pt x y z
1 0 3.5 0 2 1.5 3.5 4.5 3 1.5 0 4.5
4 0 0 0 5 5 3.5 0 6 6.5 3.5 4.5
7 6.5 2.5 4.5 8 5 1 0 9 5 0 0
10 6.5 0 4.5 11 6.5 1 4.5 12 5 2.5 0
13 3.5 3.5 0 14 4.5 3.5 3 15 4.5 2 3
16 3.5 2 0 17 3.5 1.5 0 18 4.5 1.5 3
19 4.5 0 3 20 3.5 0 0 21 2 3.5 0
22 3 3.5 3 23 3 2 3 24 2 2 0
25 2 1.5 0 26 3 1.5 3 27 3 0 3
28 2 0 0 A -1 1.75 0
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Figure 3. Arbitrary symmetric and anti-symmetric arrays of antennas. Arrows indicate the antenna’s
orientation. 3D coordinates of the points 1 to 28 are expressed in meters. Notice that ζE1 and ζF are
homeomorphic to their symmetric/anti-symmetric. For a better visualization of the situation, they can
be seen as the serial combination of the manifold red dashed paths ζE1a and ζE1b

, respectively ζF1a and
ζF1b

.

2.2.1. Emitters Geometry

ζE is an emitting array of m geometrically distinct antennas admitting Q�n, �A as a plane of anti-symmetry
of ζE (symmetric paths but reverse symmetric orientation). That is to say, the elements ζEi of ζE are
constrained in shape and orientation in the manner:

∀i ≤ m, i ∈ N∗ : ∃!j/ ζEi : ] − e, e[ → R3

α �→

∣∣∣∣∣∣∣∣
�ζEi(α) =

�n, �A

ζ̃ Ej
(−α)

�ζ ′Ei
(α) = −

�n,�0

ζ̃ ′Ej
(−α)

(8)

For conciseness, we will use the notation ζEi =
�n, �A
�
ζEj

to represent this relation of reflexive anti-symmetry
by the plane Q

�n, �A
between the two individual antennas ζEi and ζEj . By extension, we will use this same

notation ζE =
�n, �A
�
ζE to represent the reflexive anti-symmetry relation between two arrays ζE and

�n, �A
�
ζE.

ζF is an emitting antenna array of n geometrically distinct antennas admitting Q�n, �A as a plane of
symmetry of ζF . That is to say, the elements ζFi of ζF are constrained in shape and orientation in the
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manner:
∀i ≤ n, i ∈ N∗ : ∃!j/ ζFi : ] − f, f [ → R3

α �→

∣∣∣∣∣∣∣
�ζFi(α) =

�n, �A

ζ̃Fj
(−α)

�ζ ′Fi
(α) =

�n,�0

ζ̃ ′Fj
(−α)

(9)

For conciseness, we will use the notation ζFi =
�n, �A
↼↽
ζFj

to represent this relation of reflexive symmetry by
the plane Q�n, �A between the two individual antennas ζFi and ζFj . By extension, we will use this same

notation ζF =
�n, �A
↼↽
ζF to represent the reflexive symmetry relation between two arrays ζF and

�n, �A
↼↽
ζF .

2.2.2. Receivers Geometry

ζG and ζH are receiving arrays of respectively o and p geometrically distinct antennas defined on ]−g, g[
and ] − h, h[ as:

ζG =
�n, �A
�
ζG (10)

ζH =
�n, �A
↼↽
ζH (11)

2.2.3. Mutual Inductance

Considering the above described antenna configuration, we can determine the mutual inductance
between each couple of antennas of ζE and ζF as:
∀(i, k) ≤ (m,n), (i, k) ∈ N2∗:

MEi,Fk
=

μ

4π
·
∫ e

−e

∫ f

−f

−
�n, �A

ζ̃ ′ Ej
(−α) ·

�n, �A

ζ̃ ′ Fl
(−β)

‖
�n, �A

ζ̃ Fl
(−β) −

�n, �A

ζ̃ Ej
(−α)‖

dβ dα

=
μ

4π
·
∫ −e

e

∫ −f

f

−
�n, �A

ζ̃ ′ Ej
(γ) ·

�n, �A

ζ̃ ′ Fl
(δ)

‖
�n, �A

ζ̃ Fl
(δ) −

�n, �A

ζ̃ Ej
(γ)‖

dγ dδ = −MEj ,Fl
(12)

where ζEi =
�n, �A
�
ζEj

and ζFk
=

�n, �A
↼↽
ζFl

. Similarly, we can establish that:
(i, k) ∈ N2∗:

∀(i, k) ≤ (m, o) : MEi,Gk
= MEj ,Gl

(13)
∀(i, k) ≤ (m, p) : MEi,Hk

= −MEj ,Hl
(14)

∀(i, k) ≤ (n, o) : MFi,Gk
= −MFj ,Gl

(15)
∀(i, k) ≤ (n, p) : MFi,Hk

= MFj ,Hl
(16)

∀(i, k) ≤ (o, p) : MGi,Hk
= −MGj ,Hl

(17)
i ∈ N∗:

∀i ≤ m : MEi,Ei = MEj ,Ej (18)
∀i ≤ n : MFi,Fi = MFj ,Fj (19)
∀i ≤ o : MGi,Gi = MGj ,Gj (20)
∀i ≤ p : MHi,Hi = MHj ,Hj (21)
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where ζGi =
�n, �A
�
ζGj

and ζHk
=

�n, �A
↼↽
ζHl

.
Given the above relations, the fact that the EMF ΔVi across the terminals of an inductor ζi induced

by the current of uniform intensity ij flowing through an antenna ζj can be determined at any instant
t using Faraday’s law as follows

ΔVi = Mij
d ij
dt

, (22)

and reminding that every antenna’s current or electromotive force (EMF) of a given array is linked
to one common signal via transfer functions (cf. Section 2.1.3), one can think of ways to combine the
antennas so that the output signal SG(t) of ζG depends only on the input signal SE(t) of ζE and the
output signal SH(t) of ζH only on the input signal SF (t) of ζF . In the following subsection, we present
the simplest antenna combination which meets those requirements.

2.2.4. Mutual Inductance Compensation Layout

We combine each emitting antenna ζEi of ζE with its anti-symmetric ζEj such as at each instant t:

∀i ∈ N∗, i ≤ m : ζEi ∪ ζEj ⇔ diEi

dt
=

diEj

dt
= FEi(SE(t)) (23)

where FEi is an arbitrary transfer function. Similarly, we combine each emitting antenna ζFi of ζF with
its symmetric ζFj such as at each instant t:

∀i ∈ N∗, i ≤ n : ζFi ∪ ζFj ⇔ d iFi

dt
=

d iFj

dt
= FFi(SF (t)) (24)

where FFi is an arbitrary transfer function.
We now combine each receiving antenna ζGi of ζG with its anti-symmetric ζGj such as at each

instant t:
∀i ∈ N∗, i ≤ o : ζGi ∪ ζGj ⇔ SG(t) = FG(G1, . . . ,Gi, . . . ,Go) (25)

where FG is an arbitrary transfer function, Gi = ΔVGi + ΔVGj , and ΔVGi is the EMF across the
terminals of ζGi . Similarly, we combine each receiving antenna ζHi of ζH with its symmetric ζHj such
as at each instant t:

∀i ∈ N∗, i ≤ p : ζHi ∪ ζHj ⇔ SH(t) = FH(H1, . . . ,Hi, . . . ,Hp) (26)

where FH is an arbitrary transfer function, Hi = ΔVHi + ΔVHj , and ΔVHi is the EMF across the
terminals of ζHi .

In practice, this combination can be achieved simply by connecting each ζEi in series† with ζEj ,
each ζFi in series† with ζFj , each ζGi in series† with ζGj and each ζHi in series† with ζHj .

2.2.5. Proof

Given ζEi =
�n, �A
�
ζEj

, ζFk
=

�n, �A
↼↽
ζFl

, ζGi =
�n, �A
�
ζGj

, ζHk
=

�n, �A
↼↽
ζHl

, and based on relations (13), (14) and (22), every
Gi can be expressed as a function of the input signals SE(t) and SF (t) so that:
∀i ∈ N2∗, i ≤ o :

Gi = ΔVGi + ΔVGj +

(
m∑

k=1

MGi,Ek
· FEk

(SE) + MGj ,El
· FEl

(SE)

)

+

(
n∑

k=1

MGi,Fk
· FFk

(SF ) + MGj ,Fl
· FFl

(SF )

)
† In theory, parallel connection should work as well. In practice, the slight differences in antenna’s Equivalent Series Resistance would
require a balancing circuit to achieve perfect crosstalk cancellation. Parallel connection may thus be a more flexible combination
method yet more complicated to put in application. Of course, parallel and series connections are not the only possibilities. . .
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Gi = 2
m∑

k=1

MGi,Ek
· FEk

(SE) (27)

Thus the output signal SG(t) of the anti-symmetric antenna array ζG is independent of the input signal
SF (t).

Similarly, based on relations (15) and (16), every Hi can be expressed as a function of the input
signals SE(t) and SF (t) so that:

∀i ∈ N2∗, i ≤ p : Hi = 2
n∑

k=1

MHi,Fk
· FFk

(SF (t)) (28)

Thus the output signal SH(t) of the symmetric antenna array ζH is independent of the input signal
SE(t).

2.2.6. Partial Conclusion

Given a set of parameters �n and �A, we show that a channel {SG, SE} of Q�n, �A anti-symmetric emitting
(ζE) and receiving (ζG) arrays can, in practice, be made independent of another channel {SH , SF } of
Q�n, �A symmetric emitting (ζF ) and receiving (ζH) arrays using elementary combination method (series
connection, parallel connection, . . . ).

Although the conclusion drawn here is a special case encompassed by the maximal ratio combining
technique (MRC) [5, 6], the approach presented here is original in that it eases a lot of the design process
of multichannel antenna design, as we will illustrate it in the following example. More importantly, this
is a fundamental element of the Pie-Chart antenna concept presented in the next section.

2.3. Example: Serial Layout

Let’s consider the emitting arrays ζE = ζE1 and ζF = ζF1 and the receiving arrays ζG = ζG1 ∪ ζG2

and ζH = ζH1 ∪ ζH2 illustrated on Fig. 3. They are connected in serial to their input/output signal
as illustrated on Fig. 4. Paths are made of isotropic homogenous conductive material of 5 mm radius
circular cross section. ζE and ζG are Q

�n, �A
anti-symmetric arrays, and ζF and ζH are Q

�n, �A
symmetric

ones. The conveniently built matrix of inductance [12], numerically evaluated using the Neumann
Equation (7), is provided in the table associated with Fig. 4.

i Gi H

i Fi E

 F1

RE RF

 E 1

SFSE

ζG1 G2

RG

 H2 H1

RH

SGSH

 VE1 VR E
 VF 1  VRF

 VR H  VH1  VH2  VG1  VG2
 VR G

ζζ ζ

ζ ζ

Δ Δ Δ Δ

Δ Δ Δ Δ Δ Δ

20.10 0.000 0.183 0.183 0.441 -0.441

0.000 27.21 0.398 -0.398 0.066 0.066

0.183 0.398 10.11 -0.335 0.423 -0.018

0.183 -0.398 -0.335 10.11 0.018 -0.423

0.441 0.066 0.423 0.018 10.11 0.335

-0.441 0.066 -0.018 -0.423 0.335 10.11

(a) (b)

(μH) M M M M M ME F G G H H1, j 1, j 1, j 2, j 1, j 2, j

M

M

M

M

M

M

i,            E

i, F

i, G

i, G

i, H

i, H

1

1

1

1

2

2

Figure 4. (a) Electric circuit of the simple 2 channels inductive transmission device presented Fig. 3
and (b) the associated inductance matrix numerically evaluated. In this example, antennas ζH1 and ζH2

of the ζH array are combined in a serial fashion. Same goes for the antennas of the ζG array.

SE(t), SF (t), SG(t) and SH(t) are measured (receiver) or imposed (emitter) time-dependent EMF
signals. Each signal can be expressed as a function of the others. For example:

SE(t) = ΔVRE
+ ΔVE1 = iE · RE + ME,E · d iE(t)

dt
+ ME,F · d iF (t)

dt

+(ME,G1 + ME,G2) ·
d iG(t)

dt
+ (ME,H1 + ME,H2) ·

d iH(t)
dt

(29)
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Repeating this process for every antenna and given the inductance presented in Figure 4, expressions
obtained for each signal are reduced to:

SE(t) = iE · RE + ME,E · d iE
dt

+ (ME,G1 + ME,G2) ·
d iG
dt

(30)

SF (t) = iF · RF + MF,F · d iE
dt

+ (MF,H1 + MF,H2) ·
d iH
dt

(31)

SG(t) = iG · RG + (MG1,G1 + MG2,G2) ·
d iG
dt

+ (MG1,E + MG2,E) · d iE
dt

(32)

SH(t) = iH · RH + (MH1,H1 + MH2,H2) ·
d iH
dt

+ (MH1,F + MH2,F ) · d iF
dt

(33)

The above studied system is equivalent to an inductive transmission device having two independent
channels: the “anti-symmetric” channel Ch1 = {ζE , ζG} and the “symmetric” channel Ch2 = {ζF , ζH}.

3. APPLICATION: PIE-CHART ANTENNA

3.1. Iterative Building Process

Let’s consider a plane Q�n, �A and a vector �n0 perpendicular to �n. We recursively construct any vector �ni

parallel to Q�n, �A so that n̂i+1 is the vector resulting from the rotation of n̂i around the (O : �n) axis by
an angle θi+1 = π

2i+1 . Hence �ni+1 satisfies:

n̂i+1 = [R]n̂θi+1
× n̂i (34)

where n̂ = �n
‖�n‖ and [R]n̂θi+1

is the rotation matrix:

[R]n̂θi+1
=

⎡⎢⎣ n2
x(1 − C) + C nxny(1 − C) − nzS nxnz(1 − C) + nyS

nxny(1 − C) + nzS n2
y(1 − C) + C nynz(1 − C) − nxS

nxnz(1 − C) − nyS nynz(1 − C) + nxS n2
z(1 − C) + C

⎤⎥⎦ (35)

where C = cos(θi+1) and S = sin(θi+1). In our case, this is equivalent to:

∀i ∈ N,

∣∣∣∣∣∣∣∣
�ni �= �0
n̂ · n̂0 = 0
n̂i × n̂i+1 = − sin(θi+1)n̂
n̂i · n̂i+1 = cos(θi+1)

(36)

Let’s consider an arbitrary elemental array ξX . We construct an m order Pie-Chart array ζm
X by

recursively applying the symmetry function Z as follows (Fig. 5):

∀m ∈ N∗,∀i < m, i ∈ N∗ :

∣∣∣∣∣∣∣∣∣∣∣

ζm
X(0) = ξX

ζm
X(i) = ζm

X(i−1) ∪
�ni−1, �A
↼↽
ζm
X(i−1)

ζm
X = ζm

X(m) = ζm
X(m−1) ∪

�nm−1, �A
�
ζm

X(m−1)

(37)

3.2. Proof of the Crosstalk Cancellation

• Suppose that Q�ni, �A
is the median plane between Q�ni−1, �A and Q�n0, �A such as −�n0 =

�ni,�0

�̃ni−1. Then
based on (36) we deduce the following:∣∣∣∣ n̂i × n̂0 = − sin(θi)n̂

n̂i · n̂0 = cos(θi)
(38)
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→

→
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→

Figure 5. This radial fractal tree is an intuitive way to visualize the geometric building process of any n
order Pie-Chart array. Reading starts at the center with the geometry of a 1st order Pie-Chart antenna,
result of the union of a red triangle with its yellow anti-symmetric one about the Q�u0, �A plane (point A

is the center of the figure). Progressing on the first green ring (the smallest one), the geometry of a 2nd
order array is composed of two antennas, result of the union of a red triangle and its blue symmetric
about the Q�u0, �A plane with their yellow and cyan anti-symmetric one about the Q�u1, �A plane. And so
on and so forth. Therefore, antennas on the most outer green ring can be combined into a 5th order
Pie-Chart array. In practice, red/yellow figures are combined with the blue/cyan one so that current
flowing through red/yellow figures flows in the opposite direction of that flowing through blue/cyan
ones.

which is equivalent to:
n̂0 = [R]n̂θi

× n̂i (39)

Taking notice that θi+1 = θi/2 and remembering that n̂i+1 = [R]n̂θi+1
× n̂i, we can deduce that

n̂0 = [R]n̂θi/2× ([R]n̂θi/2× n̂i) = [R]n̂θi+1
× n̂i+1. Therefore Q�ni+1, �A is the median plane between Q�ni, �A

and Q�n0, �A such as −n̂0 = Z(n̂i, �ni+1,�0).

• Based on (36) we know that n̂1 = [R]n̂π/2 × n̂0, thus giving −n̂0 = [R]n̂π/2 × n̂1. This is equivalent

to saying that Q
�n1, �A

is the median plane between Q
�n0, �A

and Q
�n0, �A

such as −n̂0 = Z(n̂i, �ni+1,�0).

We can thus deduce that the last building plane of symmetry Q�ni, �A
of a Pie-Chart array is the

median plane between Q�ni−1, �A and Q�n0, �A such as −�n0 = Z(�ni−1, �ni,�0).
Let’s consider a body Ωa mirror symmetric about two planes Q�na, �A and Q�nb, �A

, and the body Ωb

defined by Ωb = Z(Ωa, �nc, �A). Given that Z is an isometry of the euclidean space, we can conclude that
Ωb is mirror symmetric about the two planes Z(Q

�na, �A
, �nc, �A) and Z(Q

�nb, �A
, �nc, �A).

Let’s set �nc so that Q�nc, �A is a median plane between Q�na, �A and Q�nb, �A
. This means either n̂a =

�nc,�0˜̂nb

or −n̂a =
�nc,�0˜̂nb, thus resulting in:

�nc, �A

Q̃�na, �A = Q�nb, �A
(40)

Indeed Ωb stays mirror symmetric about the planes Q�na, �A and Q�nb, �A
. Applying this result to oriented
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paths, we can conclude that:

ζm =
�nm−2, �A

↼↽
ζm =

�n0, �A
↼↽
ζm =

�nm−1, �A
�
ζm (41)

This same statement also means that ζm admits
�nm−2, �A

Q̃ �nm−1, �A as a plane of symmetry, as well as

Z(
�nm−2, �A

Q̃ �nm−1, �A,
�nm−1, �A

ñ m−1, �A), etc. Indeed symmetry planes of ζm are defined at a rotation [R]n̂iθm−2
of

Q�nm−2
, and antisymmetry planes at a rotation [R]n̂iθm−2

of Q�nm−1
. Remembering that θi+1 = θi/2, then

∀i ∈ [1;m], Q�nm−i, �A
is a plane of antisymmetry of ζm, which allows us to say:

Any m order Pie-Chart array ζm is decoupled with any lower order Pie-Chart array sharing the
same building parameters �A, n̂ and n̂0.

4. EXPERIMENTS

In the following section we present two of the experiments that we conduct to evaluate the applicability
of the above theoretical model.

4.1. Three-Channels PCB Pie-Chart Array

The use of symmetry to reduce inductive crosstalk is a well-known technique [8]. However, up to current
literature, this technique alone seems effective up to a maximum of 2 independent channels per axis
(i.e., a maximum of 6 channels in a 3D space). In the following experiments, we measure how effective
is the proposed Pie-Chart antenna concept to overcome this limit of 2 independent channels per axis.

4.1.1. Design and Manufacture

For speed and accuracy reasons, we decided to make the antennas by the mean of PCB etching.
Insulation was ensured by a layer of about 0.1 mm thick rubber. We designed the antennas based
on the following requirements:

• at least 3 coplanar channels, because 2 coplanar channels case is part of common knowledge, well
documented and used in various applications.

 u
0

 u1 u2
→ →

→

Figure 6. Tracks of the experimental PCB Pie-Chart array. 1st channel is composed of the 1st order
red Pie-Chart antenna, 2nd channel is composed of the 2nd order green Pie-Chart antenna and the 3rd
channel is composed of the 3rd order blue Pie-Chart antenna. Colored arrows indicate the orientation of
the current inside the corresponding antenna. Vector �u0, �u1 and �u2 are the normals of the construction
planes Q�n0, �A to Q�n2, �A. Small black squares are the antenna’s terminals. Cyan line represents a link on
the rear side of the PCB. Black dashed rectangle is the 150 × 100 mm outer limit of the PCB.
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• self-inductance of every antennas must be close in order to lower the probability that the observed
crosstalk attenuation is due to a difference of channel’s pass-band frequency.

• given the characteristics of the used power supply (50Ω± 10 V, up to 15 MHz sinusoidal waveform
generator), antenna’s self-inductance and electrical length must be chosen so that antennas are
exploitable at frequencies lower than 15 MHz (� 20 m long wavelength).
Therefore, we needed a means to evaluate the inductance matrix of the system while designing the

antennas. For this purpose, we wrote a rudimentary computer program (GNU Octave function) which
returns the mutual inductance between any pair of arbitrary geometry antennas based on Neumann
Equation (7). The final circuit shown in Fig. 6 was etched on two standard 35 µm copper plated
150 × 100 mm large 1.6 mm thick glass Fiber Reinforced Epoxy boards and thinly-coated with rubber
as illustrated in Fig. 7.
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Figure 7. (a) Photograph of the experimental 3 channels PCB type Pie-Chart array and (b) the
associated inductance matrix numerically evaluated. Circuit tracks presented Fig. 6 were etched on two
150 × 100 mm boards. Those PCB were then coated with a thin layer of colored rubber (red surface).
Unit vectors ı̂ of the X axis and ĵ of the Y axis are indicated on the top right corner image in testing
configuration (i.e., one PCB flipped upside down on top of the other PCB about the Y axis).

4.1.2. Numerical Results

We consider a stack of the above presented two tri-channel arrays: one PCB is put up-side-down on top
of the other and separated by a distance h = 0.5 mm as shown at the top right corner of the photograph
in Fig. 7. The numerically evaluated inductance matrix is given in the table of Fig. 7 given that ζBi is
the ith channel of the bottom PCB array, and ζT i is the ith channel of the top PCB array.

The highlighted main diagonal shows that the self-inductance of each antenna is close to 14 µH.
Lightly highlighted second diagonals shows that each co-channel’s mutual inductance, about 12 µH, is
close to antennas’ self-inductance. Given formula (42) in [9], we can thus expect a minimum co-channel
magnetic coupling factor min(kco) = kB3,T3 = 84%.

∀(i, j) ∈ N : ki,j =

√
M2

i,j

Mi,i × Mj,j
(42)

In comparison, the evaluated cross-channel’s mutual inductances are not higher than 10 nH.
Therefore, we can expect a maximum cross-channel magnetic coupling factor of max(kcross) =
kB1,B3 = 7.2 × 10−2%. In this configuration, assuming that the transmission of power is approximately
proportional to k2 [10], this corresponds to an expected minimal Adjacent Channel Rejection Ratio
(ACRR, selectivity or signal to noise power ratio) min(Si,j) = SB3,T2 � 60 dB given‡:

Si,j = min
(

20 log10

(
ki1,i2

ki1,j

))
(43)

‡ Based on Eq. (42), Mi,j = Mj,i implies ki,j = kj,i; however, regarding Eq. (43), this does NOT imply that Si,j = Sj,i.
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where antennas ζi1 and ζi2 are two different antennas of the channel i, and ζj is an antenna of the
channel j. Notice that this equation leads to Si,j ∝ (Mj,j/Mi,i)1/2. From a crosstalk reduction stand
point, this means that a given multichannel inductive system would generally benefit from designing
higher power channels with proportionally higher self-inductance than lower power channels.

The same evaluation procedure was repeated in different configurations. Fig. 8 illustrates the
expected evolution of the minimum ACRR between channels functions of the PCB misalignment
(translation only) along the x, y and z axes.
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Figure 8. (a) Numerically evaluated impact of the PCB array misalignment along the x, (c) y and (b)
z axes on the Adjacent Channel Rejection Ratio (ACRR).

4.1.3. Experimental Setup

We would like to experimentally determine the ACRR and the mutual inductance matrix of the system
at position (0, 0, 0.5)O;̂ı ,̂j,k̂ (no x, y misalignment, 0.5 mm gap).

An antenna can be configured on the fly as emitter (connected to power supply) or receiver
(disconnected to power supply) thanks to the routing circuit shown in Fig. 9. Resistor Ri represents the
Equivalent Series Resistance (ESR) of the antenna ζi. Their value are given in Table A1 of Appendix
A.

Given the circuit presented in Fig. 9 and assuming that components properties are not significantly
altered over the 150 Hz to 15 MHz frequency range, we can deduce the relation:

ΔVB1 = ΔδγB1 − RB1
294.4Δβα − 314.4ΔδγB1

5888

= ΔδγB1 − RB1

(
Δβα

314.4
− ΔδγB1

294.4

)
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Figure 9. Routing circuit for experimental evaluation of up to 6 antenna system’s inductance matrix.
Signal supplied by the AC generator through 91.6 µF ceramic coupling capacitors is balanced with a
pair of 1.12 kΩ resistors. It is then routed to only one emitting antenna ζi by closing the switches PWi

(configuration XPi). Probed points {α, β} are connected to oscilloscope’s 1st and 2nd inputs (Tp1 and
Tp2). Probed points {γB1, δB1} to {γT3, δT3} are pairwise routable to the 3rd and 4th inputs of the
oscilloscope (Tp3 and Tp4) via the switches DAQB1 to DAQT3. A complete data set consists of a
record of {α, β, γB1, δB1} to {α, β, γT3, δT3} for each configuration XPi (6 configurations). For safety
reasons and measurement consistency, given a configuration XPi, when a signal Δγjδj (j �= i) is being
measured, the switch Gndj is closed to balance the signal (Gnd switches are otherwise open). All
represented ground points are oscilloscope’s ground (independent from generator’s ground). 1.12 kΩ,
10.0 Ω and 147.2 Ω resistors are thin film carbon resistors. Δαβ is the time reference signal of each
{α, β, γx, δx} record.

=
∑

Mi,B1
d Ii

dt
(44)

where ΔδγB1 is the electric potential difference γB1 − δB1 and Δβα the difference α − β. This
assumes that ζB1 is in emitter mode. When ζB1 is in receiver mode, we simply consider that
Δβα = ΔδγB1 in Equation (44). Same goes for the five other antennas. Hence, by recording the
electric potential {α, β, γB1, δB1} to {α, β, γT3, δT3} for 6 independent emitter/receiver configurations,
namely configuration XPB1 to XPT3, we can deduce the relations (45) and (46):

5888 × [Δγδ] − [R] × (294.4[Δαβ] − 314.4[Δγδ]) = [M] × d (294.4[Δαβ] − 314.4[Δγδ])
dt

(45)

XPB1 XP73

↓ ↓

5888

⎡⎣ΔγδB1 . . . ΔγδT3
...

...
ΔγδT3 ΔγδT3

⎤⎦−
⎡⎣RB1 0

. . .
0 RT3

⎤⎦
×
⎛⎝294.4

⎡⎣ Δαβ . . . ΔγδB1
...

. . .
...

ΔγδT3 Δαβ

⎤⎦− 314.4

⎡⎣ΔγδB1 . . . ΔγδB1
...

...
ΔγδT3 ΔγδT3

⎤⎦⎞⎠
=

⎡⎣MB1,B1 . . . MT3,B1
...

. . .
MB1,T3 MT3,T3

⎤⎦× d

dt

⎛⎝294.4

⎡⎣ Δαβ . . . ΔγδB1
...

. . .
...

ΔγδT3 Δαβ

⎤⎦− 314.4

⎡⎣ΔγδB1 · · · ΔγδB1
...

...
ΔγδT3 ΔγδT3

⎤⎦⎞⎠



162 Douarville-Blaise, Pouhè, and Hirai

[M] = (5888 × [Δγδ] − [R] × (294.4[Δαβ] − 314.4[Δγδ])) ×
[
d (294.4[Δαβ] − 314.4[Δγδ])

dt

]−1

(46)

In practice, configuration XPi consisted in setting only the antenna ζi as an emitter and the five
others set as receivers. This minimizes the risk of non-reversibility of the matrix d(294.4[Δαβ] −
314.4[Δγδ])/dt.

Measurement points Tp1 to Tp4 were connected to the 1MΩ inputs of a 4 channels oscilloscope
(ref: Agilent 2024A) via 1.2 m unterminated crocodile clip ended 50 Ω coaxial cable, as can be seen in
Fig. 10. All four coaxial cables were twisted in one strand between the measurement points and the
oscilloscope inputs to reduce ground loops. Measurements were performed inside an anechoic chamber
at 20◦C.

Figure 10. View of the PCB array experimental
setup. On the left the Device Under Test
(DUT), on the right the board used for routing
power to the desired antenna and signal to
the oscilloscope’s inputs. Equivalent circuitry
achieved with this board is depicted Fig. 9.
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Figure 11. ACRR of PCB array calculated from
experiment data at different frequencies.

4.1.4. Results

Net electric power Pj received by the 294.4 Ω + Rj load of an antenna ζj is accessible via the electric
current matrices [Iζ] (Cf. Table A9 to Table A14 in Appendix A) by the relation Pj = (294.4+Rj)Iζj

2.
Assuming that crosstalk is globally low between every channels, which is apparently the case up to
1.5 MHz, then Si,j � 20 log10((294.4 + Ri)Iζi/((294.4 + Rj)Iζj), where ζi is the antenna connected to
the power source, gives a good estimation of the ACRR. Results show a typical channel selectivity of
55 dB to 70 dB from 150 Hz to 150 kHz (Cf. Fig. 11).

The inductance matrices were automatically computed using an octave script proceeding in the
following manner:

• the amplitude and phase of the sinusoidal signals Δαβ and Δγδ were determined by fitting an ideal
sinusoid to the raw signal using a bisection method with threshold of 1 × 10−5◦ on phase angle,
5 × 10−5 V on peak-to-peak amplitude and 1 × 10−5 V on common mode.

• this information and the measured ESR of each antenna (Cf. Appendix A Table A1) were injected
into Equation (46).

Results are presented in Tables A15 to A20 of Appendix A.

4.2. 2 Channels Rotary Pie-Chart Array

The presented geometry was designed to address the main drawback of the “Circle” geometry proposed
by Bieler et al. in [3]: a sensible level of interferences, even for the optimized “Circle” geometry tested
in [7]. Unfortunately this last paper does not provide enough details to estimate the ACRR of Bieler
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et al.’s model. Our particular version is a basic rotary type of 2 channels Pie-Chart array designed to
improve ACRR of rotating type of Near Field Wireless Transmission of Power and Information device
(NFWTPI).

4.2.1. Design and Manufacture

From a time perspective, the rotary prototype was built and tested prior to the PCB one. At that time,
primary design constraint was the availability of tools and materials. As a simple proof of concept, we
came out with the design depicted Fig. 12. Device was built using 48 mm inside/outside diameter PVC
tube, of 0.35 mm core diameter insulated copper wire and a drill press. In this case, “power” channel
{Pin, Pout} was designed with a higher self inductance than the “data” channel {Din,Dout}.
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Figure 12. (a) Construction of the non-contact slip ring’s, or rotary array, and (b) associated
inductance matrix numerically evaluated. Red and blue colors on the top cross-section differentiate
the orientation of electric current inside the coils conductors. Coils Pin and Pout are each made of 14
turns of conductor, Din and Dout are each made of 2 × 3 turns of conductor.

4.2.2. Results

Numerical results presented in the table of Fig. 12 were obtained using the same methodology as that
of the PCB array. Based on this table, we can expect a minimum ACRR SP,D close to 91 dB and
SD,P close to 67 dB. Once again we present, in Fig. 13, the expected evolution of ACRR Si,j function of
misalignment along the rotation axis (Z axis). Fig. 14 shows the ACRR evaluated from the experimental
results. Evaluated inductance matrices presented in Tables A21 to A26 of Appendix A were obtained
using a similar procedure to that of the PCB array. The measured ESR used in those calculations are
presented in Table A2 of Appendix A, and the currents through the inductors are presented in Table A3
to A8.

5. DISCUSSION

Experimental results globally agree with the theory: we observe a significant ACRR in most of the
tested configurations. However, there are several discrepancies that we will discuss in this section.

5.1. Symmetry of the Inductance Matrices

Up to Neumann formula, the inductance matrices should be symmetric. Let’s define a coefficient W
which qualifies how symmetric is a given square matrix [M] of size n. W is equal to 1 minus the average
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ratio of the difference between two diagonally opposed terms over the range of all non-diagonal terms
such as:

W = 1 − 2
n2 − n

n∑
i=2

i−1∑
j=1

|Mi,j − Mj,i|
max(M∗) − min(M∗)

(47)

where Mi,j is the term at the ith line jth column of [M], and M∗ are all the non-diagonal terms of [M].
Note that we consider only the real part of each term. The W factors for inductance matrices presented
in Tables A15 to A26 all exceed 99%. In comparison, the expected W factor is about 60.6%+10.2%

−10.6% for
a random 4 × 4 matrix and 64.4%+6.1%

−6.4% for a 6 × 6 one. Model and experiments are consistent on this
point.

5.2. Inductance

Based on Lenz’s Law, the self inductance of a simple conductor is always positive. At 15 MHz both
PCB and rotary array’s self-inductance are negative (Cf. diagonal terms of the inductance matrices
Tables A15 to A26). On the other hand, we can observe an unusually large imaginary part at low
frequency.

Stray capacitance may intuitively explain the negative self-inductance at high frequency. On the
large imaginary part issue, we must acknowledge that an inductance’s imaginary part is homogeneous
to the real part of a complex impedance, i.e., a resistance. Indeed, the issue lies in the poor conditioning
of the matrix [M] with respect to the ESR matrix [R] at low frequency.

Using a SPICE program to simulate the behavior of a simplified version of the PCB array
experimental setup (Cf. Fig. 15), we observed that the ±0.01 Ω measurement tolerance on [R]
corresponded to about ±10 µH deviation on the calculated self-inductance’s imaginary part. In the mean
time, we also noticed that even 90 pF per probe + oscilloscope input capacitance (very conservative value
considering that we used straight 1.2 m unterminated lossless coaxial cables) is enough to significantly
bias the calculated value of [M] above 3 MHz (Cf. Fig. 16). Hence the negative values were obtained at
15 MHz.

Notice that however a negative self-inductance might be alarming, and negative mutual inductance
is not. The observed negative co-channel mutual inductance MB2,T2 is consistent over the whole test
frequency range. Indeed, this simply denotes that either ζB2 or ζT2 was plugged in reverse polarity.

5.3. Coupling and Selectivity

In the numerical analysis of Section 4.1.2, we would expect the ACRR of the PCB array to tend to
infinity at position (0, 0, 0.5)O;̂ı,̂j,K̂ between channels. Instead we observed filtering capabilities globally
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Figure 16. Comparison of the signal (294.4 × Δαβ − 314.4Δγδ)/5888 between the simulated circuit
Fig. 15 and the real antenna ζB1. The result allows to estimate the resonance frequency, above which
the capacitive impedance will dominate over the inductance of a 14 µF antenna, thus leading to wrong
calculation of the self inductance with our method (negative values). This is put in perspective with
an ideal situation where the circuit would not contain parasitic capacitance. Their is not enough
measurement points to precisely determine the resonance frequency of the real device. However, the
curve obtained from simulation fits well enough the measurements to conclude that at 15 MHz the
system definitely operates above its resonance frequency.

lower than 100 dB at that position. Furthermore, the highest filtering position varies from channel to
channel.

Indeed, unlike the simple loop geometry used in example 2.3, the spiral geometry used here is
not perfectly symmetric. To a smaller extend, this might be due to the numerical bias introduced by
numerical round-off and the limited resolution of the numerical model.

The ACRR of the experimental rotary array is substantial over the whole tested frequency range:
above 20 dB. However, it is about 3 orders of magnitude lower than the expected values from numerical
evaluation.

It is reasonable to think that this high discrepancy is mainly due to the relatively poor building
accuracy of the experimental device (machined with a drill press) and of the acquisition system. As can
be seen in Fig. 13, a misalignment of only 0.1 mm could account for this difference. This might be further
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emphasize by the low number of turns (higher sensitivity to random error) and by the compactness of
the system in comparison to the PCB array.

Based on its definition (Equations (43) and (42)), ACRR’s should be independent of the operating
frequency. For both experimental devices, the calculated absolute ratio between co-channel and cross-
channel couplings is higher than 10 (20 dB of ACRR) up to 1.5 MHz. Above that frequency, the ratio
collapses to as low as 1.7 (about 5 dB). This phenomenon was not predicted by the presented Pie-Chart
antenna model.

It is tempting to think that this is another consequence of the stray mutual capacitance between
channels. Yet, given how randomly affected each ACRR seemed to be (at 15 MHz S3,1 � 10 dB whereas
S2,3 � 40 dB) we would expect an equally random capacitive coupling matrix for the system. Considering
how similar we tried to make each antenna of the PCB device (similar self-inductance, similar total wire
length hence the similar antenna ESR seen in Table A1, similar copper trace surface area) and the fact
that each pair of wires was twisted, we would not expect the capacitance matrix of the system to be
random. Similarly, explaining the sudden increase of SD,P of the rotary array might be a not-so-obvious
task.

Recent tests performed on the routing circuit visible in Fig. 10 indicated a sensible amount of
noise from this circuit above 1 MHz. This might be further emphasized by the fact that this operating
frequency is close to the resonance frequency of this circuit when being connected to a 10 µF ∼ 20 µF
antenna. We do not know yet how much this routing circuit noise accounts for the complete noise signal.
A more careful design of the experimental setup to minimize the amount of stray capacitance from the
measurement tools and routing circuit, as well as more detailled frequency domains response of the
system may help to better characterize those phenomenons. We are currently investigating those issues
and will hopefully provide our results in a later manuscript in preparation: “Eliminate Crosstalk using
Symmetry in MIMO Arrays of Inductive Antenna: Miscellaneous Properties of Pie-Chart Antennas.”.

6. CONCLUSION

A specific topology of multichannel inductive array of antennas was presented. It was shown to be
theoretically efficient in filtering crosstalk. That was experimentally confirmed over a 150 Hz ∼ 1.5 MHz
frequency range. Building process, based on iterative symmetries, allows for very quick and cheap
yet efficient design and manufacturing of multichannel device. This design simplicity was especially
exemplified with the quick building and test of the 2 channels rotary type of inductive transmission
device (wireless “slip ring”).

Yet, we were unable to prove the effectiveness of the concept above this frequency range because
of a too high amount of stray capacitance in the test system and because of an unexpected incoherent
drop of ACRR at high frequency. Further investigations on those issues are currently carried out for a
more complete understanding of the physics at play.
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APPENDIX A. TABLES

Table A1. Calculated and measured Equivalent Series Resistance Ri (PCB array).

RB1 RB2 RB3 RT1 RT2 RT3

Calculated (Ω) 4.38 4.81 5.13 4.38 4.81 5.13

Measured (Ω) 4.48 4.77 5.01 4.67 4.72 5.03

Error (%) 2.5 0.7 2.4 6.6 1.7 1.9
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Table A2. Calculated and measured Equivalent Series Resistance Ri (rotary array).

RPin RDin RPout RDout

Calculated (Ω) 0.50 0.22 0.46 0.20

Measured (Ω) 0.52 0.16 0.45 0.23

Error (%) 3 28 3 13

Table A3. Current through the inductors
evaluated at 150 Hz (rotary array).

(mA) XP1 XP2 XP3 XP4

IζPin
129.12

−0.05◦

0.00

64.95◦

0.01

−90.13◦

0.00

131.20◦

IζDin
0.00

87.32◦

129.82

−0.01◦

0.00

84.04◦

0.00

90.55◦

IζPout
0.01

−90.14◦

0.00

96.99◦

129.22

−0.05◦

0.00

−71.59◦

IζDout
0.00

−60.46◦

0.00

89.37◦

0.00

−78.92◦

129.71

−0.00◦

Table A4. Current through the inductors
evaluated at 1.5 kHz (rotary array).

(mA) XP1 XP2 XP3 XP4

IζPin
140.70

−0.53◦

0.00

88.43◦

0.06

−90.62◦

0.00

−139.11◦

IζDin
0.00

87.41◦

141.63

−0.06◦

0.00

88.48◦

0.00

89.85◦

IζPout
0.06

−90.67◦

0.00

91.15◦

140.91

−0.48◦

0.00

−90.02◦

IζDout
0.00

−88.52◦

0.00

89.73◦

0.00

−90.41◦

141.44

−0.05◦

Table A5. Current through the inductors
evaluated at 15 kHz (rotary array).

(mA) XP1 XP2 XP3 XP4

IζPin
141.29

−5.33◦

0.00

89.48◦

0.61

−95.28◦

0.00

166.05◦

IζDin
0.00

84.47◦

142.25

−0.56◦

0.00

84.82◦

0.04

89.35◦

IζPout
0.61

−95.74◦

0.00

89.19◦

141.43

−4.85◦

0.00

−91.29◦

IζDout
0.00

80.15◦

0.04

89.32◦

0.00

−94.23◦

142.05

−0.53◦

Table A6. Current through the inductors
evaluated at 150 kHz (rotary array).

(mA) XP1 XP2 XP3 XP4

IζPin
133.35

−41.55◦

0.01

77.03◦

5.79

−133.17◦

0.00

174.37◦

IζDin
0.01

44.62◦

141.31

−5.52◦

0.03

48.92◦

0.38

83.84◦

IζPout
5.75

−135.47◦

0.03

79.98◦

134.46

−39.01◦

0.02

−100.01◦

IζDout
0.00

124.15◦

0.38

83.55◦

0.01

−130.52◦

141.13

−5.18◦

Table A7. Current through the inductors
evaluated at 1.5 MHz (rotary array).

(mA) XP1 XP2 XP3 XP4

IζPin
37.77

−59.39◦

0.10

−15.46◦

18.30

171.32◦

0.08

95.55◦

IζDin
0.04

−4.43◦

133.47

−41.80◦

0.09

12.73◦

3.58

44.29◦

IζPout
17.12

172.33◦

0.23

15.00◦

41.59

−58.09◦

0.14

−173.44◦

IζDout
0.03

96.83◦

3.57

43.00◦

0.06

−173.03◦

134.14

−40.02◦

Table A8. Current through the inductors
evaluated at 15 MHz (rotary array).

(mA) XP1 XP2 XP3 XP4

IζPin
198.55

109.43◦

0.11

104.76◦

3.21

17.84◦

0.15

−24.53◦

IζDin
0.18

99.15◦

126.64

118.17◦

0.32

−178.64◦

15.89

−140.40◦

IζPout
3.19

18.22◦

0.24

−179.13◦

188.70

106.11◦

0.40

15.19◦

IζDout
0.30

−2.90◦

17.19

−137.41◦

0.74

25.57◦

115.89

115.65◦
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Table A9. Current through the inductors evaluated at 150 Hz (PCB array).

(mA) XP1 XP2 XP3 XP4 XP5 XP6

IζB1
121.66
−0.04◦

0.00
67.99◦

0.00
−134.34◦

0.01
−90.10◦

0.00
29.72◦

0.00
3.64◦

IζB2
0.00
31.01◦

121.07
−0.04◦

0.00
175.45◦

0.00
25.98◦

0.01
89.88◦

0.00
−90.19◦

IζB3
0.00

−23.31◦

0.00
113.23◦

120.65
−0.04◦

0.00
14.07◦

0.00
−46.67◦

0.01
−90.08◦

IζT1
0.01

−90.08◦

0.00
83.31◦

0.00
94.08◦

121.23
−0.04◦

0.00
68.65◦

0.00
63.99◦

IζT2
0.00
105.42◦

0.01
89.94◦

0.00
−96.83◦

0.00
171.64◦

121.17
−0.04◦

0.00
−172.91◦

IζT3
0.00
40.67◦

0.00
−126.74◦

0.01
−90.05◦

0.00
64.59◦

0.00
−22.46◦

120.57
−0.04◦

Table A10. Current through the inductors evaluated at 1.5 kHz (PCB array).

(mA) XP1 XP2 XP3 XP4 XP5 XP6

IζB1
131.83
−0.38◦

0.00
85.74◦

0.00
86.10◦

0.06
−90.52◦

0.00
84.50◦

0.00
83.55◦

IζB2
0.00
91.49◦

131.18
−0.38◦

0.00
92.85◦

0.00
86.85◦

0.06
89.46◦

0.00
−99.30◦

IζB3
0.00
83.11◦

0.00
77.45◦

130.62
−0.38◦

0.00
87.63◦

0.00
−91.89◦

0.06
−90.53◦

IζT1
0.06

−90.54◦

0.00
88.76◦

0.00
95.11◦

131.36
−0.38◦

0.00
77.99◦

0.00
80.66◦

IζT2
0.00
90.54◦

0.06
89.46◦

0.00
−89.31◦

0.00
90.95◦

131.22
−0.38◦

0.00
−123.75◦

IζT3
0.00
85.50◦

0.00
−92.06◦

0.06
−90.54◦

0.00
86.03◦

0.00
−146.17◦

130.58
−0.38◦

Table A11. Current through the inductors evaluated at 15 kHz (PCB array).

(mA) XP1 XP2 XP3 XP4 XP5 XP6

IζB1
132.41
−4.03◦

0.00
85.08◦

0.00
84.29◦

0.61
−94.45◦

0.00
87.22◦

0.00
84.17◦

IζB2
0.00
82.52◦

131.75
−4.03◦

0.00
79.27◦

0.00
82.46◦

0.60
85.50◦

0.00
−92.24◦

IζB3
0.00
76.24◦

0.00
81.22◦

131.21
−3.99◦

0.00
80.05◦

0.00
−93.24◦

0.58
−94.47◦

IζT1
0.61

−94.48◦

0.00
85.36◦

0.00
84.04◦

131.92
−4.00◦

0.00
85.75◦

0.00
83.37◦

IζT2
0.00
80.82◦

0.60
85.51◦

0.00
−92.56◦

0.00
79.98◦

131.78
−4.03◦

0.00
−82.99◦

IζT3
0.00
78.87◦

0.00
−91.57◦

0.58
−94.47◦

0.00
80.69◦

0.00
−82.39◦

131.10
−3.98◦
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Table A12. Current through the inductors evaluated at 150 kHz (PCB array).

(mA) XP1 XP2 XP3 XP4 XP5 XP6

IζB1
126.18
−34.47◦

0.00
50.76◦

0.00
60.41◦

5.77
−128.19◦

0.00
61.81◦

0.00
52.90◦

IζB2
0.00
55.99◦

125.40
−34.48◦

0.00
50.68◦

0.00
55.77◦

5.75
51.45◦

0.00
−130.58◦

IζB3
0.00
65.73◦

0.00
53.39◦

124.92
−34.23◦

0.00
49.34◦

0.01
−131.49◦

5.47
−128.32◦

IζT1
5.72

−128.39◦

0.00
58.87◦

0.00
63.55◦

125.71
−34.27◦

0.00
83.34◦

0.00
57.68◦

IζT2
0.00
57.63◦

5.69
51.51◦

0.01
−131.57◦

0.00
59.52◦

125.45
−34.48◦

0.00
−141.09◦

IζT3
0.00
50.75◦

0.00
−130.01◦

5.47
−128.38◦

0.00
49.21◦

0.00
−141.29◦

124.86
−34.10◦

Table A13. Current through the inductors evaluated at 1.5 MHz (PCB array).

(mA) XP1 XP2 XP3 XP4 XP5 XP6

IζB1
38.34
−52.80◦

0.11
−58.33◦

0.03
−38.38◦

18.70
175.88◦

0.04
88.63◦

0.02
11.29◦

IζB2
0.03
90.52◦

38.21
−52.84◦

0.02
104.15◦

0.03
85.94◦

18.51
−4.76◦

0.05
124.61◦

IζB3
0.03
102.30◦

0.03
108.77◦

39.29
−55.74◦

0.03
86.78◦

0.04
130.94◦

17.93
174.06◦

IζT1
18.75
175.83◦

0.01
42.26◦

0.06
103.37◦

38.21
−52.82◦

0.16
109.62◦

0.08
103.78◦

IζT2
0.03
101.83◦

18.43
−4.73◦

0.05
122.09◦

0.04
104.32◦

38.50
−52.56◦

0.03
109.32◦

IζT3
0.04
108.18◦

0.05
127.96◦

17.82
174.06◦

0.04
101.02◦

0.04
112.68◦

39.25
−54.54◦

Table A14. Current through the inductors evaluated at 15 MHz (PCB array).

(mA) XP1 XP2 XP3 XP4 XP5 XP6

IζB1
198.25
104.56◦

0.07
92.68◦

0.31
138.54◦

6.02
13.80◦

0.09
8.76◦

0.57
6.10◦

IζB2
0.08
66.82◦

183.01
104.31◦

0.10
8.02◦

0.08
76.93◦

5.87
−164.94◦

0.06
57.71◦

IζB3
0.37
140.20◦

0.03
23.34◦

194.39
104.98◦

0.54
172.09◦

0.06
52.31◦

1.97
23.38◦

IζT1
6.01
15.39◦

0.12
112.53◦

0.56
175.93◦

186.25
101.77◦

0.12
35.02◦

0.31
11.85◦

IζT2
0.07
40.07◦

5.53
−163.50◦

0.06
77.61◦

0.08
37.55◦

198.82
101.71◦

0.07
122.07◦

IζT3
0.47
1.79◦

0.06
49.38◦

1.90
23.86◦

0.35
1.00◦

0.07
141.85◦

206.94
103.98◦
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Table A15. Evaluated PCB array’s inductance matrix at 150 Hz§.

(µH) MB1,j MB2,j MB3,j MT1,j MT2,j MT3,j

Mi,B1
16.540
−96.211j

−0.010
+0.004j

0.003
−0.003j

14.283
−0.016j

−0.011
+0.019j

−0.001
+0.015j

Mi,B2
−0.004

+0.007j

17.119
+39.142j

−0.002
−0.021j

−0.002
+0.004j

−14.303
+0.020j

0.007
−0.000j

Mi,B3
0.001
+0.003j

−0.011
−0.005j

17.795
+121.928j

−0.005
+0.020j

0.009
+0.009j

13.835
−0.010j

Mi,T1
14.298
−0.008j

−0.014
+0.002j

−0.023
−0.002j

16.685
−307.465j

−0.008
+0.003j

−0.013
+0.006j

Mi,T2
−0.014
−0.004j

−14.299
+0.005j

0.023
−0.003j

−0.002
−0.015j

16.457
+80.503j

0.003
−0.023j

Mi,T3
−0.007

+0.008j

0.012
−0.009j

13.842
−0.002j

−0.013
+0.006j

0.008
+0.019j

16.440
+89.336j

Table A16. Evaluated PCB array’s inductance matrix at 1.5 kHz§.

(µH) MB1,j MB2,j MB3,j MT1,j MT2,j MT3,j

Mi,B1
16.499
−9.046j

−0.008
+0.001j

−0.003
+0.000j

14.559
−0.029j

−0.005
+0.000j

−0.008
+0.001j

Mi,B2
−0.010
−0.000j

16.659
+4.786j

−0.006
−0.000j

−0.010
+0.000j

−14.567
+0.032j

0.007
−0.001j

Mi,B3
−0.003

+0.000j

−0.005
+0.001j

16.635
+13.168j

−0.006
+0.000j

0.012
−0.000j

14.084
−0.032j

Mi,T1
14.558
−0.033j

−0.009
+0.000j

−0.006
−0.001j

16.430
−29.744j

−0.004
+0.001j

−0.008
+0.001j

Mi,T2
−0.008
−0.000j

−14.569
+0.033j

0.011
+0.000j

−0.006
−0.000j

16.619
+9.185j

0.001
−0.001j

Mi,T3
−0.007

+0.000j

0.009
−0.000j

14.089
−0.031j

−0.009
+0.001j

0.001
−0.001j

16.525
+10.095j

Table A17. Evaluated PCB array’s inductance matrix at 15 kHz§.

(µH) MB1,j MB2,j MB3,j MT1,j MT2,j MT3,j

Mi,B1
17.324
−0.813j

−0.009
+0.000j

−0.003
+0.000j

14.551
−0.035j

−0.006
−0.000j

−0.008
+0.000j

Mi,B2
−0.010

+0.001j

17.548
+0.586j

−0.004
+0.000j

−0.009
+0.001j

−14.562
+0.038j

0.008
+0.000j

Mi,B3
−0.004

+0.001j

−0.005
+0.000j

17.569
+1.425j

−0.006
+0.001j

0.012
+0.000j

14.082
−0.043j

Mi,T1
14.551
−0.035j

−0.008
+0.000j

−0.005
+0.000j

17.335
−2.887j

−0.005
+0.000j

−0.009
+0.000j

Mi,T2
−0.007

+0.001j

−14.559
+0.037j

0.012
+0.000j

−0.006
+0.001j

17.540
+1.008j

0.002
+0.000j

Mi,T3
−0.006

+0.001j

0.009
+0.000j

14.083
−0.040j

−0.008
+0.001j

0.002
+0.000j

17.519
+1.094j
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Table A18. Evaluated PCB array’s inductance matrix at 150 kHz§.

(µH) MB1,j MB2,j MB3,j MT1,j MT2,j MT3,j

Mi,B1
17.534
−0.289j

−0.009
+0.000j

−0.003
−0.001j

14.578
−0.192j

−0.006
−0.001j

−0.007
−0.000j

Mi,B2
−0.008
−0.001j

17.776
−0.168j

−0.003
−0.000j

−0.008
−0.001j

−14.581
+0.221j

0.009
−0.001j

Mi,B3
−0.002
−0.001j

−0.003
−0.000j

17.776
−0.128j

−0.004
−0.000j

0.014
−0.001j

13.936
−0.248j

Mi,T1
14.418
−0.188j

−0.008
−0.001j

−0.004
−0.001j

17.556
−0.509j

−0.003
−0.002j

−0.007
−0.001j

Mi,T2
−0.005
−0.000j

−14.421
+0.204j

0.014
−0.001j

−0.004
−0.000j

17.759
−0.152j

0.003
−0.001j

Mi,T3
−0.004
−0.000j

0.011
−0.001j

13.937
−0.233j

−0.007
−0.000j

0.003
−0.001j

17.724
−0.181j

Table A19. Evaluated PCB array’s inductance matrix at 1.5 MHz§.

(µH) MB1,j MB2,j MB3,j MT1,j MT2,j MT3,j

Mi,B1
22.917
−2.770j

−0.124
+0.074j

0.015
+0.008j

20.072
−2.707j

0.136
−0.062j

0.022
−0.016j

Mi,B2
−0.007
−0.041j

22.876
−3.062j

−0.001
−0.021j

−0.008
−0.034j

−19.783
+3.095j

0.019
−0.042j

Mi,B3
0.049
−0.041j

0.014
−0.035j

21.938
−2.536j

0.042
−0.033j

0.023
−0.033j

18.388
−2.851j

Mi,T1
20.025
−2.743j

−0.149
+0.008j

0.049
−0.076j

22.846
−2.731j

0.112
−0.128j

0.054
−0.099j

Mi,T2
0.010
−0.030j

−19.883
+3.039j

0.034
−0.048j

0.013
−0.036j

22.829
−3.138j

0.013
−0.030j

Mi,T3
0.057
−0.050j

0.029
−0.043j

18.448
−2.572j

0.049
−0.045j

0.006
−0.038j

21.921
−2.942j

Table A20. Evaluated PCB array’s inductance matrix at 15 MHz§.

(µH) MB1,j MB2,j MB3,j MT1,j MT2,j MT3,j

Mi,B1
−0.560

+0.393j

0.000
+0.001j

−0.002
+0.004j

0.090
−0.015j

0.001
−0.000j

0.007
−0.002j

Mi,B2
0.001
+0.001j

−0.609
+0.408j

0.001
−0.000j

0.001
+0.001j

−0.083
+0.013j

0.001
+0.000j

Mi,B3
−0.002

+0.005j

0.000
−0.000j

−0.571
+0.406j

−0.007
+0.004j

0.001
+0.000j

0.027
−0.001j

Mi,T1
0.085
−0.017j

0.000
+0.002j

−0.007
+0.004j

−0.602
+0.374j

0.002
+0.000j

0.004
−0.001j

Mi,T2
0.001
+0.000j

−0.085
+0.014j

0.000
+0.001j

0.001
+0.000j

−0.565
+0.369j

−0.000
+0.001j

Mi,T3
0.006
−0.003j

0.001
+0.000j

0.028
−0.001j

0.005
−0.002j

−0.000
+0.001j

−0.538
+0.387j
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Table A21. Evaluated rotary array’s inductance
matrix at 150 Hz§.

Mi,P in
18.811

−10.388j

−0.027

+0.013j

13.279

−0.017j

−0.002

−0.002j

Mi,Din
−0.033

+0.002j

1.918

−9.111j

−0.067

+0.007j

−0.828

−0.008j

Mi,Pout
13.280

−0.020j

−0.066

−0.008j

17.008

−10.514j

0.029

+0.010j

Mi,Dout
0.013

+0.007j

−0.819

+0.009j

0.034

+0.007j

1.728

−11.318j

Table A22. Evaluated rotary array’s inductance
matrix at 1.5 kHz§.

(µH) MPin,j MDin,j MPout,j MDout,j

Mi,P in
18.945

−1.185j

−0.027

+0.001j

13.529

−0.024j

0.001

−0.001j

Mi,Din
−0.030

+0.001j

1.930

−0.859j

−0.061

+0.001j

−0.826

+0.001j

Mi,Pout
13.532

−0.025j

−0.059

−0.001j

17.050

−0.906j

0.035

+0.000j

Mi,Dout
0.014

+0.001j

−0.826

+0.003j

0.032

+0.000j

1.792

−1.042j

Table A23. Evaluated rotary array’s inductance
matrix at 15 kHz§.

(µH) MPin,j MDin,j MPout,j MDout,j

Mi,P in
19.070

−0.179j

−0.028

−0.000j

13.524

−0.020j

−0.000

−0.000j

Mi,Din
−0.030

−0.000j

1.973

−0.083j

−0.061

+0.000j

−0.835

+0.001j

Mi,Pout
13.524

−0.022j

−0.061

−0.000j

17.286

−0.164j

0.035

−0.000j

Mi,Dout
−0.001

+0.000j

−0.835

+0.001j

0.033

+0.000j

1.855

−0.101j

Table A24. Evaluated rotary array’s inductance
matrix at 150 kHz§.

(µH) MPin,j MDin,j MPout,j MDout,j

Mi,P in
18.946

−0.328j

−0.029

−0.001j

13.512

−0.164j

0.000

−0.000j

Mi,Din
−0.030

−0.001j

1.941

−0.040j

−0.062

+0.000j

−0.841

+0.009j

Mi,Pout
13.510

−0.183j

−0.061

+0.000j

17.196

−0.240j

0.036

−0.001j

Mi,Dout
−0.000

+0.000j

−0.842

+0.009j

0.035

−0.001j

1.826

−0.036j

Table A25. Evaluated rotary array’s inductance
matrix at 1.5 MHz§.

(µH) MPin,j MDin,j MPout,j MDout,j

Mi,P in
22.839

−2.335j

−0.047

−0.008j

17.774

−1.996j

0.010

−0.010j

Mi,Din
−0.049

−0.011j

1.915

−0.113j

−0.078

−0.002j

−0.839

+0.032j

Mi,Pout
17.689

−1.944j

−0.080

−0.005j

20.817

−2.016j

0.047

−0.014j

Mi,Dout
0.010

−0.007j

−0.840

+0.028j

0.046

−0.013j

1.808

−0.116j

Table A26. Evaluated rotary array’s inductance
matrix at 15 MHz§.

(µH) MPin,j MDin,j MPout,j MDout,j

Mi,P in
−0.546

+0.398j

0.001

+0.002j

0.047

−0.008j

0.002

−0.003j

Mi,Din
0.001

+0.002j

−0.782

+0.662j

−0.004

+0.001j

−0.354

+0.023j

Mi,Pout
0.044

−0.010j

−0.004

+0.002j

−0.586

+0.373j

0.009

−0.003j

Mi,Dout
0.003

−0.003j

−0.353

+0.031j

0.010

−0.001j

−0.868

+0.662j
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