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Evaluation of Hybrid Polarimetric Decomposition Techniques
for Winter Crop Discrimination

Sanid Chirakkal*, Dipanwita Haldar, and Arundhati Misra

Abstract—In this paper we compare, using ISRO’s RISAT-1 FRS-1 mode Compact Polarimetric
(CL-Pol) data, two widely used hybrid polarimetric decomposition techniques, m − δ and m − χ
decompositions, with regard to classification accuracy for various agricultural crops of north and west
India. We show that the classification based on the m − χ decomposition results in better crop
separability in general. But the crop stage and existence of orientating structures in the crops affects
the efficacy of decomposition; a fact vividly brought out in this paper. Theoretical insights into the
effectiveness of these decomposition techniques for different crop geometry are brought forth. We
also compare the classification accuracy subsequent to polarimetric speckle filtering vis-a-vis spatial
multilooking (downsampling). We show that usage of an appropriate polarimetric filter tends to
produce comparable accuracy for most of the agricultural classes, as that of multilook case, without
degrading spatial resolution. This work showcases a custom implementation of Stokes parameter based
decomposition as well as POLSAR filter based on refined Lee algorithm, written in C and tailored to
RISAT-1.

1. INTRODUCTION

RISAT-1 (Radar Imaging Satellite) SAR of Indian Space Research Organization (ISRO) operates
in Compact Polarimetric (CL-Pol) mode, which provides some fundamental advantages over fully
polarimetric SAR. Such a radar has lower hardware cost and is relatively easy to implement. Moreover,
CL-Pol SAR has lower susceptibility to noise and cross-channel errors [1, 2]. A radar in CL-Pol
architecture transmits circularly polarized electromagnetic waves and receives two orthogonal linear
polarizations. One advantage of this is that the received total power in the orthogonal basis will
be rotationally invariant with respect to orientation of elementary scatterers in the scene. This is so
because the transmitted wave is circularly polarized and hence does not favor any particular orientation.
RISAT-1 SAR with CL-Pol is the first such SAR for earth observation mission, before which such an
architecture was used in Mini-SAR of Chandrayaan-1 and the Mini-RF on the Lunar Reconnaissance
Orbiter for lunar studies. Advantage of CL-Pol for various applications has been demonstrated in [3, 4]
with reference to oceanic and terrestrial features.

Various studies in literature focus on the worthiness of CL-Pol architecture for polarimetric
decomposition and feature classifications [3, 5, 6]. The similarity in the scattering representations
between fully polarimetric and compact polarimetric data makes it possible to apply polarimetric
decomposition techniques to data acquired from one mode to data acquired from the other mode [3]. π/4
mode simulated by Lardeux et al. [15] resulted in the overall classification performance similar (κ lower of
3%) to those observed with full polarimetric data, with a higher confusion for the Pinus class. The hybrid
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polarimetric modes data such as ‘the π/4 mode’ and ‘circular transmit linear orthogonal receive modes
(CTLR)’ synthesized from full-polarimetric data showed intermediate classification accuracy (79%–
81.5%) [17]. Moreover, the π/4 mode shows much better performance for the land use discrimination
of the studied scene than ENVISAT Alternate Polarisation modes involving intensities acquired in co-
or cross-polarization [14]. When only single-date data set is available, the CL-Pol with its different
toolkit of decomposition techniques has promising potential for crop classification compared to single-
or dual-polarized SAR data.

The information contained in the CL-Pol backscatter can be fully captured in the four Stokes
parameters (g0, g1, g2, g3). From these, other parameters of interest can be calculated, such as the
degree of polarization (m), coherency parameter (|μxy|), circular polarization ratio (μc) and relative
phase (δ) between two electric vectors in the backscattered field. Here, we give a brief outline of these
quantities and then proceed to show the m− δ and m− χ decomposition strategies for RISAT-1 data.

2. THE POLARIMETRIC FILTER AND POLARIMETRIC DECOMPOSITION
METHODS

Speckle filtering algorithm for a single polarization SAR data has matured over the past two decades.
Earlier approaches, based on Fourier analysis, tend to degrade the image due to low-pass filtering in
the frequency domain. Later algorithms tried to achieve speckle reduction without sacrificing the image
quality. Such filters were generally implemented in spatial domain, not in frequency domain. In 1980,
Lee [7] developed a filter based on local statistics, which was later refined [8] by adopting edge aligned
windows. Polarimetric speckle filters are specifically designed to preserve the statistical properties of
covariance matrix, as in the case of spatial multilooking. They also avoid cross-talk between polarization
channels, brought about by the process of speckle filtering. One such approach was put forth by Lee et
al. [9], which filters the covariance matrix by using edge-aligned nonsquare windows and applying a
minimum mean square error (MMSE) filter. The filtering weights as well as the edge aligned windows
are selected using the span image.

We assume a multiplicative noise model for SAR speckle noise, where the amplitude of an SAR
image at (i, j)th pixel, y(i, j), is written as:

y(i, j) = x(i, j)μ(i, j), (1)

where x(i, j) is the noise-free backscatter amplitude and μ(i, j) the Gaussian noise with mean 1 and
standard deviation σµ. Now MMSE reduces the mean square error between the estimated x (x̃) and
actual x by minimizing the mean square error using the function,

x̃ = ax̄+ by, (2)

where x̄ is evaluated by the local mean of y in a predefined window. This fixes the coefficients in
Equation (2) in terms of mean and variance of the SAR amplitude image (y) computed in a local
window and the standard deviation of the Gaussian noise, μ.

x̃ = ȳ + b(y − ȳ), (3)

where b, given by

b =
V ar(x)
V ar(y)

, (4)

is the weight between local mean and original pixel value. In Equation (4), variance of x is given by:

V ar(x) =
V ar(y) − ȳ2σ2

µ

(1 + σ2
µ)

. (5)

MMSE is an adaptive filter and is further refined by using edge-aligned non-square windows instead
of using fixed window geometry in the case of refined Lee filter. In the case of polarimetric refined
Lee filter, instead of filtering the amplitude image the covariance matrix (C2 in the case of CL-pol
data) is filtered using the span image (sum of diagonal elements). The filter weight defined earlier in
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Equation (4) is computed from the span image, and the same is applied to all the elements of covariance
matrix independently. This gives rise to a vector form of Equation (3) [10],

X̃ = Ȳ + b
(
Y − Ȳ

)
, (6)

where each element of Ȳ is the local mean of elements of C2, calculated from the same exact edge
aligned windows. In this paper, we use the POLSAR refined Lee filter with a moving 9×9 edge-aligned
window for filtering. Another (simpler) approach to deal with speckle noise, which is very commonly
employed in SAR processing, is spatial multilooking (downsampling). This is done by averaging the
neighboring pixels in an amplitude image by a boxcar filter. This reduces the speckle noise considerable
at the cost of degrading the spatial resolution.

RISAT-1 FRS-1 (Fine Resolution Mode) uses right circularly polarized wave transmission, and the
backscattered signal is received in coherent dual polarizations (these channels are called RH and RV).
The relative phase difference between the RH and RV channels is preserved making it a polarimetric
mode. In the case of electromagnetic wave propagation through a linear medium devoid of moving
electric charges, it is shown that a general solution to Maxwell’s equation is that of a monochromatic
elliptically polarized wave [11]. That is, if we take any plane normal to the propagation vector k, we
see that, as time advances, the tip of electric vector traces out an ellipse in this plane. This ellipse
(called polarization ellipse) can be characterized using three parameters, the ellipse amplitude (A),
ellipse orientation angle (φ) and ellipticity angle (χ). These parameters are pictorially represented in
Figure 1.

h
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ψ

Figure 1. Pictorial representation of the polarization ellipse and the angles ψ and χ.

Another way to characterize polarization of a wave, especially in the case of partially polarized
wave, is through Stokes parameters. The Stokes parameters for a CL-Pol architecture is given by [1]:

g0 =
〈|ERH |2 + |ERV |2

〉
g1 =

〈|ERH |2 − |ERV |2
〉

g2 = 2Re 〈ERHE
∗
RV 〉

g3 = −2Im 〈ERHE
∗
RV 〉 ,

(7)

where E is the complex voltage, and Re stands for real part and Im for imaginary one of the complex
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number. For a fully polarized wave, we have the following equality:
g2
0 = g2

1 + g2
2 + g2

3 . (8)
The Stokes parameters can be related to polarization ellipse parameters through the following equations:

g1 = g0 cos(2χ) cos(2ψ)
g2 = g0 cos(2χ) sin(2ψ)
g3 = g0 sin(2χ).

(9)

From the Stokes parameters, various auxiliary parameters can be computed. The degree of polarization
(m) is given by:

m =

√
g2
1 + g2

2 + g2
3

g0
. (10)

Similarly, relative phase, δ, is given by:

δ = arctan
(
g3
g2

)
. (11)

For a fully polarized EM field (m = 1) and Stokes parameters, locate a point on the surface of a
unit sphere, called Poincare sphere [12]. If the backscatter field is partially polarized (which is usually
the case), the degree of polarization will be less than unity, and Stokes parameters determine a specific
point on the surface of a sphere with coordinates (mg0, χ, ψ). The parameter χ is calculated as follows:

sin(2χ) =
−g3
mg0

(12)

The m−δ decomposition is achieved using three inputs, viz., the first Stokes parameter g0 (representing
total back-scattered power), relative phase δ, and degree of polarization m. The decomposition defined
in Equation (13) can be presented under a RGB color composite representation where VR, VG and VB

correspond to even bounce scattering, volume scattering and odd bounce scattering, respectively [12, 13].

⎛
⎜⎝

VR

VG

VB

⎞
⎟⎠ =

⎛
⎜⎜⎜⎜⎜⎜⎝

√
g0m

(1 − sin δ)
2√

g0(1 −m)√
g0m

(1 + sin δ)
2

⎞
⎟⎟⎟⎟⎟⎟⎠

(13)

Another polarimetric decomposition closely related to the m− δ decomposition is m−χ decomposition.
The m − χ decomposition is achieved making use of the ellipticity angle χ as opposed to the relative
phase δ. This decomposition is defined by Equation (14).

⎛
⎜⎝

VR

VG

VB

⎞
⎟⎠ =

⎛
⎜⎜⎜⎜⎜⎜⎝

√
g0m

(1 + sin 2χ)
2√

g0(1 −m)√
g0m

(1 − sin 2χ)
2

⎞
⎟⎟⎟⎟⎟⎟⎠

(14)

In this study, we use RISAT-1 FRS1 mode data over Haryana region acquired in March 2013 to
study the odd bounce, even bounce and volumetric scattering decomposition based on m−δ and m−χ.
The algorithm makes use of Stokes parameters and auxiliary quantities directly derived out of it. We use
polarimetric refined Lee filter with 9 × 9 moving window for denoising the image. The decomposition
is performed on a slant range L1 data product of RISAT-1. To compare the output of polarimteric
filter with the spatial-multilook processing, we produce output by 6 × 4 multilooking (this is found to
be the optimal factor by experience). The end-to-end processing is done using a in-house developed
polarimetric processing tool. A flowchart depicting the process flow is given in Figure 2. The RGB
composite is exported using GDAL (Geospatial Data Abstraction Library), and subsequently ENVI R©
software is used for maximum likelihood classification. The specification of the RISAT-1 data products
is given in Table 1. The details can be seen in [16].
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Figure 2. Process flow for generating polarimetric decomposed images starting from RISAT-1 FRS-1
CP image in CEOS format.

Table 1. Specifications of RISAT-1 data used for the study.

Serial # Property Value
1 Orbit Circular polar sun synchronous
2 Orbit altitude 536 km
3 Orbit inclination 97.552◦
4 Date of pass 27-MAR-2013
5 Image format CEOS
6 Processing level SLC
7 Incidence angle (deg) 43.395
8 TxRxPol1 RV
9 TxRxPol2 RH

3. STUDY AREA AND GROUND TRUTH

Central State Farm located in Hisar district of Haryana (India) has been selected for the present study.
The area is bounded by the coordinates 29◦ 11′−29◦ 20′ N latitudes and 75◦ 36′−75◦ 45′ E longitudes.
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This is a farmland of considerable size where large experimental crop fields (more than 5ha) are
maintained for seed generation and distribution to the state farmers. The major agricultural crops
grown in this area include rice, cotton and pulses during Indian kharif (summer/monsoon) season and
wheat, mustard, gram (chick pea), peas during Indian rabi (winter) season. In the present study, we
analyse a rabi season dataset of RISAT FRS-1. The rabi season starts at the end of September when
mustard sowing starts and continues till mid-October. The early wheat crop is sown in November and
the late wheat sown during late December to January, after the harvest of cotton crop of previous kharif
season in and adjacent to central state farm. The gram is sown during late October to early November.
The high volume scattering component in the March image will correspond to the late wheat area
dominantly, and other rabi crops in mature and advanced stage of growth will also have significantly
surface component.

Ground truth data were collected by field survey during the acquisition periods synchronized with
the satellite passes over the area, including collection of all important information of the crop type,
stage, height, percentage cover, vigour, soil roughness and moisture status. GPS (Magellan NAVDLX-
10) coordinates were noted during ground truth data collection for the above parameters. Sites having
an area greater than 3 ha in contiguity of crop were selected for this purpose. In addition, ground truth
information also contains other information related to the existing land cover features such as urban,
other crops and vegetation, water bodies, plantation and forest. The information was collected at all
the locations of 30 sites for mustard and wheat and 15 for gram.

4. FEATURE CLASSIFICATION USING M − δ AND M − χ DECOMPOSITION
TECHNIQUES

The study area encompasses major winter crops such as wheat, mustard and gram. The other
features are plantations, urban setups, water body, etc. Based on the decomposition outputs (RGB),
which resulted in the segregation of various scattering components, supervised maximum likelihood
classification was carried out to address the crop discrimination problem. The decomposed images
represented in Figures 3(a), 3(b), 4(a) and 4(b) are the RGB composites where red stands for even
bounce scattering, green for diffuse (depolarization) scattering and blue for odd bounce scattering.

For March 27 data, the date of acquisition coincides with a stage in which most of the crops are in
advanced stage or on the verge of harvest. As shown in Table 2, m−χ decomposition based classification
gives higher accuracy for most of the landcovers in general compared to the m− δ decomposition. This
can be attributed to the fact that χ captures the ellipticity of the polarization ellipse, and for the
advanced crop phase, we have isotropic scatters. For most of the classes, results are comparable for
both these decomposition methods. Late sown wheat is sown by the end of December or early January
in north India after the harvest of cotton crop. The m−δ uses the relative phase information of RH and

Table 2. Classification accuracy of various land covers in Central State Farm, Hisar, Haryana. (a)
POLSAR filter. (b) Multi-look.

(a)

Features m− δ m− χ

Late wheat 77 86
Early wheat 59 78

Gram 83 82
Mustard 93 98

Mustard late 97 97
Water body 100 100

Urban 98 99
Plantations 97 98
Bare soil 100 100

(b)

Features m− δ m− χ

Late wheat 74 91
Early wheat 87 87

Gram 93 94
Mustard 93 94

Mustard late 83 88
Water body 100 100

Urban 100 100
Plantations 80 82
Bare soil 100 100
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(a) (b)

(c) (d)

Figure 3. Stokes parameter based decomposition and classification output for 27 March, 2013, RISAT-
1 compact polarimetric data, after applying polarimetric filter. (a) m− δ decomposed image. (b) m−χ
decomposed image. (c) Classified image corresponding to m − δ decomposition. (d) Classified image
corresponding to m− χ decomposition.

RV, precisely the H and V phase angles. For younger crops, the vertical component is less dominant,
and the canopy appears to be an isotropic scatterer, in the first phase, till 50–60 days after sowing.
Once the panicles emerge, the wheat fields resemble a uniform carpet of dense scatterers (the canopy)
with periodic panicle stalks standing vertically over this carpet. Panicles are complex inflorescence,
which is much branched. They act as scatterers inducing double or multiple bounces to microwave
radar signal. The late sown wheat will have a directional component during late March due to panicle
development whereas the early sown crop will be near maturity phase with matured panicles amidst the
dry leaves. This directional effect for the late sown wheat results in better classification accuracy than
the early/timely sown wheat in the m − δ decomposition [18]. The accuracy has been verified by the
test data sites. This directionality distinction leads to separation of wheat in calendar year (November
— sown early and January — sown late) due to their sowing date differences and plays an important
role in terms of information for better separability among classes in both the m− χ and m − δ based
decompositions. Late sown wheat is observed to be separated out from the early sown wheat with
higher efficacy in both the m − χ and m − δ decomposition based classifications but more so in the
m − δ decomposition (Table 2). We attribute this to the existence of orientating structures, panicles,
in late wheat which induce double/multiple bounce scattering. This immediately affects the relative
phase angle (δ) directly and hence the m− δ decomposition.

As can be inferred from Table 3 (omission/commision table [19]), late wheat is classified with higher
accuracy than the early wheat, which has at least one month difference in the sowing dates. For most of
the features, overall accuracies are higher in the m− χ case, leading to, in general, a better performer.
In the spatial multilooking based classification as shown in Table 4, late wheat is again classified with
lesser errors in general and commission in particular. This leads to higher accuracy for the late wheat.
The late mustard crop fields, located outside the central farm, are a bunch of small, heterogeneous and
scattered fields. Since this class is erroneously getting committed to the early wheat and early mustard
class (here late mustard sowing calendar overlaps with early wheat sowing), the classification accuracy
degrades while multilooking. This can be readily seen from the commission/omission matrix. This class
is better separated in the POLSAR filtered full resolution dataset.
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Table 3. m− δ and m− χ omission/commission error table for various features under the study.

POLSAR filter
m− δ m− χ

Class Commission Omission Commission Omission
Urban 0 1.74 0 0.87
Water 0 0 0 0

Early mustard 31.63 6.29 2.76 1.4
Gram 10.7 18.44 9.8 17.34

Late wheat 11.95 23.08 13.66 13.19
Early wheat 23.3 40.6 20 21.8
Plantations 3.14 3.14 1.89 1.89

Late mustard 4.17 2.54 2.52 1.69
Bare Soil 0 0 0 0

Multi-look
m− δ m− χ

Class Commission Omission Commission Omission
Urban 1.01 0.50 0 0
Water 0 0 0 0

Early mustard 28.06 6.54 5.61 5.61
Gram 9.8 17.34 6.8 7.34
Late 4.61 26.02 2.72 8.67

Early wheat 32.50 12.90 35.71 12.90
Plantations 7.14 20.41 4.76 18.37

Late mustard 40.35 17.07 35.71 12.20
Bare Soil 0 0 0 0

Degree of circularity forms the basis for decomposition in m− χ decomposition in addition to the
degree of polarization and responds to the target well when the target is isotropic rather than directional,
which applies to the early stage of the wheat crop as well as the very advanced stage of the crop. In the
present investigation, early sown (sown during November early/mid) wheat crop is in advanced growth
stage in March. This results in similar classification accuracy in both m− δ and m− χ decomposition
based classifications due to their isotropic scattering mechanism especially observed in the multilook
processing scenario (Table 2(b)). Overall higher classification accuracy is observed in m − χ case for
both polarimetric filtered image and that by multilooking approach.

Mustard is sown earlier in season during late September to early October and harvested during
late March/early April. During late March, most of the leaves are shed, and the plants are full of the
siliqua, reaching maturity fast. The initial directional vertical component present in the mustard fields
during 40–60 days after sowing is lost in the advanced stage of siliqua maturity. This effect of isotropic
nature is added by the heavy branching habit and siliqua weight of the mustard crop. The isotropic
scattering resulting in high classification accuracy in both m− δ and m−χ decomposition components.
The accuracy in the m − χ case is slightly higher than the m − δ, which is attributed to heavy and
dense mustard canopy loaded with mature siliqua fruits. The late sown mustard is sown during first
fortnight of October and follow a similar response to the timely sown mustard crop due to faster rate
of growth initially. This is in contrary to the late sown wheat crop where there is distinct lag between
the early and late sown remains due to the initially slower rate of growth. The m − χ gives a higher
classification overall accuracy of 92% than 87% for the m− δ.

Both m−χ andm−δ decomposition based classifications are useful at various crop stages depending
on the stage, cultural practice and canopy geometry. Subtle differences in directional scattering is
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(c) (d)

(a) (b)

Figure 4. Stokes parameter based decomposition and classification output for 27 March, 2013, RISAT-
1 compact polarimetric data. (a) m−δ decomposed image. (b) m−χ decomposed image. (c) Classified
image corresponding tom−δ decomposition. (d) Classified image corresponding tom−χ decomposition.

reflected bym−δ whereas mature stage isotropic scatterers are brought out well bym−χ decomposition.
Establishing this theoretically needs more hybrid polarimetric data evaluation that addresses various
crops differing in stage and geometry. The preferential orientation of crop structures (vegetation),
which can induce double or multiple scatterings to microwave radar signal, can be found coinciding
with particular phenophase unique to each crop type. In such cases, m− δ decomposition is expected
to perform well. In advanced crop stages and in multi-stage scenario as a whole m− χ, decomposition
performs well.

The polarimetric filter based classification retains the original spatial resolution of the data
unlike the spatial multilooked processing. For the classification results of most of the landcovers, the
polarimetric filtered processing is consistent with the multilook approach [20]. This is apparent from the
present study as seen in Table 2. The early sown wheat is mostly grown in farmers’ fields surrounding
the central state farm and is heterogeneous in nature. Since multilooking reduces heterogeneity, the
accuracies of both δ and χ based decompositions are correspondingly increased for this class. In
homogeneous cases, like plantations and mustard, the decomposition subsequent to polarimetric filtering
performs well.

The results presented so far are further corroborated with the results from a similar study using
data over the major wheat growing region in the Junagad district of Gujrat (date of pass February 12,
2015). We again use FRS-1 hybrid polarimetric mode to showcase the reproducibility of our results over
a different date of acquisition over an area with similar crops (Figure 5). Here again the late wheat is
separated with higher accuracy in both m− δ and m− χ decompositions, as can be seen from Table 4.
The other important crops are coriander, found mostly in the southern part of the scene, and cotton,
which is in dried and harvesting phase, whereas cotton and coriander in advanced stages show similar
accuracies for both m− χ and m− δ, so do the early and late sown wheat, and the mid-season wheat
shows better accuracy in m − δ decomposition. Orchards are found to be discriminated well by the
m − δ method. This again leads to the conclusion already arrived from the Haryana state farm data
set, viz., for an agricultural scenario, m− chi decomposition gives an overall better accuracy, but there
exist cases where m − δ shows more sensitivity to certain crop stages. For the downsampling versus
POLSAR filter scenario we can also reproduce similar results using the Junagad data set (Table 4).
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(a) (b)

Figure 5. Stokes parameter based decomposition and classification output for 12 February, 2015, CL-
pol data over Junagad, Gujarat. (a) Full resolution POLSAR filtered and m − χ decomposed image.
(b) Classified image corresponding to m− χ decomposition.

Table 4. Classification accuracy of various land covers in Junagad field, Gujarat. (a) POLSAR filter.
(b) Multi-look.

(a)

Features m− δ m− χ

Late wheat 92 91
Early wheat 63 59

Wheat 53 63
Coriander 74 68
Cotton 85 85

Water body 84 91
Urban 100 100

Orchards 71 52
Bare soil 85 81

(b)

Features m− δ m− χ

Late wheat 95 91
Early wheat 48 59

Wheat 68 84
Coriander 97 97
Cotton 85 90

Water body 97 97
Urban 96 96

Orchards 84 81
Bare soil 94 98

5. CONCLUSION

The polarimetric decomposition of CL-Pol SAR data of ISRO’s RISAT-1 FRS-1 mode (over Haryana
state farm) was achieved using quantities derived out of Stokes parameters. A polarimetric speckle filter,
based on refined Lee POLSAR filter, was implemented to denoise CL-Pol data. Two widely used hybrid
polarimetric decomposition techniques, the m− δ and m−χ decompositions, were compared rigorously
using an agricultural scene with ground validated data points. We show the significant result that usage
of a polarimetric filter produces comparable classification accuracy to that of spatial multilook case,
without degrading spatial resolution. The overall advantage of using m − χ over m − δ for advanced
stage crops was clearly demonstrated. Also, the important role played by crop geometry was shown
with regard to wheat and mustard classes. Late sown wheat, which has protruding structures, shows
significant improvement within m− δ compared to the m− χ method for this class. We then show the
reproducibility of major results using a different date CL-Pol data to over Junagad region of Gujarat.
This work needs to be extended to crops at various phenological stages to understand the role and
mechanism in which this data manifests the crop dynamics. To firmly establish the theoretical basis of
many observations in this paper, CL-Pol decomposition over various landcovers is to be carried out.
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