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Plane Wave Diffraction by a Finite Parallel-Plate Waveguide
with Sinusoidal Wall Corrugation

Toru Eizawa and Kazuya Kobayashi*

Abstract—The diffraction by a finite parallel-plate waveguide with sinusoidal wall corrugation is
analyzed for the E-polarized plane wave incidence using the Wiener-Hopf technique combined with
the perturbation method. Assuming that the corrugation amplitude of the waveguide walls is small
compared with the wavelength and expanding the boundary condition on the waveguide surface into
the Taylor series, the problem is reduced to the diffraction by a flat, finite parallel-plate waveguide with
a certain mixed boundary condition. Introducing the Fourier transform for the unknown scattered field
and applying an approximate boundary condition together with a perturbation series expansion for the
scattered field, the problem is formulated in terms of the zero-order and the first-order Wiener-Hopf
equations. The Wiener-Hopf equations are solved via the factorization and decomposition procedure
leading to the exact and asymptotic solutions. Taking the inverse Fourier transform and applying the
saddle point method, a scattered far field expression is derived explicitly. Scattering characteristics of
the waveguide are discussed in detail via numerical examples of the radar cross section (RCS).

1. INTRODUCTION

In microwave and optical engineering, there are many devices with periodic structures such as resonators,
filters, reflector antennas, and couplers composed of gratings. Therefore the analysis of the scattering
and diffraction by periodic structures is an important subject in electromagnetic theory and optics.
Various analytical and numerical methods have been developed thus far and diffraction phenomena have
been investigated for a number of periodic structures [1]. It is well known that the Riemann-Hilbert
problem technique [2–4], the analytical regularization methods [4–7], the Yasuura method [8–10], the
integral and differential method [11], the point matching method [12], and the Fourier series expansion
method [13, 14] are efficient for the analysis of diffraction problems involving periodic structures. The
Wiener-Hopf technique [15–18] is known as a powerful approach for analyzing electromagnetic wave
problems associated with canonical geometries rigorously, and can be applied efficiently to the problems
of diffraction by specific periodic structures such as gratings. There are significant contributions to
the analysis of the diffraction by gratings and other related structures based on the Wiener-Hopf
technique [19–25]. In the previous papers [26–29], we have analyzed the diffraction problems involving
transmission-type gratings with the aid of the Wiener-Hopf technique, where rigorous solutions valid
over a broad frequency range have been obtained.

It is to be noted that the analysis in most of the above-mentioned papers are restricted to periodic
structures of infinite extent and plane boundaries. Therefore, it is important to investigate scattering
problems involving periodic structures without these restrictions. As an example of infinite periodic
structures with non-plane boundaries, Das Gupta [30] analyzed the plane wave diffraction by a half-
plane with sinusoidal corrugation by means of the Wiener-Hopf technique together with the perturbation
method. The method developed in [30] has been generalized thereafter by Chakrabarti and Dowerah [31]
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for the Wiener-Hopf analysis of the H-polarized plane wave diffraction by two parallel sinusoidal half-
planes. In [32, 33], we have analyzed the problem considered by Chakrabarti and Dowerah via a different
Wiener-Hopf approach for both E and H polarizations, and derived various new expressions of the
scattered field. We have also considered a finite sinusoidal grating as another important generalization
to Das Gupta [30] and analyzed the plane wave diffraction for both E and H polarizations via a hybrid
Wiener-Hopf and perturbation approach [34–36].

The aim of this paper is to provide further generalization to our previous analysis carried
out for the diffraction problems involving the semi-infinite parallel-plate waveguide with sinusoidal
corrugation [32, 33] and the finite sinusoidal grating [34–36]. We shall analyze in this paper the
plane wave diffraction by a finite parallel-plate waveguide with sinusoidal wall corrugation for the
E-polarized plane wave incidence. The method is based on the use of the Wiener-Hopf technique with
the perturbation method.

Assuming that the corrugation amplitude of the waveguide walls is small compared with the
wavelength, the original problem is replaced by the problem of diffraction by a flat, finite parallel-
plate waveguide with an impedance-type, boundary condition. Introducing the Fourier transform for
the unknown scattered field and applying boundary conditions in the transform domain, the problem is
formulated in terms of the simultaneous Wiener-Hopf equations satisfied by unknown spectral functions.
By using a perturbation series expansion for the scattered field, these Wiener-Hopf equations are
separated into the zero-order and first-order Wiener-Hopf equations, which are then solved exactly
via the factorization and decomposition procedure. However, the solution is formal since infinite series
with unknown coefficients as well as branch-cut integrals with unknown integrands are involved. In
order to obtain explicit approximate solutions of the Wiener-Hopf equations, we shall apply the method
based on a rigorous asymptotics established recently by Kobayashi [37]. For the infinite series with
unknown coefficients, we shall derive highly accurate, approximate expressions by taking into account
the edge condition explicitly. For the branch-cut integrals with unknown integrands, we assume that the
waveguide length is large compared with the incident wavelength and derive high-frequency asymptotic
expressions of the branch-cut integrals. Based on these results, approximate solutions of the Wiener-
Hopf equations, efficient for numerical computation, are explicitly derived. Taking the Fourier inverse
of the solution in the transform domain and applying the saddle point method, a scattered far field
in the real space is derived. Representative numerical examples of the radar cross section (RCS) are
shown for various physical parameters, and the effect of sinusoidal corrugation of the waveguide walls
is investigated in detail.

The time factor is assumed to be e−iωt and suppressed throughout this paper.

2. FORMULATION OF THE PROBLEM

We consider the diffraction of an E-polarized plane wave by a finite parallel-plate waveguide with
sinusoidal wall corrugation as shown in Figure 1, where the surface of the two planes is assumed to be
finitely thin, perfectly electric conducting, and uniform in the y-direction, being defined by

x = ±b + h sin mz, |z| ≤ a, (1)

where 2h is the corrugation amplitude and m (> 0) is the periodicity (surface roughness) parameter.
Taking into account the geometry of the waveguide together with the fact that the electric field is
parallel to the y-axis, this scattering problem is reduced to a two-dimensional problem.

Let us define the total electric field φt(x, z) [≡ Et
y(x, z)] by

φt(x, z) = φi(x, z) + φ(x, z), (2)

where φi(x, z) is the incident field of E polarization given by

φi(x, z) = e−ik(x sin θ0+z cos θ0), 0 < θ0 < π/2 (3)

with k[≡ ω(ε0μ0)1/2] being the free-space wavenumber. The scattered field φ(x, z) satisfies the two-
dimensional Helmholtz equation (

∂2/∂x2 + ∂2/∂z2 + k2
)
φ(x, z) = 0. (4)
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Figure 1. Geometry of the problem.

Nonzero components of the scattered electromagnetic fields are derived from the following relation:

(Ey,Hx,Hz) =
(

φ,
i

ωμ0

∂φ

∂z
,

1
iωμ0

∂φ

∂x

)
. (5)

The total electric field φt satisfies the perfect conductor condition

φt(±b + h sin mz, z) = 0, |z| < a (6)

on the waveguide walls. We assume that the corrugation amplitude 2h is small compared with the
wavelength and expand Eq. (6) in terms of the Taylor series. Then by ignoring the O(h2) terms from
the Taylor expansion, we obtain that

φt(±b, z) + h sin mz
∂φt(±b, z)

∂z
+ O(h2) = 0, |z| < a. (7)

Equation (7) is the approximate boundary condition used throughout the remaining part of this paper.
We note that, by letting h → 0 in Eq. (7), the problem reduces to the diffraction problem involving a
flat, finite parallel-plate waveguide.

For convenience of analysis, we assume that the medium is slightly lossy as in k = k1 + ik2 with
0 < k2 � k1. The solution for real k is obtained by letting k2 → +0 at the end of analysis. In view
of the radiation condition, it follows that the scattered field φ(x, z) behaves like the diffracted field for
fixed x as |z| → ∞. Hence we can show that

φ(x, z) ∼ CH
(1)
0 (kρ) ∼ C ′ρ−1/2eik1ρe−k2ρ = O

(
e−k2|z|

)
= O

(
e−k2|z| cos θ0

)
(8)

as |z| → ∞, where ρ = (x2 + z2)1/2, and C and C ′ are constants. In Eq. (8), H
(1)
0 (·) is the Hankel

function of the first kind.
We introduce the Fourier transform of the scattered field φ(x, z) as

Φ(x, α) = (2π)−1/2

∫ ∞

−∞
φ(x, z)eiαzdz, (9)

where α = Reα + iImα(≡ σ + iτ). In view of Eq. (8), it follows that Φ(x, α) is regular in the strip
|τ | < k2 cos θ0 of the complex α-plane. We also introduce the Fourier integrals as in

Φ±(x, α) = ±(2π)−1/2

∫ ±∞

±a
φ(x, z)eiα(z∓a)dz, (10)

Φ1(x, α) = (2π)−1/2

∫ a

−a
φ(x, z)eiαzdz, (11)

Then it is seen that Φ(n)
± (x, α) are regular in τ ≷ ∓k2 cos θ0 whereas Φ1(x, α) is an entire function. It

follows from Eqs. (9)–(11) that

Φ(x, α) = e−iαaΦ−(x, α) + Φ1(x, α) + eiαaΦ+(x, α). (12)

Taking the Fourier transform of Eq. (4) and making use of Eq. (8), we derive that[
d2/dx2 − γ2(α)

]
Φ(x, α) = 0, (13)
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where γ(α) = (α2 − k2)1/2. Since γ(α) is a double-valued function of α, we choose its proper branch so
that γ(α) reduces to −ik when α = 0. The solution of Eq. (13) is expressed as

Φ(x, α) = A(α)e−γ(α)x, x > b,

= B(α)e−γ(α)x + C(α)eγ(α)x, |x| < b,

= D(α)eγ(α)x, x < −b, (14)

where A(α), B(α), C(α), and D(α) are unknown functions. For convenience of analysis, we introduce
the Fourier integrals as in

P±(α) = ±(2π)−1/2

∫ ±∞

±a

[
φ(b + 0, z) + h sin mz

∂φ(b + 0, z)
∂x

]
eiα(z∓a)dz, (15)

Q±(α) = ± (2π)−1/2
∫ ±∞

±a

[
φ(−b − 0, z) + h sin mz

∂φ(−b − 0, z)
∂x

]
eiα(z∓a)dz, (16)

M1(α)
N1(α)

}
= (2π)−1/2

∫ a

−a

[
∂φ(±b + 0, z)

∂x
− ∂φ(±b − 0, z)

∂x

]
eiαzdz, (17)

F1,2(α) = (2π)−1/2

∫ a

−a

[
φ(±b, z) + h sin mz

∂φ(±b, z)
∂x

]
eiαzdz. (18)

Taking into account the approximate boundary condition on the waveguide surface as given by Eq. (7)
and carrying out some manipulations, we find from Eqs. (10), (11), and (12) that

P+(α) + P−(α) + F1(α) = Φ (b + 0, α) +
h

2i
[
Φ′ (b + 0, α + m) − Φ′ (b + 0, α − m)

]
, (19)

Q+(α) + Q−(α) + F2(α) = Φ (−b − 0, α) +
h

2i
[
Φ′ (−b − 0, α + m) − Φ′ (−b − 0, α − m)

]
, (20)

where the prime denotes differentiation with respect to x. Substituting the scattered field expression in
Eq. (14) into Eqs. (19), (20), and (17), it follows that

P+(α) + P−(α) + F1(α) = A(α)e−γ(α)b +
ih

2

[
γ(α + m)A(α + m)e−γ(α+m)b

−γ(α − m)A(α − m)e−γ(α−m)b

]
, (21)

Q+(α) + Q−(α) + F2(α) = D(α)e−γ(α)b − ih

2

[
γ(α + m)D(α + m)e−γ(α+m)b

−γ(α − m)D(α − m)e−γ(α−m)b

]
, (22)

M1(α) = −γ(α)
[
A(α)e−γ(α)x − B(α)e−γ(α)x + C(α)eγ(α)x

]
, (23)

N1(α) = −γ(α)
[
B(α)eγ(α)x − C(α)e−γ(α)x + D(α)e−γ(α)x

]
, (24)

Φ′′(b + 0, α) − Φ′′(b − 0, α) = γ2(α)
{

[A(α) − B(α)] e−r(α)b − C(α)er(α)b
}

, (25)

Φ(−b + 0, α) − Φ(−b − 0, α) = B(α)er(α)b + [C(α) − D(α)] e−r(α)b, (26)

where the prime denotes differentiation with respect to x. Making use of the continuity of tangential
electric fields across x = ±b and Eq. (2), we deduce the following relations:

Φ(−b + 0, α) − Φ(−b − 0, α) = (2π)−1/2 ih

2
[N1(α + m) − N1(α − m)] , (27)

Φ′′(b + 0, α) − Φ′′(b − 0, α) = (2π)−1/2 ih

2
[M1(α + m) − M1(α − m)] . (28)
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Substituting Eqs. (25) and (26) into Eqs. (28) and (27) respectively, we can derive equations which
relate A(α), B(α), C(α), and D(α) with M1(α) and N1(α). Solving these equations for A(α), B(α),
C(α), and D(α), we find that

A(α) = −e−γ(α)b

2

{
N1(α)
γ(α)

− (2π)−1/2 ih

2
[N1(α + m) − N1(α − m)]

}

−e−γ(α)b

2

{
M1(α)
γ(α)

− (2π)−1/2 ih

2
[M1(α + m) − M1(α − m)]

}
, (29)

B(α) = −e−γ(α)b

2

{
N1(α)
γ(α)

− (2π)−1/2 ih

2
[N1(α + m) − N1(α − m)]

}
, (30)

C(α) = −e−γ(α)b

2

{
M1(α)
γ(α)

+ (2π)−1/2 ih

2
[M1(α + m) − M1(α − m)]

}
, (31)

D(α) = −e−γ(α)b

2

{
M1(α)
γ(α)

+ (2π)−1/2 ih

2
[M1(α + m) − M1(α − m)]

}

−eγ(α)b

2

{
N1(α)
γ(α)

+ (2π)−1/2 ih

2
[N1(α + m) − N1(α − m)]

}
. (32)

Substituting Eqs. (29) and (32) into Eqs. (21) and (22), respectively and using the boundary conditions,
we arrive at

S(α) + G1(α) = −K(α)U1(α) +
ih

4

{[
e−2γ(α+m)b − (2π)−1/2e−2γ(α)b + (2π)−1/2 − 1

]
V−(α + m)

+
[
(2π)−1/2e−2γ(α)b − e−2γ(α−m)b − (2π)−1/2 + 1

]
V−(α − m)

}
, (33)

D(α) + G2(α) = −L(α)V1(α) +
ih

4

{[
(2π)−1/2e−2γ(α)b − e−2γ(α+m)b + (2π)−1/2 − 1

]
U−(α + m)

+
[
e−2γ(α−m)b − (2π)−1/2e−2γ(α)b − (2π)−1/2 + 1

]
U−(α − m)

}
, (34)

where

S(α) = [P+(α) + P−(α)] + [Q+(α) + Q−(α)] , (35)
D(α) = [P+(α) + P−(α)] − [Q+(α) + Q−(α)] , (36)
U1(α) = M1(α) + N1(α), V1(α) = M1(α) − N1(α), (37)

G1,2(α) = F1(α) ± F2(α) = e−ikb sin θ0

{
e−iαaA0 − eiαaB0

α − k cos θ0
+

ikh sin θ0

2

2∑
n=1

(−1)n+1 e−iαaAn − eiαaBn

α − k cos θn

}

±eikb sin θ0

{
e−iαaA0 − eiαaB0

α − k cos θ0
+

ikh sin θ0

2

2∑
n=1

(−1)n+1 e−iαaAn − eiαaBn

α − k cos θn

}
, (38)

A0 = −(2π)−1/2ieika cos θ0 , B0 = −(2π)−1/2ie−ika cos θ0 , (39)

An = (2π)−1/2eika cos θn , Bn = (2π)−1/2e−ika cos θn (40)
cos θ1,2 = cos θ0 ∓ m/k, (41)

K(α) =
e−γ(α)b cosh γ(α)b

γ(α)
, L(α) =

e−γ(α)b sinh γ(α)b
γ(α)

. (42)

Equations (33) and (34) are the simultaneous Wiener-Hopf equations satisfied by S(α), D(α), U1(α),
and V1(α), which hold for any α in the strip |τ | < k2 cos θ0. In the above, K(α) and L(α) defined by
Eq. (42) are kernel functions.
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3. ZERO- AND FIRST-ORDER WIENER-HOPF EQUATIONS

In order to solve the Wiener-Hopf Equations (33) and (34), we express the unknown functions S(α),
D(α), U1(α), and V1(α) in terms of perturbation series expansions in h omitting O(h2) as

S(α) = S0(α) + hS1(α) + O(h2), (43)

D(α) = D0(α) + hD1(α) + O(h2), (44)

U1(α) = U
(0)
1 (α) + hU

(1)
1 (α) + O(h2), (45)

V1(α) = V
(0)
1 (α) + hV

(1)
1 (α) + O(h2). (46)

We can also express the known functions G1(α) and G2(α) defined by Eq. (38) in the form of a
perturbation series in h as in

G1(α) = G0
1(α) + hG1

1(α) + O(h2), (47)
G2(α) = G0

2(α) + hG1
2(α) + O(h2). (48)

In view of Eqs. (35) and (36), S0(α) and S1(α) in Eq. (43) and D0(α) and D1(α) in Eq. (44) can be
expressed as follows:

S0(α) = eiαaS0
+(α) + e−iαaS0

−(α) = eiαa
[
P 0

+(α) + Q0
+(α)

]
+ e−iαa

[
P 0
−(α) + Q0

−(α)
]
, (49)

S1(α) = eiαaS1
+(α) + e−iαaS1

−(α) = eiαa
[
P 1

+(α) + Q1
+(α)

]
+ e−iαa

[
P 1
−(α) + Q1

−(α)
]
, (50)

D0(α) = eiαaD0
+(α) + e−iαaD0

−(α) = eiαa
[
P 0

+(α) − Q0
+(α)

]
+ e−iαa

[
P 0
−(α) − Q0

−(α)
]
, (51)

D1(α) = eiαaD1
+(α) + e−iαaD1

−(α) = eiαa
[
P 1

+(α) − Q1
+(α)

]
+ e−iαa

[
P 1
−(α) − Q1

−(α)
]
. (52)

We substitute Eqs. (43)–(48) into Eqs. (33) and (34), and make use of Eqs. (49)–(52) in the resultant
equations. After ignoring the O(h2) terms, the original Wiener-Hopf equations can be separated into
the O(1) equations

K(α)U (0)
1 (α) + eiαaS̃0

(+)(α) + e−iαaS̃0
−(α) = 0, (53)

L(α)V (0)
1 (α) + eiαaD̃0

(+)(α) + e−iαaD̃0
−(α) = 0 (54)

and the O(h) equations

K(α)U (1)
1 (α) + eiαaS̃1

(+)(α) + e−iαaS̃1
−(α) − i

4

{[
e−2γ(α+m)b − (2π)−1/2e−2γ(α)b + (2π)−1/2 − 1

]

V
(0)
1 (α + m) +

[
(2π)−1/2e−2γ(α)b − e−2γ(α−m)b − (2π)−1/2 + 1

]
V

(0)
1 (α − m)

}
= 0, (55)

L(α)V (1)
1 (α) + eiαaD̃1

(+)(α) + e−iαaD̃1
−(α) − i

4

{ [
(2π)−1/2e−2γ(α)b − e−2γ(α+m)b + (2π)−1/2 − 1

]

U
(0)
1 (α + m) +

[
e−2γ(α−m)b − (2π)−1/2e−2γ(α)b − (2π)−1/2 + 1

]
U

(0)
1 (α − m)

}
= 0 (56)

for |τ | < k2 cos θ0, where

S̃0
(+)(α) = P 0

+(α) + Q0
+(α) − 2B0

cos(kb sin θ0)
α − k cos θ0

, (57)

S̃0
−(α) = P 0

−(α) + Q0
−(α) + 2A0

cos(kb sin θ0)
α − k cos θ0

, (58)

D̃0
(+)(α) = P 0

+(α) − Q0
+(α) + 2iB0

sin(kb sin θ0)
α − k cos θ0

, (59)

D̃0
−(α) = P 0

−(α) − Q0
−(α) − 2iA0

sin(kb sin θ0)
α − k cos θ0

, (60)

S̃1
(+)(α) = P 1

+(α) + Q1
+(α) +

2∑
n=1

(−1)n
Bn(C1 + C2)
α − k cos θn

, (61)
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S̃1
−(α) = P 1

−(α) + Q1
−(α) −

2∑
n=1

(−1)n
An(C1 + C2)
α − k cos θn

, (62)

D̃1
(+)(α) = P 1

+(α) − Q1
+(α) +

2∑
n=1

(−1)n
Bn(C1 − C2)
α − k cos θn

, (63)

D̃1
−(α) = P 1

−(α) − Q1
−(α) −

2∑
n=1

(−1)n
An(C1 − C2)
α − k cos θn

, (64)

Cn =
ik sin θ0

2
e±ikb sin θ0 (65)

for n = 1, 2.
Equations (53), (54) and (55), (56) are the zero- and first-order Wiener-Hopf equations, respectively.

The zero-order problem corresponds to the diffraction by a flat, finite parallel-plate waveguide, whereas
the first-order problem is important since it contains the effect due to the sinusoidal corrugation.

4. EXACT AND ASYMPTOTIC SOLUTIONS

The kernel function K(α) and L(α) defined by Eq. (42) are factorized as in [15–18]

K(α) = K+(α)K−(α) = K+(α)K+(−α), (66)
L(α) = L+(α)L−(α) = L+(α)L+(−α), (67)

where

K+(α) = (cos kb)1/2eiπ/4(k + α)−1/2 exp
[
iγ(α)b

π
ln

α − γ(α)
k

]

· exp
[
iαb

π

(
1 − C + ln

π

2kb
+ i

π

2

)] ∞∏
n=1, odd

(
1 +

α

iγn

)
e2iαb/nπ, (68)

L+(α) =
(

sin kb

k

)1/2

exp
[
iγ(α)b

π
ln

α − γ(α)
k

]

· exp
[
iαb

π

(
1 − C + ln

2π
kb

+ i
π

2

)] ∞∏
n=2, even

(
1 +

α

iγn

)
e2iαb/nπ (69)

with C(= 0.57721566 . . .) being Euler’s constant and

γn =
[
(nπ/2b)2 − k2

]1/2
. (70)

It seems from Eqs. (66) and (67) that K±(α) and L±(α) are regular and nonzero in τ ≷ ∓k2. We can
also verify that

K±(α) ∼ (∓2iα)−1/2, L±(α) ∼ (∓2iα)−1/2 (71)

as α → ∞ with τ ≷ ∓k2. We shall now solve the zero-order Wiener-Hopf Equations (53), (54) and the
first-order Wiener-Hopf Equations (55), (56) to derive the exact and asymptotic solutions.

4.1. Solution of the Zero-Order Wiener-Hopf Equations (53) and (54)

The zero-order equations (53) and (54) are the simultaneous Wiener-Hopf equations arising in the
diffraction problem for a flat, finite parallel-plate waveguide. Multiplying both sides of Eqs. (53) and (54)
by e±iαa/K∓(α) and e±iαa/L∓(α), respectively and applying the decomposition procedure, we arrive
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at the exact solution with the result that

S̃0
(+)(α) = −K+(α)

{
2B0 cos(kb sin θ0)

K+(k cos θ0)(α − k cos θ0)
+

1
2

[
σs

u0(α) − σd
u0(α)

]

−1
2

[
us

0(α) − ud
0(α)

]}
= 0, (72)

S̃0
−(α) = −K−(α)

{
− 2A0 cos(kb sin θ0)

K−(k cos θ0)(α − k cos θ0)
+

1
2

[
σs

u0(−α) − σd
u0(−α)

]

−1
2

[
us

0(−α) − ud
0(−α)

] }
= 0, (73)

D̃0
(+)(α) = −L+(α)

{
− 2iA0 sin(kb sin θ0)

L+(k cos θ0)(α − k cos θ0)
+

1
2

[
σs

v0(α) − σd
v0(α)

]

−1
2

[
vs
0(α) − vd

0(α)
]}

= 0, (74)

D̃0
−(α) = −L−(α)

{
2iA0 sin(kb sin θ0)

L−(k cos θ0)(α − k cos θ0)
+

1
2

[
σs

v0(−α) + σd
v0(−α)

]

−1
2

[
vs
0(−α) + vd

0(−α)
]}

= 0, (75)

where

us,d
0 (α) =

1
πi

∫ k+i∞

k

e2iβaγ(β)K+(β)S̃s0,d0
(+) (β)

β + α
dβ, (76)

vs,d
0 (α) =

1
πi

∫ k+i∞

k

e2iβaγ(β)L+(β)D̃s0,d0
(+) (β)

β + α
dβ, (77)

σs,d
u (α) =

∞∑
n=1
odd

(nπ

2b

)2 K+(iγn)e−2aγn S̃s0,d0
(+) (iγn)

ibγn(α + iγn)
, (78)

σs,d
v (α) =

∞∑
n=2
even

(nπ

2b

)2 L+(iγn)e−2aγnD̃s0,d0
(+) (iγn)

ibγn(α + iγn)
(79)

Introducing the functions

S̃s0,d0
(+) (α) = S̃0

(+)(α) ± S̃0
−(−α), D̃s0,d0

(+) (α) = D̃0
(+)(α) ± D̃0

−(−α), (80)

Equations (72)–(75) can be rearranged as

S̃s0,d0
(+) (α)

b
= b−1/2K+(α)

[
±b−1/2us,d

0 (α)∓
∞∑

n=2

anpnsso,d0
n

b (α+iγ2n−3)
∓ Au

0

b(α+k cos θ0)
− Bu

0

b(α−k cos θ0)

]
, (81)

D̃s0,d0
(+) (α)

b
= b−1/2L+(α)

[
±b−1/2vs,d

0 (α)∓
∞∑

n=2

ãnp̃ndso,d0
n

b (α+iγ2n−2)
± Av

0

b(α+k cos θ0)
+

Bv
0

b(α−k cos θ0)

]
, (82)

where
a0

1 = kb, ã0
1 = kb, (83)

a0
n =

(2n − 3)2π2e−2aγ2n−3

4biγ2n−3
, ã0

n =
(2n − 2)2π2e−2aγ2n−2

4biγ2n−2
, n ≥ 2, (84)

p0
1 = b−1/2K+(k), p̃0

1 = b−1/2L+(k), (85)

p0
n = b−1/2K+(iγ2n−3), p̃0

n = b−1/2L+(iγ2n−2), n ≥ 2, (86)
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ss0,d0 = b−1S̃s0,d0
(+) (k), ds0,d0 = b−1D̃s0,d0

(+) (k), (87)

ss0,d0
n = b−1S̃s0,d0

(+) (iγ2n−3), ds0,d0
n = b−1D̃s0,d0

(+) (iγ2n−2), n ≥ 2. (88)

Equations (81) and (82) are formal since they contain the branch-cut integrals with unknown integrands
and the infinite series with unknown coefficients. Therefore it is necessary to develop approximation
procedures for obtaining explicit approximate solutions for numerical computation.

Regarding the branch-cut integrals us,d
0 (α) and vs,d

0 (α) with the unknown integrands S̃s0,d0
(+) (β) and

D̃s0,d0
(+) (β), we apply the rigorous asymptotic method developed by Kobayashi [37]. Omitting the details,

we obtain a high-frequency expressions of us,d
0 (α) and vs,d

0 (α) for large k|a| as in

us,d
0 (α) ∼ kK+(k)S̃s0,d0

(+) (k)ξ(α), vs,d
0 (α) ∼ kL+(k)D̃s0,d0

(+) (k)ξ(α), (89)

where

ξ(α) = −2a1/2e2ika

π
Γ1 [1/2,−2i(α + k)a] . (90)

In Eq. (90), Γ1( · , · ) is the generalized gamma function introduced by Kobayashi [38] and is defined by

Γm(u, v) =
∫ ∞

0

tu−1e−t

(t + v)m
dt (91)

for Reu > 0, |v| > 0, |arg v| < π, and positive integer m.
We next evaluate the infinite series σs,d

u (α) and σs,d
v (α) with the unknown coefficients ss0,d0

n and
ds0,d0

n . Taking into account the edge condition, we can show that S̃s0,d0
(+) (α) and D̃s0,d0

(+) (α) have the
asymptotic behavior

S̃s0,d0
(+) (α), D̃s0,d0

(+) (α) = O(α−3/2), α → ∞. (92)

Therefore, the infinite series contained in Eqs. (81) and (82) are approximated with the choice of a large
positive integer N by

∞∑
n=2

anpnss
n

b (α + iγ2n−3)
≈

N∑
n=2

anpnss
n

b (α + iγ2n−3)
+ K(1)

u S
(1)
uN (α), (93)

∞∑
n=2

ãnp̃nds
n

b (α + iγ2n−2)
≈

N∑
n=2

ãnp̃nds
n

b (α + iγ2n−2)
+ K(1)

v S
(1)
vN (α), (94)

where K
(1)
u and K

(1)
v are unknown constants independent of n, and

S
(1)
uN(α) =

∞∑
n=N+1

an (bγ2n−3)
−2

b (α + iγ2n−3)
, (95)

S
(1)
vN (α) =

∞∑
n=N+1

an (bγ2n−2)
−2

b (α + iγ2n−2)
. (96)

By substituting Eqs. (89), (93), and (94) into Eqs. (81) and (82), we arrive at the explicit approximate
solutions of the Wiener-Hopf Equations (53) and (54) with the result that

S̃s0,d0
(+) (α)

b
≈ b−1/2K+(α)

[
± a0

1p
0
1s

s0,d0ξ(α) ∓
N∑

n=2

anpnsso,d0
n

b (α + iγ2n−3)

∓K(1)
u S

(1)
uN (α) ∓ Au

0

b (α + k cos θ0)
− Bu

0

b (α − k cos θ0)

]
, (97)

D̃s0,d0
(+) (α)

b
≈ b−1/2L+(α)

[
± ã0

1p̃
0
1d

s0,d0ξ(α) ∓
N∑

n=2

ãnp̃ndso,d0
n

b (α + iγ2n−2)

∓K(1)
v S

(1)
vN (α) ± Av

0

b (α + k cos θ0)
+

Bv
0

b (α − k cos θ0)

]
. (98)
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4.2. Solution of the First-Order Wiener-Hopf Equations (55) and (56)

Multiplying both sides of Eq. (55) by e±iαa/K∓(α), Eq. (56) by e±iαa/L∓(α) respectively, and applying
the decomposition procedure, we arrive at the exact solution with the result that

S̃s1,d1
(+) (α)

K+(α)
+

2∑
n=1

(−1)n+1

[
Bn(C1 + C2)

K+(k cos θn)(α − k cos θn)
± e2ika cos θnBn(C1 + C2)

K−(k cos θn)(α + k cos θn)

+σs,d
u1 (α) − us,d

1 (α)
]
− T s1,d1(α)

K+(α)
= 0, (99)

D̃s1,d1
(+) (α)

L+(α)
+

2∑
n=1

(−1)n+1

[
Bn(C1 − C2)

L+(k cos θn)(α − k cos θn)
± e2ika cos θnBn(C1 − C2)

L−(k cos θn)(α + k cos θn)

+σs,d
v1 (α) − vs,d

1 (α)
]
− Qs1,d1(α)

L+(α)
= 0, (100)

where

T s1,d1(α) =
(
ie−iαa/4

) [
e−2γ(α−m)b + C3(α)

]{ [
V

(0)
1 (α − m) ∓ V

(0)
1 (−α − m)

]

+
[
e−2γ(α+m)b + C3(α)

] [
V

(0)
1 (α + m) ∓ V

(0)
1 (−α − m)

]}
, (101)

Qs1,d1(α) =
(
ie−iαa/4

) { [
e−2γ(α−m)b + C4(α)

] [
U

(0)
1 (α − m) ∓ U

(0)
1 (−α + m)

]

−
[
e−2γ(α+m)b + C4(α)

] [
U

(0)
1 (α + m) ∓ U

(0)
1 (−α − m)

] }
, (102)

C3,4(α) = −(2π)−1/2
[
e−2γ(α)b ∓ 1

]
∓ 1, (103)

us,d
1 (α) =

1
πi

∫ k+i∞

k

e2iuaγ(u)K+(u)S̃s1,d1
(+) (u)

u + α
du, (104)

vs,d
1 (α) =

1
πi

∫ k+i∞

k

e2iuaγ(u)L+(u)D̃s1,d1
(+) (u)

u + α
du, (105)

σs,d
u1 (α) =

∞∑
n=1
odd

(nπ

2b

)2 K+(iγn)e−2aγn S̃s1,d1
(+) (iγn)

ibγn(α + iγn)
, (106)

σs,d
v1 (α) =

∞∑
n=2
even

(nπ

2b

)2 L+(iγn)e−2aγnD̃s1,d1
(+) (iγn)

ibγn(α + iγn)
(107)

with
S̃s1,d1

(+) (α) = S̃1
(+)(α) ± S̃1

−(−α), D̃s1,d1
(+) (α) = D̃1

(+)(α) ± D̃1
−(−α). (108)

In order to derive approximate solutions for numerical computation, it is required to evaluate the
unknown functions us,d

1 (α) and vs,d
1 (α) defined by Eqs. (104) and (105) as well as σs,d

u1 (α) and σs,d
v1 (α)

defined by Eqs. (106) and (107). To this end, we may apply a procedure similar to that employed for the
zero-order Wiener-Hopf equations. Omitting the whole details, we arrive at the approximate solutions
as in

S̃s1·d1
(+) (α) ≈ K+(α)

b1/2

{
± a1

1p
1
1s

s1,d1ξ(α) ∓
N−1∑
n=2

a1
np1

nss1,d1
n

b(α + iγ2n−3)
± K(2)

u S
(2)
uN (α)
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+b1/2
2∑

n=1

(−1)n
[

Bn(C1 + C2)
K+(k cos θn)(α − k cos θn)

± e2ika cos θnBn(C1 + C2)
K−(k cos θn)(α + k cos θn)

]}
+ T s1,d1(α),

(109)

D̃s1·d1
(+) (α) ≈ L+(α)

b1/2

{
± ã1

1p̃
1
1d

s1,d1ξ(α) ∓
N−1∑
n=2

ã1
np̃1

nds1,d1
n

b(α + iγ2n−2)
∓ K(2)

v S
(2)
vN (α)

+b1/2
2∑

n=1

(−1)n
[

Bn(C1 − C2)
L+(k cos θn)(α − k cos θn)

± e2ika cos θnBn(C1 − C2)
L−(k cos θn)(α + k cos θn)

]}
+ Qs1,d1(α),

(110)

where

a1
1 = kb, ã1

1 = kb, (111)

a1
n =

(2n − 3)2π2e−2aγ2n−3

4biγ2n−3
, ã1

n =
(2n − 2)2π2e−2aγ2n−2

4biγ2n−2
, n ≥ 2, (112)

p1
1 = b−1/2K+(k), p̃1

1 = b−1/2L+(k), (113)

p1
n = b−1/2K+(iγ2n−3), p̃1

n = b−1/2L+(iγ2n−2), n ≥ 2, (114)

ss1,d1 = S̃s1,d1
(+) (k), ds1,d1 = D̃s1,d1

(+) (k), (115)

ss1,d1
n = S̃s1,d1

(+) (iγ2n−3), ds1,d1
n = D̃s1,d1

(+) (iγ2n−2), n ≥ 2. (116)

S
(2)
uN (α) =

∞∑
n=N+1

an (bγ2n−3)
−2

b (α + iγ2n−3)
, (117)

S
(2)
vN (α) =

∞∑
n=N+1

an (bγ2n−2)
−2

b (α + iγ2n−2)
, (118)

u1
s,d(α) ∼ kK+(k)S̃s1,d1

(+) (k)ξ(α), (119)

v1
s,d(α) ∼ kL+(k)D̃s1,d1

(+) (k)ξ(α) (120)

as ka → ∞.

4.3. Determination of the Unknown Coefficients

Equations (97), (98), (109), and (110) are approximate solutions to the simultaneous Wiener-Hopf
Equations (53)–(56), and hold uniformly in θ0 for large N and |k|a, where the unknowns ss1,d1

n , ss0,d0
n ,

ds0,d0
n , and ds1,d1

n for n = 1, 2, 3, . . . , N as well as K
(1)
u , K

(1)
v , K

(2)
u , and K

(2)
v are contained.

In order to determine these unknowns, we set α = k, iγ2m−3 for m = 2, 3, 4, . . . , N + 1 in Eqs. (97)
and (109). We also set α = k, iγ2m−2 for m = 2, 3, 4, . . . , N +1 in Eqs. (98) and (110). These procedures
lead to the two sets of (N +1)×(N +1) equations, where ss1,d1

N+1 and ds1,d1
N+1 are involved. Since N is a large

positive number, we can employ Eq. (92) to replace ss1,d1
N+1 and ds1,d1

N+1 by their asymptotic expressions

containing K
(1)
u , K

(1)
v , K

(2)
u , and K

(2)
v . Thus the two sets of (N + 1) × (N + 1) matrix equations

with the N + 1 unknowns are derived, which can be solved numerically with high accuracy. Since the
approximation procedures developed in this section are based on a rigorous asymptotics with the aid
of the edge condition, the above approximate solutions are valid over a wide frequency range as long
as the waveguide length 2a is not too small compared with wavelength. The solution in the complex
domain is complete and we are now in a position to derive explicitly a scattered field in the real space
by taking the inverse Fourier transform.



72 Eizawa and Kobayashi

5. SCATTERED FAR FIELD

In this section, we shall derive an asymptotic expression of the field outside the waveguide. The region
outside the waveguide actually includes |z| > a with |x| < b, but contributions from this region are
negligibly small at large distance from the origin. Therefore, only the scattered far field for |x| > b will
be discussed in the following. The scattered field φ(x, z) in the real space can be derived by taking the
inverse Fourier transform of Eq. (9) according to the formula

φ(x, z) = (2π)−1/2

∫ ∞+ic

−∞+ic
Φ(x, α)e−iαzdα, (121)

where c is a constant satisfying |c| < k2 cos θ0.
Substituting Eq. (37) into Eqs. (45) and (46), we obtain that

M1(α)
N1(α)

}
=

1
2

{[
U

(0)
1 (α) ± V

(0)
1 (α)

]
+ h

[
U

(1)
1 (α) ± V

(1)
1 (α)

]}
. (122)

Furthermore substituting Eq. (122) into Eqs. (29) and (32) and taking into account Eqs. (14) and (121),
we arrive at an integral representation for the scattered field with the result that

φ(x, z) = φ(0)(x, z) + hφ(1)(x, z), (123)

where

φ(0)(±b, z) = −(2π)−1/2

∫ ∞+ic

−∞+ic

1
2γ(α)

[
U

(0)
1 (α) cosh γ(α)b

±V
(0)
1 sinh γ(α)b

]
e∓γ(α)x−iαzdα, x ≷ b, (124)

φ(1)(±b, z) = (2π)−1/2

∫ ∞+ic

−∞+ic

(
− h

2γ(α)

)[
U

(1)
1 (α) cosh γ(α)b ± V

(1)
1 (α) sinh γ(α)b

]

±(2π)−1/2 ih

4

{[
U

(0)
1 (α + m) − U

(0)
1 (α − m)

]
cosh γ(α)b

±
[
V

(0)
1 (α + m) − V

(0)
1 (α − m)

]
sinh γ(α)b

}
e∓γ(α)x−iαzdα, x ≷ ±b. (125)

As seen above, Eqs. (124) and (125) are the zero- and first-order scattered fields, respectively. The zero-
order scattered field corresponds to the problem of diffraction by a flat, finite parallel-plate waveguide.
In the following, we shall derive asymptotic expressions of the zero- and first-order scattered far fields
explicitly.

Since the integrand of Eq. (124) has branch points at α = ±k, evaluation in closed form is in
general difficult. However, we may apply the saddle point method to derive an asymptotic expression
at large distances from the origin. Introduce the cylindrical coordinates (ρ, θ) centered at the origin as
follows:

x = ρ sin θ, z = ρ cos θ, for − π < θ < π. (126)

By means of the saddle point method, we can derive a far field asymptotic expression of the scattered
field with the result that

φ(0)(ρ, θ) ∼ − 1
2γ(−k cos θ)

[
U

(0)
1 (−k cos θ) cosh γ(−k cos θ)b

±V
(0)
1 (−k cos θ) sinh γ(−k cos θ)b

]
k sin |θ|e

i(kρ−π/4)

(kρ)1/2
(127)

for x ≷ ±b as kρ → ∞.
Next we shall derive an asymptotic expression of the first-order scattered field φ(1)(x, z). In view

of Eq. (125), the first-order scattered field can be written as

φ(1)(x, z) = φ(1)
u (x, z) + φ(1)

v (x, z), (128)
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where

φ(1)
u (x, z) = −(2π)−1/2

∫ ∞+ic

−∞+ic

1
2γ(α)

h

[
U

(1)
1 (α) cosh γ(α)b

±V
(1)
1 (α) sinh γ(α)b

]
e∓γ(α)x−iαzdα, x ≷ ±b, (129)

φ(1)
v (x, z) = ±(2π)−1/2 ·

∫ ∞+ic

−∞+ic

ih

4

{[
U

(0)
1 (α + m) − U

(0)
1 (α − m)

]
cosh γ(α)b

±
[
V

(0)
1 (α + m) − V

(0)
1 (α − m)

]
sinh γ(α)b

}
e∓γ(α)x−iαzdα, x ≷ ±b. (130)

Applying the saddle point method with the aid of the cylindrical coordinate defined by Eq. (126), it is
found that φ

(1)
u (x, z) has the asymptotic expression

φ(1)
u (ρ, θ) ∼ − 1

2γ(−k cos θ)

[
U

(1)
1 (−k cos θ) cosh γ(−k cos θ)b

±V
(1)
1 (−k cos θ) sinh γ(−k cos θ)b

]
k sin |θ|e

i(kρ−π/4)

(kρ)1/2
(131)

for x ≷ ±b as kρ → ∞.
An asymptotic evaluation of φ

(1)
v (x, z) defined by Eq. (130) is in general difficult, since the integrand

has branch points at α = ±k + m, ±k − m as well as α = ±k. For simplicity, we assume |m/k| � 1,
which implies that the period of corrugation is large compared with the wavelength. Then in the process
of asymptotic evaluation, we can ignore contributions from branch-cut integrals occurring due to the
branch points at α = ±k + m, ±k −m. Therefore the simple saddle point method may be employed to
obtain a far field expression with the result that

φ(1)
v (ρ, θ) ∼ ∓ i

4

{[
U0

1 (−k cos θ(1)) − U0
1 (−k cos θ(2))

]
cosh γ(−k cos θ)b

±
[
V 0

1 (−k cos θ(1)) − V 0
1 (−k cos θ(2))

]
sinh γ(−k cos θ)b

}
k sin |θ|e

i(kρ−π/4)

(kρ)1/2
(132)

for x ≷ ±b as kρ → ∞. where

θ(1) = cos−1(cos θ − m/k), θ(2) = cos−1(cos θ + m/k). (133)

As seen above, substitution of Eqs. (131) and (132) into Eq. (128) yields an explicit far field expression
of the first-order scattered far field, and holds for arbitrary incidence and observation angles.

6. NUMERICAL RESULTS AND DISCUSSION

In this section, we shall present numerical examples of the RCS and discuss far field scattering
characteristics of the waveguide in detail. Since this is a two-dimensional problem, the RCS per unit
length is given by

ρ = lim
ρ→∞

(
2πρ|φ|2/|φi|2) , (134)

where
φ(ρ, θ) = φ(0)(ρ, θ) + hφ(1)(ρ, θ). (135)

In computing Eq. (135), we have used the asymptotic expressions given by Eqs. (127), (128), (131)
and (132). As has been mentioned in Section 2, it is essential to reduce the original problem to the
diffraction by a flat, finite parallel-plate waveguide with a Leontovich-type boundary condition as given
by Eq. (7) under the small-depth approximation. By careful numerical experimentation, we have verified
that, if the corrugation depth 2h satisfies 2h ≤ 0.1λ with λ being the free-space wavelength, then Eq. (7)
can be employed to simulate a perfectly conducting sinusoidal surface with sufficient accuracy. On the
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other hand, in order to validate the far field asymptotic expression of φ
(1)
v (x, z) given by Eq. (132), the

ratio m/k has been taken as m/k ≤ 0.2 in numerical computations. Under this condition, contributions
from branch-cut integrals due to the branch points at α = ±k +m and ±k−m arising in the process of
asymptotic evaluation of Eq. (130) are small compared with the saddle point contribution and hence,
Eq. (132) can be used with reasonable accuracy.

Figures 2–5 show numerical examples of the bistatic RCS σ/λ as a function of observation angle θ

(a) (b)
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Figure 2. Bistatic RCS σ/λ [dB] of a flat waveguide and a corrugated waveguide for θ0 = 60◦, N = 1,
2a = 10λ, m/k = 0.1, 2b = 4λ. (a) 2h = 0.02λ. (b) 2h = 0.1λ.
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Figure 3. Bistatic RCS σ/λ [dB] of a flat waveguide and a corrugated waveguide for θ0 = 60◦, N = 5,
2a = 50λ, m/k = 0.1, 2b = 4λ. (a) 2h = 0.02λ. (b) 2h = 0.1λ.
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Figure 4. Bistatic RCS σ/λ [dB] of a flat waveguide and a corrugated waveguide for θ0 = 60◦, N = 5,
2a = 25λ, m/k = 0.2, 2b = 4λ. (a) 2h = 0.02λ. (b) 2h = 0.1λ.
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for various values of N , 2a, m/k, and 2h, where the incidence angle θ0 and the waveguide width 2b are
fixed as 60◦ and 4λ, respectively. All these results provide comparisons on the scattering characteristics
between the flat waveguide (black lines) and the corrugated waveguide (red lines). In the figures,
the parameter m/k is important in numerical computation and is physically the periodicity (surface
roughness) parameter. In addition, N(≡ (2a/λ)(m/k)) implies the number of periods of the corrugation
of the waveguide walls. The periodicity parameter m/k is chosen as 0.1 and 0.2 in Figures 2 and 3 and
Figures 4 and 5, respectively. We have chosen the waveguide length and the corrugation depth as
2a = 10λ, 25λ, 45λ, 50λ and 2h = 0.02λ, 0.1λ, respectively.

It is seen from all the figures that the bistatic RCS has maximum peaks at θ = −120◦ and 120◦,
which correspond to the incident and reflected shadow boundaries, respectively. Comparing the results
for the corrugated waveguide with those for the flat waveguide, we observe that the effect of the sinusoidal
corrugation of the waveguide walls is noticeable in the reflection region 90◦ < θ < 180◦, and the bistatic
RCS has sharp peaks at two particular observation angles around the specularly-reflected direction at
θ = π−θ0(= 120◦). Consideration on the infinite periodic structure may offer physical understanding of
the scattering mechanism at these particular observation angles. Referring to (41), it is seen that π−θ1

and π−θ2 are, respectively, propagation directions of the (−1) and (+1) order diffracted waves involved
in the Floquet mode arising in periodic structures of infinite extent [17]. The angles π − θ1, π − θ2 are,
respectively, 113.6◦, 126.9◦ in Figures 2 and 3, and 107.5◦, 134.4◦ in Figures 4 and 5, where somewhat
large reflection is expected. In fact, we see that the observation angles associated with the two peaks
around π − θ0 are precisely coincident with the directions at π − θ1 and π − θ2. On the other hand, the
peaks along the specular reflection π − θ0 is also expected from the grating theory since they exactly
correspond to the propagation direction of the zero-order Floquet mode. Therefore it is confirmed that
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Figure 5. Bistatic RCS σ/λ [dB] of a flat waveguide and a corrugated waveguide for θ0 = 60◦, N = 9,
2a = 45λ, m/k = 0.2, 2b = 4λ. (a) 2h = 0.02λ. (b) 2h = 0.1λ.
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Figure 6. Bistatic RCS σ/λ [dB] of a corrugated strip and a corrugated waveguide for θ0 = 60◦, N = 1,
2a = 5λ, m/k = 0.2, 2h = 0.1λ. (a) 2b = 0.4λ. (b) 2b = 1.2λ.
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Figure 7. Bistatic RCS σ/λ [dB] of a corrugated strip and a corrugated waveguide for θ0 = 60◦, N = 5,
2a = 25λ, m/k = 0.2, 2h = 0.1λ. (a) 2b = 2λ. (b) 2b = 6λ.

the three peaks at π − θ0, π − θ1, and π − θ2 in the results for the sinusoidal wall corrugation are due
to the periodicity of the sinusoidal surface of the waveguide.

It can also be observed by comparing Figures 2(a), 3(a), 4(a), and 5(a) with Figures 2(b), 3(b),
4(b), and 5(b) that the peaks occurring at the π − θ1 and π − θ2 directions become sharper with an
increase of 2h. On comparing Figure 2 for N = 1 with Figure 3 for N = 5, we see the peaks along
π − θ1 and π − θ2 more clearly for larger N . This is because, if N increases, then the surface of the
waveguide walls approaches a periodic structure and hence, waves along the propagation directions of
the particular Floquet modes are strongly excited.

We shall now investigate the scattering characteristics depending on the number of strips, namely
a single corrugated strip and two corrugated strips (corrugated parallel-plate waveguide). Figures 6
and 7 show comparisons between these two structures. Scattering characteristics in the neighborhood
of the main-lobe directions at θ = ±120◦ show close features for both cases as can be expected. The
differences between a single strip and two strips occur noticeably for |θ| < 60◦ and 150◦ < θ < 180◦.
This is because, in this region, the effect due to the radiation from waveguide modes becomes stronger.

7. CONCLUDING REMARKS

In this paper, we have analyzed the diffraction by a finite parallel-plate waveguide with sinusoidal wall
corrugation using the Wiener-Hopf technique combined with the perturbation method. Assuming that
the corrugation amplitude is small compared with the wavelength and expanding the scattered field
in the form of a perturbation series, the problem has been reduced to the diffraction by a flat, finite
parallel wall waveguide with a certain mixed boundary condition. Using this approximate boundary
condition, the problem has been formulated in terms of the simultaneous Wiener-Hopf equations. The
Wiener-Hopf equations have been solved via the factorization and decomposition procedure leading to
the exact and approximate solutions. Taking the inverse Fourier transform and applying the saddle
point method, an asymptotic expression of the scattered far field has been derived.

Based on the results, we have carried out numerical computation of the RCS for various physical
parameters and investigated the effect of sinusoidal corrugation of the waveguide walls in detail. As a
result, it has been confirmed that, in the reflection region, scattered waves are strongly excited along the
specific directions corresponding to the three dominant Floquet modes. We have compared scattering
characteristics in detail between the flat waveguide and the corrugated waveguide and those between
the single strip and the corrugated waveguide (i.e., two corrugated strips). Our solution is valid for
the case where the corrugation depth and the corrugation period are small and large compared with
the wavelength, respectively. Hence, the method of solution developed in this paper may become less
accurate for deep or dense corrugation. In this paper, our idea for approximating the boundary condition
on the sinusoidal surface was to use only the zero- and first-order terms in the Taylor expansion around
the average surface. Hence, by keeping up to higher order terms in the Taylor series, it can be possible
to extend the range of applicability of the method. This may serve as a future topic of research.
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