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Analysis of Post-Wall Waveguides and Circuits Using a Model
of Two-Dimensional Photonic Crystals

Vakhtang Jandieri1, *, Hiroshi Maeda2, Kiyotoshi Yasumoto2, and Daniel Erni1

Abstract—A semi-analytical method to analyze post-wall waveguides and circuits based on the model
of two-dimensional photonic crystals formed by layered periodic arrays of circular cylinders is presented.
The propagation constant of the fundamental TE mode, the attenuation constant due to the leakage
loss and the effective width of an equivalent rectangular waveguide are calculated. Using the concept
of the effective width, the original structure is replaced by an equivalent rectangular structure. When
additional metallic posts are loaded in the rectangular waveguide, functional post-wall waveguide-based
passive circuits are formed. The S-parameters of the post-wall circuits, which act as bandpass filters,
are calculated using the image theory combined with the lattice sums technique.

1. INTRODUCTION

The post-wall waveguide or substrate integrated waveguide (SIW) has received a growing attention
because of their promising applications to planar circuit components operating in the microwave and
millimeter wave frequency range [1–5]. The post-wall waveguide is formed by periodically distributed —
usually metallic — posts or the posts having a high dielectric permittivity. It allows the “planarization”
of non-planar structures such as conventional rectangular and dielectric waveguides, and they can be
integrated completely together with planar structures onto the same planar substrate with the same
processing or fabrication techniques. The post-wall circuits are designed by inserting additional metallic
or dielectric posts in the post-wall waveguide. The modal properties and performances of post-wall
waveguides and circuits have been extensively investigated [also in the framework of SIWs] using various
analytical or numerical techniques [1–9].

The electromagnetic field of the post-wall waveguide is confined in the lateral direction by periodic
arrays of metallic posts placed on both sides of the guiding channel. The height of the waveguide
bounded by two metallic plates is much smaller than the wavelength. The electromagnetic field does
not change in the vertical direction, and TEm0-like modes are supported in the waveguide. This kind of
periodic waveguide is quite similar to a two-dimensional photonic crystal waveguide formed by parallel
circular cylinders infinitely long extended along the vertical direction (no field variations along vertical
direction). In the manuscript, we present a novel semi-analytical approach for analyzing such post-
wall waveguides and circuits based on the model [10–14] of two-dimensional photonic crystals. The
generalized reflection matrix is used to derive the dispersion equation for TEm0 modes. Solving the
dispersion equation based on a perturbation analysis, the attenuation constant due to the leakage
loss and the effective width of the equivalent rectangular waveguide are calculated. To validate the
present analysis, numerical examples for the post-wall waveguides and post-wall waveguide-based passive
circuits, which act as bandpass filters, are demonstrated and compared with those reported in [5–9].
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The scattering characteristics of the post-wall circuits are rigorously analyzed based on the lattice
sums technique combined with the generalized reflection matrix method and the image theory. Perfect
agreement is observed between the S-parameters over a wide frequency range.

2. FORMULATION OF THE PROBLEM

The post-wall waveguide, as illustrated in Fig. 1, is composed of periodic arrays of conducting circular
posts (forming a planar lattice) embedded in a dielectric substrate that connect two parallel conducting
plates. Fig. 1 shows the post-wall waveguide structure formed by N -layered square lattice. The
electromagnetic fields are uniform in the y-direction (∂/∂y = 0), and the dominant mode TE10 is
excited. This periodic waveguide is similar to a two-dimensional photonic crystal waveguide formed by
parallel circular rods, which are infinitely extended in the y direction. The photonic crystal waveguide
model is schematically depicted in Fig. 2.

Figure 1. Schematic of a post-wall waveguide
bounded by N -layered post-walls in both sides.

Figure 2. Transversal view of a two-
dimensional photonic crystal waveguide to
model N -layered post-wall waveguides.

Let us consider TE modes consisting of (Ey, Hx, Hz) fields. If we assume a longitudinal field

variation of eiβz, the two-dimensional guided wave propagating along the guiding region |x| ≤ a/2 is
expressed as follows:

Ey(x, z) = U+(x, z) · c+ +U−(x, z) · c− (1)

with

U±(x, z) = {exp [(iκℓ(x∓ a/2))] exp(iβℓz)δℓm} (2)

c± =
[
c±ℓ

]
(ℓ = 0,±1,±2, . . .) (3)

where βℓ = β + 2ℓπ/h, κℓ =
√

k2s − β2
ℓ , ks = ω

√
εsµ0, εs is the permittivity of the dielectric substrate,

β the propagation constant, and c± are the column vectors whose elements c+ℓ and c−ℓ represent the
amplitudes of the transversally up-going and down-going ℓ-th Floquet modes. The amplitude vectors
c± satisfy the following relations:

c± = W(ω, β) ¯̄R
N
(ω, β) · c∓ (4)

with
W(ω, β) = [exp(iκℓa)δℓm] (5)

where W(ω, β) describes the phase shift of the modes along x-direction, and ¯̄R
N
(ω, β) denotes the

generalized reflection matrix of the confining N -layered periodic arrays of circular rods, whose (ℓ,m)
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element connects the reflected ℓ-th Floquet mode to the incident m-th Floquet mode. If the lattice
constants, radii of circular rods, permittivity of dielectric substrate, and number of layers N of post

arrays are specified for a corresponding post-wall waveguide, the generalized reflection matrix ¯̄R
N
(ω, β)

and transmission matrix ¯̄F
N
(ω, β) can be calculated [10, 11] using the T -matrix of the single circular

rod together with the lattice sums. From Eq. (4), we get the transcendental equation to determine the
mode propagation constant β as follows:

det
[
I∓W(ω, β) ¯̄R

N
(ω, β)

]
= 0 (6)

where I is the unit matrix, and the signs ∓ stand for even(−) and odd(+) modes, respectively.
If only the fundamental Floquet mode with ℓ = 0 is propagating and all other diffraction orders

are evanescent in the transverse direction, we can apply the so-called long wavelength approximation
to Eq. (6). In this case, Eq. (6) is reduced to the following expression:

1∓ exp(iκ0a)
¯̄RN
00(ω, β) = 0. (7)

where ¯̄RN
00(β, ω) denotes the (0, 0) element of ¯̄R

N
(ω, β). As will be shown later, the reduced dispersion

Equation (7) gives an excellent approximation to the full matrix Equation (6). The condition for the
guided wave to be bounded by the layered post arrays shown in Fig. 2 is that all of the eigenvalues
λk (k = 1, 2, 3, . . .) of the transfer matrix over the unit cell in the y direction satisfy the relation |λ k| < 1
for the operating frequency range [10, 11]. This condition is always fulfilled when the operating frequency
is located in the stopband of Bragg reflection in the transverse direction. Note that when the cylinders
are composed of dielectrics, an enough number of layers of the periodic arrays is required to achieve the
confinement of the wave field inside the guiding layer.

3. EQUIVALENT RECTANGULAR WAVEGUIDE

It is known [6] that when the transversal leakage of electromagnetic field through the gaps between the
posts is sufficiently small, the post-wall waveguide modes practically coincide with the TEm0 modes of
an equivalent rectangular waveguide with an effective width ae = a + ∆a. Let us now calculate the
effective width ae using the reduced dispersion Equation (7) for the even mode. If the leakage is small
enough, the imaginary part of β due to the leakage loss can be regarded as a small perturbation. Such
a treatment is allowed when ¯̄RN

00(ω, β) satisfies the following condition:∣∣∣ ¯̄RN
00(β, ω)

∣∣∣ ≈ 1. (8)

In this case, Eq. (7) yields real β(ω) and κ0(ω) as unperturbed solutions. For the specified values of
β(ω) and κ0(ω), the width a of the original post-wall waveguide is changed to ae = a + ∆a so as to
satisfy the relation:

exp [−iκ0(ω)(a+∆a)] = −1. (9)

Equation (9) means that the boundary condition for the perfect conductor is satisfied at x = ±ae/2.
From Eq. (9) we have:

ae = π/κ0(ω). (10)

Although ae slightly changes when ω varies, it may be practically regarded to be almost constant
within the same degree of approximation as in Eq. (8). Using the equivalent rectangular waveguide
model, a very simple expression for the propagation constant βm(ω) of the even TEm0 mode is retrieved
and given below:

βm(ω) =
√
k2s − [(2m− 1)π/ae]2 (m = 1, 2, 3, . . .). (11)

4. LEAKAGE LOSS AND ATTENUATION CONSTANT

In this section, we describe two approaches to calculate the attenuation constant due to leakage loss in
post-wall waveguide. If | ¯̄RN

00(β, ω)| = 1, the real values of the propagation constant β0 can be obtained
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by numerically solving Eq. (7). The decrement of | ¯̄RN
00(β, ω)| from unity is caused by the transverse

leakage of the guided field. Let us introduce a small attenuation constant α of the guided wave due to
the leakage and express the propagation constant β as:

β = β0 + iα (α ≪ β0). (12)

Under this condition, Eq. (7) for the fundamental mode is approximated as follows:

exp (−iκ0a) exp

(
−β0a

κ0
α

)
= ¯̄RN

00(β0, ω) (13)

where κ0 =
√

k2s − β2
0 . Note that in Eq. (13) we have ignored the small perturbation to the real part

of β due to the deviation of | ¯̄RN
00(β0, ω)| from unity. As will be shown later, this approximation is well

justified by the fact that the difference between the real part of the propagation constants β calculated
for N = 1 and for N = ∞ without leakage losses is negligibly small. From Eq. (13), the attenuation
constant α due to the leakage is given as follows:

α = − κ0
β0a

ln
∣∣∣ ¯̄RN

00(β0, ω)
∣∣∣ . (14)

The attenuation constant α can also be calculated using a perturbation analysis taking into
account the principle of power conservation. Due to leakage the guided waves carrying a total power

Pz =
∫ a/2
0 Re{−EyH

∗
x}dx will attenuate as a function of z (‘*’ denotes the complex conjugate).

Assuming that the amplitudes of the fields decay exponentially with an attenuation constant α, and the
carrier power Pz will show an exponential decay according to Pz ∼ e−2αz. By the power conservation
principle, the decrease of Pz along z direction should be equal to the transversal power dissipation per

unit length ⟨Sx⟩ = 1
2h

∫ h
0 Re{EyH

∗
z }dz. As a result, taking into account the orthogonality of the Floquet

modes, the attenuation constant α can be now expressed in the following form:

α =
⟨Sx⟩
Pz

= 0.5κ0

∣∣∣ ¯̄FN
00

∣∣∣2 ×
 β

κ0
[sin(κ0a) + κ0a] +

M∑
ℓ=−M
(ℓ ̸=0)

βℓ
γℓ

e−γℓa [sinh(γℓa) + γℓa]
∣∣∣ ¯̄RN

ℓ0

∣∣∣2

−1

(15)

where γℓ =
√

β2
ℓ − k2s denotes a propagation constant of the evanescent modes and M stands for the

truncation number of the modes. Equation (15) takes into account all interactions between the Floquet
modes.

5. NUMERICAL RESULTS AND DISCUSSIONS

In order to confirm the validity of the long wavelength approximation to the dispersion equation, firstly
we have calculated the propagation constant β of the fundamental TE10 mode by using the full matrix
Equation (6) and the reduced Equation (7), respectively, and compared both results. We assumed that
the conductor loss in post-walls and the dielectric loss in the substrate are negligible. The first example
encompasses a post-wall structure with εs/ε0 = 2.33, h = 2.0mm, r = 0.4mm and a = 7.2mm [5, 6, 8].
Since h/r = 5.0 and h/a = 0.278, the gap width between two nearby posts is relatively small. The
normalized propagation constants calculated from Eqs. (6) and (7) for different numbers N of layers of
the post-walls are compared in Table 1. Note that the value of βh/2π calculated for Eq. (6) at N = ∞
gives a rigorous value of the normalized propagation constant because the guided field is completely
bounded for N = ∞ (note that from the practical point of view, it is enough to have about N = 5
layers along the x-axis in order to get the strong confinement of the modes in the guiding region). From
Table 1, we can see that although the propagation constant calculated by Eq. (6) changes as the number
N of post-walls increases, the difference between those for N = 1, 2, 3 and N = ∞ is vanishingly small.
It is worth mentioning that the propagation constant calculated by the reduced dispersion Equation (7)
for N = 1 is in very close agreement with the rigorous values obtained for N = ∞ with an accuracy
of four digits. In particular, the relative error for N = 1 is: 0.2315% at f = 15GHz, 0.0212% at
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Table 1. Normalized propagation constants βh/2π of the fundamental TE10 mode for the N -
layered post-wall waveguide with εs/ε0 = 2.33, h = 2.0mm, r = 0.4mm and a = 7.2mm.
The propagation constants obtained from the rigorous transcendental Equation (6) and the reduced
dispersion Equation (7) are compared.

βh/2π

Eq. (6) Eq. (7)

f [GHz] N = 1 N = 2 N = 3 N = ∞ N = 1

15.0 0.04330 0.04320 0.04320 0.04320 0.04330

20.0 0.14143 0.14140 0.14140 0.14140 0.14143

25.0 0.20811 0.20808 0.20808 0.20808 0.20829

30.0 0.26812 0.26810 0.26810 0.26810 0.26811

Table 2. Normalized propagation constants βh/2π of the higher order TE20 and TE30 modes calculated
by using Eq. (11) for the 1-layer post-wall waveguide with εs/ε0 = 2.33, h = 2.0mm, r = 0.4mm and
a = 7.2mm.

N = 1

TEm0 f [GHz] βh/2π Eq. (7) κ0h βh/2π Eq. (11)

TE20 (odd mode)

30.0 0.08880 0.9173 0.08902

35.0 0.20438 0.9155 0.20477

40.0 0.28460 0.9134 0.28488

45.0 0.35421 0.9104 0.35457

TE30 (even mode)

45.0 0.14021 0.9104 0.14404

50.0 0.26480 0.9007 0.27192

55.0 0.35618 0.8998 0.35870

f = 20GHz, 0.0144% at f = 25GHz and 0.0075% at f = 30GHz. It follows that if the gap between
the nearby posts is small, the leakage of the guided wave through the gap becomes negligibly small and
hence the guiding condition for TE10 mode is well fulfilled even for N = 1.

Table 2 shows the comparison of the normalized propagation constants βh/2π of the calculated
higher-order TE20 and TE30 modes based on Eqs. (7) and (11). Other geometrical parameters are the
same as those in Table 1. The cutoff frequencies of the TE20 odd mode and the TE30 even mode are
28.77GHz and 43.16GHz, respectively. A very good agreement is observed over the wide frequency
range.

Figure 3 demonstrates the dependence of the attenuation constant α versus the frequency in the
range of 15GHz–30GHz. The dashed-dotted line and dashed line represent the attenuation constants
based on Eqs. (14) and (15), respectively, which are then compared to the values shown in [6]. A
good agreement is observed in the whole frequency range; however, it should be noted that the given
attenuation constants α are slightly larger than those reported in [5, 6, 8]. Additionally, it should be
mentioned that the data for the calculated attenuation constant based on Eq. (15) is closer to the
reference data. This could be explained by the fact that Eq. (15) is a more general expression, since it
takes into account all interactions between the Floquet modes.

Figure 4 demonstrates the values of the effective width ae of the equivalent rectangular waveguide
calculated based on Eq. (10) for post-wall waveguide with εs/ε0 = 2.33, h = 2.0mm, r = 0.4mm,
a = 7.2mm, and N = 1. We can see that the effective width ae is slightly smaller than the physical
distance a between two post-walls and increases in proportion to the operating frequency f . Although
the effective width ae slightly changes depending on the frequency, its variation is very small and less
than 0.3% in the range of 15GHz–30GHz. If we define the effective with ae as a constant structural
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Figure 3. Attenuation constant α calculated using (14) and (15) plotted by the dashed-dotted line
and dashed line, respectively, is compared with Ref. [6] represented by the solid line.

Figure 4. Effective width ae of the equivalent
rectangular waveguide calculated using (10)
versus frequency for εs/ε0 = 2.33, h = 2.0mm,
r = 0.4mm, a = 7.2mm, and N = 1.

Figure 5. Effective width ae of the equivalent
rectangular waveguide calculated using (10)
versus frequency for εs/ε0 = 2.2, h = 5.165mm,
r = 0.3875mm, a = 11.759mm, and N = 1 (blue
line) and N = 2 (red line).

parameter, we can employ a value for ae that is averaged over the operating frequency range. The
post-wall waveguide filters will be analyzed later in this section by using the averaged value of ae as a
fixed effective width over the operating bandwidth.

The second example includes a structure with εs/ε0 = 2.2, h = 5.165mm, r = 0.3875mm, and
a = 11.759mm after [6]. Since h/r = 13.329 and h/a = 0.439, the gap width is much larger than that
of the first example. Table 3 shows the comparison of the normalized propagation constants calculated
from Eqs. (6) and (7) for different numbers of layersN of the post-walls. We can see that the propagation
constant calculated by the reduced dispersion Equation (7) for N = 1 is not in excellent agreement with
that calculated by Equation (6) for N = ∞. Particularly, the relative error for N=1 is: 4.3806% at
f = 8GHz, 0.2625% at f = 10GHz, 0.1753% at f = 12GHz and 0.0837% at f = 14GHz. Since the gap
width (a distance between the nearest rods) is relatively large, it is rather difficult to confine the guided
field by a single-layered post-wall. The leakage through the periodic gaps will give a significant rise to
the attenuation of guided waves and thus affect the propagation constant β. Fig. 5 illustrates that the
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Table 3. Normalized propagation constants βh/2π of the fundamental TE10 mode for the N -
layered post-wall waveguide with εs/ε0 = 2.2, h = 5.165mm, r = 0.3875mm, and a = 11.759mm.
The propagation constants obtained from the rigorous transcendental Equation (6) and the reduced
dispersion Equation (7) are compared.

βh/2π

Eq. (6) Eq. (7)

f [GHz] N = 1 N = 2 N = 3 N = ∞ N = 1

8.0 0.04152 0.04056 0.04056 0.04060 0.04246

10.0 0.15980 0.15956 0.15956 0.15956 0.15998

12.0 0.23368 0.23352 0.23352 0.23353 0.23394

14.0 0.29844 0.29836 0.29836 0.29853 0.29878

(c)

(a)

(b)

Figure 6. Bandpass filter with three circular posts of conductor: (a) Original post-wall waveguide
structure; (b) Equivalent rectangular waveguide structure, and (c) S-parameters of the circuit (a).

effective width ae does not change significantly even if the number of post-wall layers is increased. It is
worth emphasizing that for the present structure with a wider gap as h/r = 13.329, the effective width
ae becomes larger than the physical width a of the post-wall waveguide. As the gap width increases,
the rate of leakage of guided wave increases. This situation is quite different from that of a narrow gap
case discussed in the first example.

Finally, we shall analyze two post-wall waveguide bandpass filters by using the method of images
(Appendix A). The interested readers may refer to [15]. When a post-wall waveguide structure is
specified, firstly we calculate its effective width ae by using Eq. (10) and define an equivalent rectangular
waveguide. We calculated the scattering parameters in the rectangular waveguide by using the image
theory and the two-dimensional photonic-crystal model. Two numerical examples for ultra-compact
bandpass filter by using the boundary integral-resonant mode expansion (BI-RME) method [7] and a
hybrid method [9] are shown in Figs. 6 and 7. The S-parameters calculated by the proposed method
are compared with those in [7, 9]. We observe that all of the S-parameters obtained by the present
method are in excellent agreement with those reported in [7, 9]. For the structure shown in Fig. 6(a),
the material loss was ignored in our analysis, but a conductor loss of σc = 4× 107 S/m and a dielectric
loss of σd = 0.001 S/m were considered in [7]. The small difference in the S-parameters observed in
Fig. 6(c) is due to slightly different assumptions of the material loss.
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(c)

(a)

(b)

Figure 7. Dual-band bandpass filter with four concentric circular posts of dielectric with air-hole:
(a) Original post-wall waveguide structure; (b) Equivalent rectangular waveguide structure, and (c)
S-parameters of the circuit (a).

6. CONCLUSION

In the manuscript, we have reported a novel semi-analytical approach for analyzing post-wall waveguides
and circuits based on the model of two-dimensional photonic crystals. The generalized reflection matrix
is used to derive the dispersion equation for TEm0 modes. Solving this dispersion equation based on
a perturbation analysis, the attenuation constant (due to the leakage loss) and the effective width of
the equivalent rectangular waveguide are calculated. To validate the proposed formalism, numerical
examples for post-wall waveguides and post-wall waveguide-based passive circuit, such as bandpass
filter, are presented and compared to other references yielding a perfect agreement between the S-
parameters over a wide frequency range. It is important to mention that the proposed semi-analytical
formulation is not time-consuming, which could be considered as a major advantage of the proposed
formulation. The desktop CPU runtime on the 3.6GHz Intel Core i7 with 8GB RAM per one frequency
is around 0.2 second. The authors believe that the proposed method is a very apt tool for designing
advanced multi-functional, ultra-compact submillimeter passive circuit devices. It is expected to give an
insight into the physics underlying the proper guiding mechanism in such periodic waveguide structures
and/or bandgap (meta) materials.
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APPENDIX A.

Post-wall waveguide filters are designed by carefully inserting multiple circular full posts into the guiding
region as shown in Fig. A1(a). If we employ the effective width ae for the post-wall waveguide discussed
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(a)

(b)

Figure A1. Top view of circular posts inserted into (a) a post-wall waveguide and into (b) equivalent
rectangular waveguide with the effective width ae.

in Section 3, the original structure is replaced by the equivalent rectangular waveguide structure shown
in Fig. A1(b). In this section, we briefly present an accurate and rigorous approach for analyzing the
scattering properties of the vertical posts and relevant electromagnetic bandgap structures in such a
rectangular waveguide. The interested readers may be referred to [15].

Let us consider the i-th post with radius rj whose center is located at (∆j , zj) within the equivalent
rectangular waveguide. The excitation is assumed to be in TEm0 mode. The excitation in the forward
direction is expanded into the cylindrical waves as following:

Ei
y,m = a+m sin(κmx) exp(iβmz) = ΦT

1 · p+
m · a+m (A1)

with

Φ1 =
[
Jn(ksρ

+
0 ) exp(inϕ

+
0 )

]
(A2)

p+
m = [p+mn], p+mn =

[
1

2
(−i)n−1 {exp [i(nθm − κm∆j)]− (−1)n exp[−i(nθm − κm∆j)]}

]
(A3)

cos θm =
κm
ks

, ρ+0 =
√

(x−∆j)2 + (z − zj)2, cosϕ+
0 =

x−∆j

ρ+0
(A4)

where κm = mπ
a (m = 1, 2 . . .), βm is the propagation constant of them-th mode, a+m labels the amplitude

of the incident field, Jn the n-th order Bessel function, and (ρ+0 , ϕ
+
0 ) the polar coordinates with the origin

at the center of the post. Taking into account an infinite number of mirror images of the post with
respect to the side walls, the scattered field is expressed as:

Es
y =

∞∑
ℓ=−∞

∞∑
n=−∞

XnH
(1)
n (ksρ

+
ℓ ) exp(inϕ

+
ℓ )−

∞∑
ℓ=−∞

∞∑
ℓ=−∞

(−1)nXnH
(1)
n (ksρ

−
ℓ ) exp(−inϕ+

ℓ ) (A5)

with

ρ±ℓ =
√

(xℓ ∓∆j)2 + (z − zj)2, cosϕ±
ℓ =

xℓ ∓∆j

ρ±ℓ
(A6)

where xℓ = x − 2aℓ, H
(1)
n is the n-th order Hankel function of the first kind. Xn are unknown

amplitudes of the scattered multipole fields, and (ρ±ℓ , ϕ
±
ℓ ) are the local polar coordinates with the

origins at (2aℓ ±∆j , zj). The array has a period of 2a and contains two cylinders within its unit cell.
Thus, the problem is reduced to that of a two-dimensional scattering problem from the layered periodic
arrays of parallel circular cylinders. Following the same calculation procedure as shown in [15], first,
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the unknown scattering amplitudes Xn are expressed in a closed form through the lattice sums, the
translation matrices of cylindrical waves and the T -matrix of the circular cylinder in isolation. Next,
using a Fourier integral representation of the Hankel functions, the multipole fields are transformed into
a series of space harmonics of plane waves, and the reflection and transmission matrices of the posts for
the incident TEm0 mode are derived. Finally, a recurrence formula is applied to obtain the generalized
reflection and transmission matrices characterizing the layered structure.
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