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A Two-Stage Approach for Frequency Response Modeling and
Metamaterial Rapid Design
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Abstract—We introduce a novel two-stage approach for rapid design of massive metamaterials
(MTMs), where performances of thousands of microstructures require evaluation. In Stage I, an
equivalent circuit model is synthesized via rational function modeling to represent the frequency response
of MTMs microstructures. In Stage II, Gaussian process (GP) regression models are unitized to build
the relation between the physical setting of the microstructure, including geometric design variables
and incident angles of electromagnetic (EM) waves, and the representing parameters of the equivalent
circuit model. As a consequence, the mapping from the microstructure physical parameters to the
frequency response is easy to achieve and with high accuracy. We offer two metamaterial prototypes
to illustrate that the proposed approach allows high efficiency in facilitating the design of massive
MTMs. The experimental results demonstrate that our method is no longer limited by the complexity
of microstructures and the spatial dispersion, induced by the variation of incident angle. We compare
the accuracy of predicted responses against the reference data, and both examples yield average RMSE
less than 0.05, which meets the requirements for many MTMs engineering applications.

1. INTRODUCTION

Metamaterials are artificially designed materials that consist of sub-wavelength microstructure unit
cells which yield specific responses to the electromagnetic (EM) field applied, leading to extraordinary
behaviors that cannot be achieved with natural materials [1, 2]. MTMs have drawn great interest toward
achieving novel physics phenomenon and unique functionalities, including negative refractive indexes
[1, 2] and perfect lensing [3, 4], whose realization requires careful design of the topology and geometric
dimensions of their microstructures [5, 6].

In practice, the MTM design process is dominated by the speed of full-wave simulations where
Maxwell’s equations are solved typically using the finite integration technique (FIT) and finite element
method (FEM). This commonly applied process suffers from repeated simulations in tailoring the
macroscopic EM behavior of each particle. Moreover, the recent advance in electromagnetic technology
demands that MTM microstructures of great complexity and variety in topology be integrated into the
same system [5, 6], which are more expensive to run the simulation.

To provide an analytical expression of MTMs functional response, the Drude/Lorentz-type model,
also known as the effective medium method, was proposed [7–9]. This approach approximates MTMs EM
performances with two constitutive parameters, namely, effective permittivity and effective permeability
which are retrieved from MTMs reflection and transmission coefficients, acquired at exact normal
incidence. However, the spatial dispersion relies not only on the spatial distribution of the MTMs
particles but also on the direction along which an electromagnetic wave propagates. Therefore, incident
condition (angle, polarization, etc.) becomes one of the most important factors to decide the EM
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performance of MTMs. As a result, anisotropy would bring additional difficulties in modeling the
functional response which leads to non-uniformity between the constitutive parameters [10–12]. Yet
the effective medium method assumes the constitutive parameters to be constants, i.e., neglects the
discrepancies in frequency responses caused by variation of incident angle and thus leads to poor
accuracy of approximation at oblique incidence. Meanwhile, to guarantee the success of an effective
medium method, the ratio of operating wavelength to unit cell size must be greater than 4 [13]. Yet
optical transformation MTMs usually requires much more complex structures and much larger overall
size [5] because the constitutive parameters are often spatially inhomogeneous and anisotropic [14, 15].

An equivalent circuit method was also adopted in modeling MTMs frequency response, in which a
predefined circuit is constructed according to the metallic microstructure topology [16–18]. Values of
circuit elements were obtained by fitting the frequency response. This approach allows high coherence
in predicting the frequency dispersion of MTMs [17, 18]. For example, as well known in radio frequency
engineering, the resonance frequency of an equivalent circuit is inversely proportional to the square root
of the product of inductance and capacitance. Once the equivalent circuit is configured, the resonance
of a system can be fine-tuned by changing the geometrical parameters of microstructures to search
optimized circuit parameters. However, synthesis of such a circuit often fails when the complexity of
the MTMs unit cell increases, since defining an equivalent circuit becomes very challenging and it hardly
converges when fitting its parameters. Once again, these techniques are only proved to succeed at normal
incidence or require homogeneity and isotropy of the metamaterial architecture thus contributing little
to MTMS rapid design.

To relieve the computing burden of a time-consuming design process, statistical techniques like
meta-models (a.k.a. surrogate models, response surface, etc.) were employed to build a mathematical
expression to predict the frequency response at unobserved independent variables of the MTMs based
on a considerably smaller number of historical simulation data [6]. For example, the spatial distribution
of the refractive indices can be determined via a simple polynomial-like regression model [5]. To deal
with more sophisticated data in which non-stationarity and/or discontinuities were embedded, a more
flexible modeling scheme, Bayesian nonparametric, was utilized to predict the constitutive parameters
for any specific design over a diverse range of MTMS particles [6]. These two works save a great amount
of time compared to the two conventional approaches. But the prediction of the frequency still relies on
representing the refractive index via a particular Drude/Lorentz-type model. Thus, a prompt solution
is required to address the spatial dispersion induced by the variation of incident angle.

In this paper, we propose a two-stage surrogate approach to incorporate the aforementioned
dispersion induced by the variety of incidence. In Stage I, we represent a different equivalent circuit
model, whose values were analytical solutions to a series of rational functions [19]. Since the equivalent
circuit is obtained by approximating the functional response itself rather than accommodating a
particular MTMs geometrical pattern, the reliability of the circuit is no longer limited by the complexity
of the microstructure. The vector-fitting (VF) algorithm is first applied to fit the response of MTMs
to a rational function [20, 21]. Then the elements of the equivalent circuits are synthesized by a couple
of fractional terms and their poles and residues. After we decompose the functional response to a set
of parameters of the equivalent circuits, we can apply a surrogate model, in Stage II, to find the latent
input (physical settings)-output (circuit parameters) relations. We utilize the Gaussian process (GP) as
the regression approach because it is not only powerful in dealing with multivariate nonlinear data and
graphics, but also capable of modeling many physical phenomenon [22]. With this two-stage modeling
approach, we implement mapping the relationship between any types of physical settings of MTMs
designs to their frequency response.

The structure of this paper is as follows. Section 2 presents the two-stage model, which includes
the basic formulations of rational approximation, synthesis of an equivalent circuit representation of
such fractional functions, and the GP-based regression model. Section 3 gives the computer experiment
results conducted on two metamaterial prototypes to demonstrate the efficiency and accuracy of the
proposed approach. We draw the final conclusion in Section 4.
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2. METHODOLOGY

2.1. Stage I: Equivalent Circuit Model via Rational Approximation

In this stage, the frequency responses, F (s), of MTMs were presented with fractional functions in the
form of

F (s) =
∑n

k=1

resk

(s − pk)
+ d + sh, (1)

with s = jω being the complex frequency, resk and pk being the kth residue and pole, respectively,
which are either real quantities or come in complex conjugate pairs [23, 24]. The real valued constant
term d and s-proportional term h are optionally included in the formula. Fitting of this rational function
can be well achieved by the vector-fitting algorithm, which approximates the reference data with a few
discrete parameters (poles and residues, etc.). We adopt these partial fractions to model the frequency
response, since it allows accurate representation of distinct resonances, which always exists in MTMs
functional data and cannot be well described by polynomials or splines. In particular, poles obtained
via this technique have direct correspondence to resonant peaks of the response data, which offers quick
identification to the dispersive properties of MTMs, as the resonant frequency equals 2π of the absolute
value of the imaginary part of each pole.

Before the synthesis of equivalent circuits, we must choose a certain representation form to the
reflection and/or transmission performance of an MTMs system. The candidates include S-parameter,
characteristic impedance, and transfer matrix, to name a few. Without losing any generality, we aim to
approximate admittance parameters and calculate the circuit element values once the pole and residue
pairs are known. Compared to the conventional equivalent circuits, the model adopted in this work is
rather fixed, where only two types of networks, namely, the series RL and lumped RLC, are used to
formulate the circuit, although the microstructure patterns vary from case to case. These two building
blocks of the fixed circuit model are depicted in Figures 1(a) and (b), respectively. In a fixed circuit,
each series RL loop corresponds to a real pair of pole and residue, whereas each lumped RLC network
deals with the complex pair, which helps to understand the working principle of the MTMs composite.
As the order of vector fitting increases, we establish the circuit by adding more parallel loops of series
structures in accordance to the number of real poles, Nr, and lumped RLC counterparts agree with the
number of complex pairs, NC . Examples of such circuit configuration are shown in Figure 6.

R L L R

R'

C

(a) (b)

Figure 1. (a) Equivalent RL circuit for real pole synthesis; (b) Equivalent lumped RLC circuit for a
complex pole.

2.1.1. Real Poles

As shown in Figure 1(a), the real pole and residue pair of function F (s) is synthesized by series RL, the
values of which are

L =
1

resR
and R = − pR

resR
(2)

where pR and resR are real poles extracted by VF procedure.

2.1.2. Complex Poles Pairs

Let p1, p2, res1 and res2 be pairs of complex and conjugate poles and residues, respectively. We can
obtain the following circuit parameters:
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L =
1

res1 + res2

R =
1

res1 + res2
×

[
−(p1 + p2) +

1
res1 + res2

(res1p2 + res2p1)
]

C =
res1 + res2

p1p2 + [−(p1 + p2) +
1

res1 + res2
(res1p2 + res2p1)]

×
(

res1 + res2

res1p2 + res2p1

)

R′ = − 1
C

(res1 + res2)
(res1p2 + res2p1)

. (3)

If term d and h are included, they are synthesized with a resistance and a conductance, whose values
are 1/d and h, respectively. More detailed methodology and expressions for equivalent circuit synthesis
are presented in [19].

2.2. Stage II: Gaussian Process Regression

In this stage, values of equivalent circuit elements are used as training observations (or say response
variables), and the physical settings of microstructures act as independent variables. The problem can
be described as follows, and for each circuit element, the data are given as D = {(xi,yi)

N
i=1}, where

xi ∈ X = RG, Y = R, N is the number of data points and G the dimensionality of input vectors. The
purpose is to find a regression function g(x) to relate the observations to the input variables. However,
instead of generating a single regression function, it transductively provides a posterior density over
target values for the training and test set [22].

To fully define a GP, both its mean function m(x) and the covariance function k(x, x′) should be
specified as

g (x) ∼ GP
(
m (x) , k

(
x, x′)) . (4)

In general, the covariance function can take any form of a function that generates a nonnegative definitive
covariance matrix K between any two arguments. The choice of the covariance function implicitly
assumes certain aspects of the underlying process, such as smoothness, periodicity, and stationary,
which can be fine-tuned for special applications like our case. Among all possible candidates, the
squared exponential covariance function is most commonly adopted, given by

k
(
x, x′) = σ2

νexp
(∑

ν

1
2l2ν

∣∣x − x′∣∣2) , (5)

which is parameterized by two parameters σ2
ν , called signal variance, and lν named characteristic

length scale. These two parameters are categorized as hyper parameters in the Bayesian statistics
community. The signal variance controls the range of magnitude that the function value can vary. And
the characteristic length scale, loosely speaking, can be thought of as the required distance, away from
a given point to cause a significant change in the function value in the input space. We denote the
union of hyperparameters by γ, whose values are evaluated by optimizing the log marginal likelihood:

log p (y |X, γ) = −1
2
yT K−1y − 1

2
log |K| − n

2
log 2π. (6)

Here, we assume a noise-free electromagnetic response obtained via numerical simulation. Then the
covariance matrix K for y is identical to that of the noise-free latent function g(x).

By evaluating the mean and covariance matrix, predictive response y∗ of new input X∗ can be
sampled from the joint posterior distribution as

y∗|X∗,X, y ∼N
(
K (X∗,X) K (X,X)−1

)
y, K(X∗,X∗) − K (X∗,X) K (X,X)−1K (X,X∗) ), (7)

where N(a, b) denotes the Gaussian density function with mean a and covariance b, and K(A,B) denotes
the matrix of covariance evaluated at each pair of points coming from both involved data sets, A and
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B. Once the GP models are established, predictions at unobserved input sites can be generated by
Bayesian statistics [22]. And this marks the completion of our two-stage modeling and design process.
We summarize the operations as below:

Stage I: Equivalent Circuit Setups Based Upon Poles and Residues via Rational Approximation
1. Rewrite each reference dataset as a function of discrete parameters as

Fi (s) = ϕ (s, φi) ,

where φi is the combination of poles and residues (d and h as well, if included) at ith input
set.

2. Compute the circuit parameters
yij = ηj(φi),

where yij is the value jth circuit element at ith input set.
Stage II : Construct GP Regression Models for Each Circuit Element Synthesized via Rational
Approximation

yij ∼ GP ij

(
m (xi) , k

(
xi, x

′)) .

For new design points in the test set, prediction of their frequency responses is straight forward
by following the in versed sequence of two stages above, i.e., first predicting the circuit elements with
corresponding GP models and then calculating the sum of corresponding fractional functions.

3. EXPERIMENTAL VERIFICATION

In this section, we present the simulation studies of two MTMs prototypes designed with the proposed
method to verify its effectiveness and accuracy. The verification contains three major components: data,
intermediate results of both stages, and predictive accuracy. We present two prototypes to verify that
our approach can be applied to a vast range of topology families of metamaterials.

3.1. Data

Each of the two metamaterial prototypes contains a single microstructure layer made of copper with
a thickness of 0.018 mm, and with stratified dielectrics stacked symmetrically on both sides. The
relationship between the microstructure and macrostructure of MTMs prototypes is conceptually
explained in Figure 2. We aim to relate the design variables of MTMs, i.e., physical dimensions, to the
EM performance. Meanwhile, the incident angle, denoted by θ, should be included as an independent
variable in our model. The incident angle is defined as the angle between the incident wave vector,

Figure 2. Layout of microstructure and
macrostructure.

Figure 3. Illustration of an EM wave incident
onto a MTM slab.
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k̄, and plane normal, n̄, shown in Figure 3. Therefore, both input spaces of the two examples are
two-dimensional. The training sets of both prototypes are obtained via full-wave simulation. And for
each prototype, we compare the predictions of our approach to simulation results at the same given test
sets to demonstrate the accuracy.

3.2. Prototype I

3.2.1. Training Set

The pattern of Prototype I is generated from the well-known Jerusalem cross and modified by adding
a square coil along the edges of the unit cell [25]. The microstructure is parameterized by a geometric
variable, w, as illustrated in Figure 4(a). The values of w of the training set are from 0.6 mm to
1.4 mm by an interval of 0.2 mm. Meanwhile, at each setting of w, we also take a sweep on θ, with
0 deg ≤ θ ≤ 45 deg, by an interval of 5 degree. As a result, there are 50 data points in the training set.
Other constant geometric dimensions are also marked in Figure 4(a). For all dielectrics, we assume
unity permeability (i.e., μ = 1) permittivity ε, and thickness t which are listed in Table 1.

(a) (b)

Figure 4. Illustration of two MTM prototypes: (a) Parametric presentation of the modified Jerusalem
cross; (b) Parametric presentation of the triple hexagonal rings.

Table 1. Material properties of prototype 1.

ε μ t
LT1 3.15-j1.575E-2 1 0.75
LT2 2.7-j1.755E-2 1 0.1
LT3 1.05-j1.575E-2 1 1
LT4 2.7-j1.755E-2 1 0.1

Microstructure
LB4 2.7-j1.755E-2 1 0.1
LB3 1.05-j1.575E-2 1 1
LB2 2.7-j1.755E-2 1 0.1
LB1 3.15-j1.575E-2 1 0.75

Table 2. Material properties of prototype 2.
∗ LT-layer on top; LB-layer on the back.

ε μ t
LT1 3.15-j1.575E-2 1 2.5
LT2 1.09-j0.71E-2 1 1.5
LT3 3.15-j1.575E-2 1 1

Microstructure
LB3 3.15-j1.575E-2 1 1
LB2 1.09-j0.71E-2 1 1.5
LB1 3.15-j1.575E-2 1 2.5

3.2.2. Test Set

We sweep the geometric dimension parameterw from 0.7 mm to 1.3 mm by an interval of 0.2 mm, while
θ is swept from 2 to 44 degree by an interval of 2 degree. In total, 92 data points form the test set.



Progress In Electromagnetics Research C, Vol. 76, 2017 17

3.3. Prototype II

3.3.1. Training Set

We present a different metamaterial prototype whose topology is depicted in Figure 3(b). The
microstructure consists of three hexagonal loops, where two of them are fixed and the other with
varying physical dimension. The geometric variable of the varying hexagonal loop is parameterized by
φ, whose value is from 2.1 mm to 2.5 mm by an interval of 0.2 mm. Properties of dielectrics in this
MTM structure are given in Table 2. Again, we also include incident angle as one input variable, with
0 deg ≤ θ ≤ 70 deg, by an interval of 5 degrees. In total, all possible variations of inputs add up to 45
total points.

3.3.2. Test Set

We predict the EM performance of designs with geometric parameter φ from 2.2 mm and 2.4 mm, while
θ is swept from 0 to 70 degree by an interval of 2 degree. In total, the test set contains 72 data points.
The data set formations of both prototypes are concluded in Table 3.

Table 3. Dataset configuration of both metamaterial prototypes.

Training set Test set

Prototype I
50 points with

w ∈ [0.6 : 0.2 : 1.4] and θ ∈ [0 : 5 : 45]
92 points with

w ∈ [0.7 : 0.2 : 1.3] and θ ∈ [0 : 2 : 45]

Prototype II
45 points with

φ ∈ [2.1 : 0.2 : 2.5] and θ ∈ [0 : 5 : 70]
72 points with

φ ∈ [2.2, 2.4] and θ ∈ [0 : 2 : 70]

3.4. Results

3.4.1. Stage I: Vector Fittingand Equivalent Circuit Modeling

For our first MTM prototype, we fit the simulated frequency response with 3 poles (one real pole and
one complex pair) to approximate each admittance curve. The statistic used for comparison of fitting
accuracy is root mean-square error (RMSE ):

MSE =
∑ns

j=1

(
F fit

j (s) − Fj(s)
)2

/ns and RMSE =
√

MSE, (8)

where F fit
j (s) and Fj(s) are the model predicted response and full-wave simulation results at jth test

point, respectively. ns is the number of responses at each test input, which equals one thousand in our
case. With the proposed number of poles, we can achieve very high accuracy with the approximation
error less than 0.002. A comparison of the approximated result (red circles) and reference data (blue
dash) is shown in Figures 5(a) and (b). The deviations between these two are presented by the blacks
olid curves. Corresponding to the curves, Table 4 lists the combination of extracted quantities of the
approximation as an example.

Table 4. Example of extracted parameters of Prototype I via vector fitting.

Poles Residues
−1.26E + 07 2.21E + 08

−3.42E + 08 + j5.58E + 10 1.65E + 08 + j5.72E + 06
−3.42E + 08 − j5.58E +10 1.65E + 08 − j5.72E + 06

d : 2.24E − 05 h: 2.11E − 14
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Figure 5. Comparison of rational approximation and equivalent circuits simulation to reference data:
(a) Prototype I Magnitude; (b) Prototype I Phase; (c) Prototype II Magnitude; (d) Prototype II Phase.

We present the results in Stage I of Prototype II in the same manner, where the example of pole-
residue pairs is listed in Table 5. In contrast to Prototype I, functional responses of Prototype II are
approximated by 6 poles (3 complex pairs), plus term d and h, while similar approximation accuracy is
achieved, shown in Figures 5(c) and (d). Corresponding pole-residue pairs are listed in Table 5.

Table 5. Example of extracted parameters of Prototype II via vector fitting.

Poles Residues
−1.41E + 08 + j2.94E + 10 1.65E + 08 + j2.57E + 06
−1.41E + 08 − j2.94E +10 1.65E + 08 − j2.57E + 06
−1.33E + 09 + j9.22E + 10 3.15E + 08 + j1.41E + 05
−1.33E + 09 − j9.22E + 10 3.15E + 08 − j1.41E + 05
−4.06E + 08 + j1.18E + 11 2.08E + 08 + j2.20E + 06
−4.06E + 08 − j1.18E +11 2.08E + 08 − j2.20E + 06

d : 1.51E − 04 h: 9.72E − 15
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After the rational approximation of the response, we convert the parameters of fractional functions
to values of equivalent circuit elements. For both prototypes, the equivalent circuit and values of
elements corresponding to frequency response in Figure 5 are displayed in Figure 6. The equivalent
circuit extracted from the quantities of vector fitting is SPICE compatible [19]. We take the synthesized
equivalent circuits to RF circuit simulation software and compare the simulation data (green star dash)
to the reference (blue curves), with the deviation also included (magenta circles). Notice regression
should also be performed to the constant term d and s-proportional term h, although not shown in
Figure 6.

(a) (b)

Figure 6. Equivalent circuits with example of element values: (a) Prototype I; (b) Prototype II.

3.4.2. Stage II: Gaussian Processes Regression

We view the values of equivalent circuit elements as observations for GP regressions and build separate
GP models for different elements in the equivalent circuit. In our case, we obtain 8 regression surfaces
for Prototype I and 14 surfaces for Prototype II, one for each element. This seems too much to run with
a computer code. In fact, building a single GP regression model and accomplishing Bayesian inference
only take a few seconds. The time efficiency of the proposed method is displayed in Section 3.3. The
exponential square covariance function was adopted, and the optimized hyper-parameters for both
prototypes are given in Table 6. Meanwhile, a smooth regression surface of inductor L, in the lumped
RLC loop, against the input variables of Prototype I is displayed in Figure 7.

Table 6. Example of hyperparameters learnt in a GP for Prototype I.

Signal variances Characteristic lengthscales
σ2

1 = 0.001 and σ2
2 = 0.001 l1 = 2.02 and l2 = 19.99

3.5. Efficiency and Accuracy

Our control data for the test sets were obtained by running full-wave simulations performed on a desktop
computer with Intel Core i7-2600 central processing units (CPUs) and 8 GB of random access memory
(RAM). We conclude time consumed for the full-wave simulations and that of our approach, which are
both listed in Table 7, which demonstrates time-efficiency of our method.

To illustrate the predictive accuracy of our approach, examples of the compared results of magnitude
and phase of reflection (S11) and transmission (S21) of the proposed method to that via full-wave
simulation are depicted in Figure 8. Here, we only demonstrate fitting the frequency response in
polarization of the TE mode, while the proposed modeling scheme is also adaptable to the TM mode.

We conclude the predictive accuracy of both metamaterial prototypes of the proposed approach in
Table 8. The proposed approach allows accurate approximation, with the average RMSE less than 0.05
for both metamaterial prototypes, which should be satisfactory for many engineering applications.
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Figure 7. Example of Gaussian process regression surface.

(a) (b)

(c) (d)

Figure 8. Comparison of S-parameters of the proposed method and simulation results: (a) Prototype
I Magnitude; (b) Prototype I Phase; (c) Prototype II Magnitude; (d) Prototype II Phase.
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Table 7. Time consumption of full-wave simulation and the present work.

Full-wave simulation Present work
Prototype I > 160 Hours < 3 Minutes
Prototype II > 130 Hours < 3 Minutes

Table 8. Predictive accuracy of proposed approach on both prototypes.

Min 1st Qu. Median Mean 3rd Qu. Max.
Prot. I S11 0.0243 0.0347 0.0449 0.0451 0.0551 0.0651
Prot. I S21 0.0191 0.0261 0.0323 0.0325 0.0395 0.0463
Prot. II S11 0.0336 0.0413 0.0466 0.0471 0.0539 0.0608
Prot. II S21 0.0314 0.0370 0.0417 0.0421 0.0483 0.0539

4. CONCLUSION

This work presents a novel two-stage method to model the frequency response of MTMS and aids the
design process. With our approach, we break down the complex modeling problem to a VF-based
equivalent circuit modeling process and a GP regression process. This two-stage method can easily
generate the mapping function from any types of independent variables, including geometric dimensions
and incident angle to their corresponding EM responses. The predictive property of this model enables
the massive reduction of time-consuming simulations. As the experimental results demonstrated, this
proposed modeling scheme can facilitate the rapid design of MTMs with high accuracy in the prediction
of the EM response of various MTMs microstructures.
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