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Design and Synthesis of Dual-Band Microwave Bandpass Filter
Based on Hybrid Polynomials

Elden Zee* and Peng Wen Wong

Abstract—This paper presents a method of designing a bandpass filter using hybrid polynomials.
Two different approaches are discussed in this paper. The first method uses class hybridization of a
lowpass Chebyshev and highpass maximally flat to achieve the hybrid filtering function (HFF). The
second method employs both Chebyshev polynomials of the first and second kinds to form a modified
Chebyshev polynomial. Both methods achieve a narrowband dual-band lowpass prototype (DBLPP)
without much deviation from classical methods of synthesis. The designs can be adapted into a modified
interdigital prototype which will be shown in this paper. The results and measurements reflect a good
adherence to the theoretical calculations.

1. INTRODUCTION

In recent years, the mobile telecommunication world has experienced a boom in terms of its global traffic.
This has pushed the advancement of filter technology through emerging technologies. One concept of
increased importance recently is the capability to support the coexistence of multiple bandwidths.
Due to its increased importance, multiband filter class has been the subject of researchers worldwide.
Although many methods have been proposed by past researchers, the design challenge still persists [1–6].

The concept of hybrid polynomials revolves around the modification of the characteristic polynomial
found in the transfer function to form a HFF. Since the characteristic polynomial defines the response
of the overall filter design, by altering the characteristic polynomials, the dual-band response can be
solved at the grassroots level, i.e., in the lowpass prototype (LPP) itself, allowing classical approaches
for single-band to be utilized. In comparison to many ‘dual-diplex’ approaches [3, 7–10], there is also no
need for impedance matching circuit which is a common issue found in cascading networks. Compared
to design techniques such as the cascaded formation of two prototypes [11] to form a dual-band filter,
the presented methods in this paper provide more analytical flexibility over the designing process. This
is possible due to formation of the dual-band response resolved at the characteristic polynomials prior
to the lowpass prototype which gives a better control over the designing process.

The first method presented here will form a transfer function through the product of two classes of
transfer functions, one of lowpass and the other of highpass. The second method will form a modified
Chebyshev polynomials from the Chebyshev polynomials I kind and Chebyshev II kind. Both methods
will result in an HFF that can be implemented in a classical synthesis and frequency transformation
process. In order to realize it in distributed elements, the dual-band lowpass prototype DBLPP is
creatively modified using a method similar to that in [12] before submitting to Richard’s transformation
for the distributed DBBPF with center frequency of 1GHz as a proof of concept. Both methods will
form a narrowband modified interdigital prototype that is similar in design. The fabricated prototypes
are tested, and the results agree with the concept presented here.
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2. THEORY OF HFF THROUGH CLASS HYBRIDIZATION

Let’s assume the lowpass function to be L(p) and the highpass function to be H(p). The multiplication
of the two functions can be depicted simply as:

I (p) = L (p) ∗ H(p) (1)

which produces a dual-band response. The introduction of a highpass transfer function into the original
lowpass function creates a notch at DC which will divide the single-band into a dual-band response,
thus forming a dual-band response at its LPP.

Now a lowpass Chebyshev type I with transfer function:

|S21|2 =
1

1 + ε2T (ω)2N
(2)

where ε is the ripple level, and N is the filter order. A highpass maximally-flat transfer function of

|S21|2 =
ω2M

ω2M + (kω0)
2M

(3)

where k is the scaling factor, and M is the filter order. To adjust the bandwidth of the response, a
scaling factor k is introduced with 0 < k < 1. This will also adjust the bandwidth of the response.
Also, with the lowpass prototype cutoff at 1 and the introduction of a scaling factor, it is possible to
produce a narrowband response.

The concept described in this method provides big room for explorations in the possibilities and
potentials of the types of hybrid. It is believed that the class hybridization will inherit any features
found in the base classes, and thus by performing hybridization, the distinct characteristics of each class
is imported into the dual-band responses.

3. DBLPP THROUGH CLASS HYBRIDIZATION

The HFF from the transfer functions gives us

|S21|2 =
1

1 + ε2T (ω)2N
× ω2M

ω2M + (kω0)
2M

(4)

Let’s set the order N for the lowpass at 3 and M for the highpass at 1. This gives a 4th order HFF.
ω0 is set at 1 rad/s with the highpass scaling factor of k at 0.1. ε from a return loss of 20 dB will be
approximated to 0.01. Based on unitary condition and selecting only the left half poles, both S21 and
S11 are obtained for our HFF. S21 is found to be

S21 =
p

(p + 1.1742) (p + 0.5871 − j1.335)
(p + 0.5871 + j1.3357)(p + 0.1)

(5)

where p = jω. From the unitary condition, S11 is found to be

S11 =

(p + 0.4335 + j0.3108) (p + 0.1455 + j0.9260)
(p + 0.1455 − j0.9260)(p + 0.4335 − j0.3108)

(p + 1.17429) (p + 0.5871 − j1.3357)
(p + 0.5871 + j1.3357)(p + 0.1)

. (6)

From the transfer and reflection functions, the lumped ladder network can be synthesized through the
classical continuous fraction method. In order to ease transformation into the distributed line realization,
a symmetrical network is formed by adding a mirror circuit. Fig. 1 depicts the ladder network obtained
and its simulated response after tuning. An inverter-coupled configuration is then implemented as
shown in Fig. 2. Ideal inverters at K = 1 is used. By converting the design into its inverter-coupled
configuration, it is now easier to adapt Richard’s transformation for distributed element realization.
Note the inverter and capacitor designated K33 and C33 respectively in the figure which is derived
from capacitors C4 and C5. The capacitor C33 is the most sensitive element in the design because it
produces the transmission zero at DC.
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(a) (b)

Figure 1. (a) Ladder network DBLLP configuration; (b) Simulated DBLLP response.

Figure 2. Inverter-coupled DBLPP configuration.

4. MODIFIED INTERDIGITAL DBBPF USING CLASS HYBRIDIZATION

From the inverter-coupled DBLPP, the prototype can be transformed into a modified interdigital
DBBPF. To realize a narrowband DBBPF, the admittance scaling method as depicted in [13] is used.
The scaled admittance matrix varies for the middle row and columns which results in modified design
equations for coupling and line admittances.

[Y ] =
1
t

⎡
⎢⎢⎢⎢⎣

1 −n1

(
1 − t2

)1/2 0 . . .

−n1

(
1 − t2

)1/2
n2

1 (1 + C1/α) −n1n2

(
1 − t2

)1/2
K12

0 −n1n2

(
1 − t2

)1/2
K12 n2

2 (C2/α)
...

...
. . .

⎤
⎥⎥⎥⎥⎦ (7)

The existence of a central stub to the interdigital design means that slightly modified design equations
are needed. Assuming all Kr,r+1 to be unity, the design equations are formed with reference from [13]
and given as:

Yr,r+1 = nrnr+1 (8)
Y0 = YN+1 = 1 − n1 (9)

Y01 = YN,N+1 = n1 (10)
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Y1 = YN = 1 − n1 − n1n2 (11)
Yr = 1 − nr−1nrKr−1,r − nrnr+1 (12)

where r = 1 to N − 1. Except

Ys = 1 − ns−1ns − nsns+1 − nsnss (13)
Yss = 1 − nsnss (14)

Ys,ss = nsnss (15)

where s = N
2 . The scaling factors are given as

α =
1

tan (θ1)
(16)

nr = nss =
√

α

Cr
, n1 = nN =

1√
(1 + C1

α )
(17)

The physical dimensions are derived from the even-mode fringing capacitance and coupling capacitance
of coupled rectangular bars [13]. The modelling is done using HFSS software and shown in Fig. 3 and
Fig. 4. Notice the modified interdigital design with a central stub in its symmetrical structure. The
measured response from the prototype, shown in Fig. 5, gives a bandwidth of 35 MHz with an average
of 13 dB return loss. The DBBPF is formed with the notch centered at 0.98 GHz.

(a) (b)

Figure 3. (a) Modified DBBPF interdigital filter prototype; (b) 3D HFSS DBBPF model.

5. THEORY OF HFF THROUGH MODIFIED CHEBYSHEV POLYNOMIALS

Let’s look at the Chebyshev polynomials of the first kind. In a lowpass prototype, in order to form a
dual-band response, a transmission zero needs to be introduced at ω = 0. The modification is done to
the Chebyshev polynomials which is given as [14]

TN (ω) =
2ωTn (ω) − Tn−1(ω)

ω
(18)

when n is odd. N = n + 1. It is important to note that the normalization is not applicable to n = even
because ω will be cancelled out due to common factor in both numerator and denominator. To resolve
this and allow application when n = even, ω2 can be used as denominator instead. From Eq. (18) it
is found that the amplitude increases or decreases rapidly towards infinity as ω approaches zero. It is
always true that TN (±1) = 1 at the cutoff point.
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Figure 4. 2D HFSS DBBPF with measurements.

Figure 5. Comparison of simulated response and measured response.

The introduction of ω will distort the equiripple characteristic of the polynomials. Therefore, the
Chebyshev polynomials of the second kind is introduced and merged with Eq. (18). This gives us the
new filtering function as,

H2
N (ω) =

T 2
N (ω) + k1U

2
M (ω)

k2
(19)

where TN (ω) and UM (ω) are Chebyshev polynomials of the first and second kinds, respectively. M is
the order of Chebyshev polynomial of the second kind and chosen to be same as N to maintain the
overall order of the HFF. The filtering function can be simplified as

H2
N (ω) =

T 2
N (ω) + k1

⎛
⎝2

M∑
j even

Tj (ω) − 1

⎞
⎠

2

k2
(20)
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where k1 is a constant. The value is chosen such that the condition of equiripple

H2
N (ωc) =

∂

∂ω
H2

N (ω)
∣∣∣∣
=0

(21)

for −1 < ω < +1 is satisfied. k2 is the normalizing constant where

k2 = T 2
N (ωc) + k1

⎛
⎝2

M∑
j even

Tj (ω) − 1

⎞
⎠

2

. (22)

Hence the transfer function of a dual-band lowpass prototype may be shown as

TF =
1

1 + ε2H2
N (ω)

(23)

where ε is the prescribed ripple level at passband.
It can be seen from the theory that the degree of the filter has direct influence on the selectivity.

Besides, it is observable that to achieve DBLPP using this method, only the degree of the filter and the
ripple level need to be specified.

6. DBLPP THROUGH MODIFIED CHEBYSHEV POLYNOMIALS

Let’s select the transmission and reflection responses of order N = M = 5. 5th order means that the
denominator of ω2 is used instead for the Chebyshev polynomial 1st kind. Based on unitary condition
and selecting the left half poles, S11(p) is obtained. The transmission and reflection responses of order
N = M = 5 are shown in Fig. 6. For given reflection function, the input impedance is formulated in
which the DBLPP can be synthesized using the classical ladder synthesis. Fig. 6 shows the DBLPP
ladder network where the first four elements contribute to the transmission poles at both passbands. A
symmetric inverter-coupled network is then formed by introducing a mirrored network for the ease of
distributed realization which is similar to the design found in Fig. 2.

(a)

(b)

Figure 6. (a) Ladder network DBLLP configuration; (b) Simulated DBLLP response.

7. MODIFIED INTERDIGITAL DBBPF USING MODIFIED CHEBYSHEV
POLYNOMIALS

From the inverter-coupled network, the Richard’s transformation can be utilized from the lowpass
prototype which results in a modified interdigital coupled line structure. For narrowband realization,
classical admittance matrix scaling technique and UE elements at input and output are employed. The
admittance matrix and design equations are similar to Equations (8)–(18) in the first method discussed.

The physical dimension is obtained based on the even-mode fringing and coupling capacitance of
rectangular bars [13]. Shown in Fig. 7 is the filter structure designed based on modified interdigital
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(a) (b)

Figure 7. (a) Modified DBBPF interdigital filter prototype; (b) 3D HFSS DBBPF model.

Figure 8. 2D HFSS model with measurements.

structure in HFSS. The 2D front view with measurements is shown in Fig. 8. The filter prototype
produces a symmetrical dual-band response with 50 MHz bandwidth as shown in Fig. 9. The passband
return loss is 15 dB, and a notch at center frequency of 0.98 GHz is obtained.

8. COMPARISON OF CLASS HYBRIDIZATION AND MODIFIED CHEBYSHEV
APPROACH

In comparison, the modified Chebyshev offers better performances and robust analytical model
compared to the class hybridization approach. By observing the modified polynomials, better design
analysis can be done prior to the synthesis process. However, the class hybridization still holds potential
for more improvements and explorations with different combinations of classes possible in theory.
Besides, due to the hybrid nature, the selectivity of the inner and outer band edges are more controllable
by adjusting the order of the lowpass and highpass classes respectively. Both methods allow for the
formation of a lumped DBLPP.
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Figure 9. Comparison of simulated response and measured response.

9. CONCLUSION AND RECOMMENDATIONS

This paper discusses two new methods of synthesis of a dual-band filter based on the concept of hybrid
polynomials. The first method performs hybridization of two different classes of filter of lowpass and
highpass types. The second method presented employs the Chebyshev first and second kinds to produce
a dual-band Chebyshev HFF. Both methods are capable of undergoing Richard’s transformation to the
distributed element. A modified interdigital design is used to achieve the DBBPF. Measured responses
from both fabricated prototypes are shown to adhere to the design theory discussed in this paper. The
method suggested in this paper can potentially be improved for asymmetrical response and extended
to allow designing of tri-band filters.
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