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A Time-Frequency Feature Fusion Algorithm Based on Neural
Network for HRRP

Lele Yuan*

Abstract—In this paper, a feature fusion algorithm is proposed for automatic target recognition based
on High Resolution Range Profiles (HRRP). The proposed algorithm employs Convolution Neural
Network (CNN) to extract fused feature from the time-frequency features of HRRP automatically.
The time-frequency features used include linear transform and bilinear transform. The coding of the
CNN’s largest output node is the target category, and the output is compared with a threshold to
decide whether the target is classified to a pre-known class or an unknown class. Simulations by four
different aircraft models show that the proposed feature fusion algorithm has higher target recognition
performance than single features.

1. INTRODUCTION

High Resolution Range Profile (HRRP) is a one-dimensional scattering distribution of a target in range
along radar Line-Of-Sight (LOS), which is generated by a high resolution range radar [1]. Compared
with other radar imaging techniques, HRRP has many advantages, such as short computing time and
small memory space needed, so it has been used for noncooperative target recognition for years [2–4].

In order to explore the information contained in the returned radar signal, either the frequency
response or the time signature can be used [5, 6]. Furthermore, recent study shows that Time-Frequency
Distribution (TFD) has more power when being applied to HRRP target recognition, which can describe
the scattering-point of the target in time-frequency domain more accurately [7, 8]. [7] investigated a
time-frequency analysis of HRRP based on Gaussian window and decomposed the range profiles by the
natural frame representation which can express the physical characteristics of the signal well. [9] jointed
the original HRRP and TFD to classify targets which have high robustness. First, they extracted the
training database using the original HRRP roughly and then selected a certain percentage of the highest
matching samples to perform decision by extracting time-frequency features. One of the problems to
use two-dimension TFD as features is redundancy. To solve the problem, the time-frequency matrix of
HRRP was reduced by nonnegative matrix factorization, and the HMM was used as a classifier in [10].
[11] extracted the geometric moment of a two-dimensional image, which is translation, rotation and
scale invariance.

According to its form, the TFD includes linear time-frequency transform and bilinear time-
frequency transform. However, both linear and bilinear transforms have shortcomings in Radar
Automatic Target Recognition (RATR) [12–14]. The size of the window function used in the linear
time-frequency transform determines the time and frequency resolutions of TFD. Longer window results
in higher frequency resolution but lower time resolution, while shorter window results in the opposite
results. On the other hand, there is no resolution problem in bilinear time-frequency transform, but the
cross-terms will interfere the results of bilinear transform. [13] got high resolution and weak cross-terms
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TFD by the complementarity of different features. However, ideal TFD of the signal is required for the
fusion process which is difficult to obtain in reality. In this paper, we try to find an approach to fuse
different TFDs to get a higher target recognition rate.

We compare the effect of different TFDs on target recognition based on HRRP. Then a feature
fusion algorithm based on Convolution Neural Network (CNN) is proposed. The fusion algorithm
automatically extracts the TFD fusion feature by a CNN. At the same time, we employ a threshold
to determine whether the target is from the known target library or not. If the final result is less
than the threshold, we consider it to be an unknown target. In addition, we apply this method to low
Signal-to-Noise Ratio (SNR) signal to test the robustness of the algorithm.

2. THE TIME-FREQUENCY TRANSFORM OF HRRP

As for HRRP, the frequency changes with time. Since the Fourier transform cannot accurately describe
the signal spectrum changes with time, we should add time factor to the transform, i.e., time-frequency
transform [14]. Because the scatter characteristics of the real aircraft target are complex, the shield
and motion (such as propellers turbines) of the scatter points will cause some damage to the scattering
model and make echoes propagate in the range domain. So the TFD of the aircraft HRRP can reflect
the target characteristics more accurately and is more beneficial to RATR [15]. Next, we will introduce
linear and bilinear time-frequency transforms briefly.

2.1. Linear Time-Frequency Transform

The most basic form of linear time-frequency transform is Short Time-Frequency Transform (STFT),
which is defined as in Equation (1).

STFT (t, ω) =
∫

x (τ)h (τ − t) e−jωτdτ, (1)

where x(t) is the signal to be analyzed, and h(t) is the window function which is a symmetric function.
On the one hand, h(t) is utilized to intercept a certain time interval of the signal, and the smaller the
width of h(t) is, the better the time resolution is. On the other hand, to get high frequency resolution,
the window function needs to be as long as possible, which contradicts the time domain resolution.

The commonly used window functions include rectangular window, triangular window, Hanning
window, Hamming window, Gauss window (Gabor transform), etc. The linear time-frequency transform
also includes wavelet decompose, S-transform and other signal decompose algorithms. In this paper, we
use Hanning window and Hamming window.

Hanning window:

h (t) = 0.54 + 0.46 cos
2πt

τ
, |t| ≤ τ

2
. (2)

Hamming window:

h (t) =
1
2

(
1 + cos

2πt

τ

)
, |t| ≤ τ

2
. (3)

2.2. Bilinear Time-Frequency Transform

Unlike linear time-frequency transform, the signal appears twice in bilinear time-frequency transform,
so called bilinear transform. The most fundamental form is Wigner-Ville transform, which is defined as

WV (t, ω) =
∫

x
(
t +

τ

2

)
x∗

(
t − τ

2

)
exp (−jωτ ) dτ, (4)

where x∗(t) is the conjugate of the signal x(t). The window function is not used in the calculation, so
the Wigner-Ville transform can avoid the time frequency resolution contradiction in STFT. However,
for multi-component signals, cross-terms are introduced, and the SNR is reduced. The more the multi-
components are, the more the cross-terms are generated.
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To reduce the cross-terms, the Cohen distribution introduced a kernel function g(θ, τ) to perform
as a two-dimensional low-pass filter. The general form is

Cx (t, ω) =
1
2π

∫∫∫
x (u + τ/2)x∗ (u + τ/2) g (θ, τ) e−j(θt+ωτ−uθ)dudτdθ, (5)

As shown in the equation, the specific form, type and nature of the transform are determined by the
kernel function. When g(θ, τ ) = 1, the Cohen distribution is changed into Wigner-Ville distribution.
There are many other kernel functions, including Born-Jordan, Choi-Williams, etc. In this paper, we
use Wigner-Ville distribution and Born-Jordan function as the TFD to be fused. The Born-Jordan
kernel function is shown as follows,

g (θ, τ) = 2
sin (θτ/2)

θτ
. (6)

The HRRP and TFD from a stealth strategic bomber B2 utilized in the simulation with aspect
of 86.4◦ is shown in Fig. 1. It can be clearly seen that the STFTs based on the Hanning window and
Hamming window are very similar, but the Hamming window contains more information. The edge of
the linear transform shown in Figs. 1(b) and (c) is more blurred than the bilinear transform shown in
Figs. 1(d) and (e). The cross-term in Wigner-Ville distribution shown in Fig. 1(d) is even higher than
the signal term. The Born-Jordan distribution shown in Fig. 1(d) filters the cross-terms through kernel
function but loses much more information than other distributions.
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Figure 1. The HRRP and the TFD from B2 with aspect of 86.4◦.

3. THE TIME-FREQUENCY FEATURE FUSION METHOD

Different time-frequency analysis methods have different characteristics and defects to some degree
which will impact the target recognition result. In [13], the weight fusion method is used to combine
multiple time-frequency features into a time-frequency feature which has higher resolution and SNR
than the single feature by the desired TFD. But as for the real aircraft target, it is difficult to get the
desired TFD, and the dimension is too high to calculate the weight coefficients. So we try to utilize
the CNN to get the weight coefficients where the cost function is the target recognition result instead
of the desired TFD. Next we will introduce the fusion method and implementation process by CNN,
respectively.
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3.1. Fusion Method

We introduce the Volterra serial into the fusion process, where the single TFD is used as the first-order
term, and the product of the single TFD is used as the second-order term. The calculation method can
be expressed as,

dij =
n∑

l=1

ρl(dij)l+
n−1∑
a=1

n∑
b=a+1

uab(dij)a(dij)b, (7)

where, dij is a type of TFD; ρ and u are the first-order and second-order coefficients, respectively; n is
the number of TFDs to be fused. The reason for adding the second-order product term to the fusion
process is that when the TFD is multiplied, the signal part will increase due to higher energy, and the
interference term will be suppressed due to lower energy. So the multiplication plays an important role
in amplifying the signal and suppress the interference.

3.2. CNN for Feature Fusion

The CNN was originally proposed for handwritten digit recognition by LeCun et al. [16] and has
experienced resurgence in deep learning which is utilized in image recognition, speech recognition and
other fields [17]. [18] applied the CNN to HRRP from multiple monostatic and bistatic radar systems
and significantly improved the reliability of the classification.

The main idea in CNN is local connection and weight sharing. By using the same weights to scan
each part of the image, we can extract the local feature and reduce the number of weights. Every point
in the same feature matrix has the same weight coefficient in the feature fusion algorithm. Therefore,
the weight coefficients, which are the Volterra coefficients in the previous subsection, can be used as a
convolution kernel. The fusion can be achieved by the convolution layer, then the fused features can be
classified by the fully-connected layer of the neural network. The architecture of the algorithm is shown
in Fig. 2, and the specific implementation is as follows.

Expand by column Normalize

... ...

.
.
.

.
.
.

.
.
.

.
.
.

...

...

.
.
.

.
.
.

...

...

.
.
.

.
.
.

.
.
.

.
.
.

.
.
.

.
.
.

.
.
.

.
.
.

Single TFD

Features to be fused

(Input of the CNN)

.
.
.

Conv

Expand by column Normalize

Weights

.
.
.

Pool

Figure 2. The architecture of the proposed algorithm. The same line type or color references the same
TFD.

First of all, the linear and bilinear time-frequency transforms of HRRP are different in scale, so we
should normalize each TFD to the same scale. In this paper, each TFD is normalized to [−0.9, 0.9] as
follows.

d′ =
1.8 ∗ (d − dmin)

dmax − dmin
+ (−0.9), (8)

where, d′ and d are the normalized and original TFDs, and dmax and dmin are the maximum and
minimum of the original TFD.
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In order to employ the convolution kernel into feature fusion, we expand each time-frequency matrix
by columns and reunite the columns into a new matrix as the network input, i.e.,

D =

⎡
⎢⎢⎣

d1
0 d2

0 . . . d1
0 ∗ d2

0 . . .
d1

n d2
n . . . d1

n ∗ d2
n . . .

...
...

... . . .
d1

N−1 d2
N−1 . . . d1

N−1 ∗ d2
N−1 . . .

⎤
⎥⎥⎦ , (9)

where, D is the input of the network, dm
n the nth value of the mth TFD expanded by columns, and ∗

the product of each two TFDs. If n = 0 . . . N −1, m = 0 . . . M −1, the dimension of D is N ∗(M + C2
M ).

The convolution layer is utilized to complete the weight fusion process represented by Volterra
series. Let the convolution layer consist of K fusion feature maps, and the output of the convolution
kernel is represented as

Dck (n) = g (cov (D (n) , wk) + bk) , (10)

where, n = 0 . . . N − 1 is the number of a feature row; wk and bk are the kth convolution kernel and
bias; cov(·) and g(·) are the convolution and activation function, respectively.

In general, each convolution layer will follow a pooling layer, and the main purpose is to reduce
the feature dimension. Because local groups of values are often highly correlated, the pooling operation
in local has a certain polymerization which can improve the generalization performance. An average-
pooling function of r outputs with stride s is given by Equation (11).

Dpk (l) = (Dck (sl) + Dck (sl + 1) + . . . + Dck (sl + r − 1)) /r, (11)

where Dpk(l) is the lth output of the pooling layer followed by the kth kernel and l = 0 . . . (N − r)/s.
After the convolution and pooling layer, we get K vectors with dimension of N and then connect all

the vectors to a new vector Dfi as the input of the full-connected layer. The output of the full-connected
layer can be represented as follows,

Dfo = g
(
W T Dfi + b

)
, (12)

where, W and b are the weight matrix and bias of the full-connected layer, and g(·) is an active function.
The output layer is a fully-connected layer too, and the calculation method is the same as above.

The node of the output layer represents the number of classes. Suppose that we have C classes of
samples, then the output can be coded as y = [y1, . . . , yC ]T . In the desire output, for the cth class, the
cth of y is set to 1, and the others are 0.

In this paper, all the active functions are the sigmoid function

g (x) = 1/
(
1 + e−x

)
. (13)

We use the mean square error as the cost function. Let yio and ȳio represent the actual output of
the network and desire output, then the cost function E can be represented as

E =
1
S

S∑
i=1

C∑
o=1

(yio − ȳio)
2, (14)

where, S is the number of training samples and C the number of output nodes. Then we use
Backpropagation algorithm and the stochastic gradient descent method to train the network. In each
iteration, the weights, bias, and the convolution kernels are adjusted until the cost function reaches the
preset minimum value, or the training epoch reaches the maximum value.

The test sample is prepared as the training sample before input into the trained network. The
position corresponding to the maximum output node of the CNN is the class of the test sample. In
addition, we introduce a threshold γ ∈ [0, 1) to classify the target as an unknown target if the highest
output does not exceed the chosen threshold, i.e.,

c =

{
arg max
c∈[1,C]

yc, if max yc ≥ γ

unknown, if max yc < γ
, (15)

where, c ∈ [1, C] is the class of the sample, and there are C classes in total. yc is the cth output node
of the network.
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4. SIMULATION RESULTS

Two-dimensional backscatters distribution data of four different scaled aircraft models are used in the
experiment, and the target HRRP is obtained by a stepped frequency radar with a 256-point IDFT in
the end. The radar parameters are shown in Table 1. The four aircraft models are B2 (scale 1 : 35),
F117 (scale 1 : 13), J6 (scale 1 : 8), and YF22 (scale 1 : 12).

Table 1. Radar parameters.

Parameter Value
Carrier frequency f0 10 GHz

Pulse repetition frequency fr 100 kHz
Pulse width τ 1µs

Number of pulses N 256
Stepping frequency increment Δf 1/τ = 1MHz

Resolution ΔR c/(2NΔf) = 0.586 m

The HRRPs are obtained from the aspect range of 0◦ to 180◦ with an equal interval of 0.6◦. From
0◦, every sixth sample, i.e., every 3.6◦, is used for training, and the rest are used for testing. Thus,
we have 50 training range profiles and 250 testing range profiles per class. In the training phase, we
augment the data by adding white Gaussian noise to obtain the range profiles with 10 dB SNR. The
augmented training data set consists of 400 profiles. The testing data set consists of 4000 profiles with
SNR varying from 5 to 20 dB with a 5 dB interval and the original profiles.

In this paper, we use four different TFDs of HRRP, including the linear time-frequency transform
based on Hamming window and Hanning window, the bilinear time-frequency transform based on
Wigner-Ville distribution and Born-Jordan distribution.

First we compare the performance of the proposed feature fusion method and single features. For
the single features, we employ a multi-layer neural network as a classifier. Because there is no need to
perform fusion, we do not use convolution layer and pooling layer. A fully-connected neural network
with the size of 1024-100-4 is to be utilized. The CNN for the feature fusion consists of one convolutional
layer with 2 feature maps calculating 1 ∗ 10 sample 2D-convolutions followed by a 2-sample average-
pooling with stride 2 and a 100-unit fully-connected hidden layer followed by a fully-connected sigmoid
output layer. We employ the stochastic gradient descent with momentum, whose learning rate is 0.1,
momentum 0.9 and minibatch size 2. The maximum epoch is set at 2000. At first we do not consider
the unknown targets, so the threshold γ is set at 0.

Table 2 shows a comparison of the original profiles classification performance based on different
features. The fused feature clearly outperforms the single features, especially for F117. As for F117, all
the single features yield a recognition rate below or equal to 0.8, while the recognition rate of the fusion
method can be up to 0.9. As for the other three aircraft, both the fusion method and the single features
can get high recognition rate, while for the single features, the performance of the linear time-frequency
transform is overall higher than the bilinear time-frequency transform.

Next we compare the robustness of the proposed feature fusion method and the single features.
The recognition rates of different features under different SNRs are compared, as shown in Fig. 3. From

Table 2. The correct recognition rate of different features.

Feauture B2 F117 J6 YF22 Average
Hamming 1 0.8 0.996 1 0.949
Hanning 1 0.72 0.996 0.996 0.928

Wigner-Ville 1 0.692 0.98 0.912 0.896
Born-Jordan 1 0.552 0.996 0.884 0.858

Fusion 1 0.928 0.992 0.972 0.973
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Figure 3. The recognition rate of different features in different SNR.

Fig. 3, we can see that the fusion method can yield higher performance under high SNR, but under low
SNR, the performance drops rapidly. This may be because the target signal is submerged in the noise,
and the weighted fusion process also enhances the noise. The confusion matrix for the fusion algorithm
under 5 dB SNR is shown in Table 3. Under the condition of low SNR, the F117 is easy confused with
other aircraft, and the YF22 is easy confused with F117, so their correct recognition rate is very low,
while the other two aircraft still have a high recognition rate. It is because F117 has very high stealth
characteristic with little scattering-point, and YF22 has a very similar size and structure to F117.

Table 3. Confusion matrix for the fusion algorithm under SNR = 5dB.

Declared target

True target

B2 F117 J6 YF22
B2 0.948 0.036 0.004 0.012

F117 0.18 0.5 0.14 0.18
J6 0.04 0.052 0.828 0.08

YF22 0.096 0.24 0.124 0.54

We add a threshold to recognize the aircraft as an unknown class thereby reducing incorrect
recognition when the aircraft are confusing with poor condition. We compare the correct rate and
incorrect rate under different SNRs and different thresholds. Fig. 4 depicts the correct rate and incorrect
rate under 5 dB SNR in different thresholds, and the recognition result of F117 under 5 dB SNR by
different thresholds is shown in Table 4. The correct rate and incorrect rate are both decreased with
the increase of the threshold, but the incorrect rate decreases rapidly compared to the correct rate of
small thresholds. So we can choose a small threshold between [0.1, 0.3].

Furthermore, we compare the impacts of different numbers of fused feature maps in the convolution
layer. The correct recognition rates of different numbers of feature maps under different SNRs with

Table 4. The recognition result of F117 under SNR = 5dB by different threshold.

γ B2 F117 J6 YF22 unknown incorrect
0 0.18 0.5 0.14 0.18 0 0.5

0.2 0.108 0.46 0.096 0.16 0.176 0.364
0.4 0.092 0.432 0.084 0.136 0.256 0.312
0.6 0.052 0.412 0.084 0.132 0.32 0.268
0.8 0.036 0.376 0.06 0.112 0.416 0.208
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Figure 4. The recognition rate of different features under different SNR.
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Figure 5. The recognition rate of different features under different SNR.

γ = 0.2 are shown in Fig. 5. We can see that under low SNR, the recognition rate can be improved by
increasing the number of feature fusion maps until the number is up to 10, because more convolution
maps can extract more fusion information from different TFDs.

5. CONCLUSION

In this paper, we compare different TFDs of HRRP and utilize a multi-layer neural network as the
classifier to recognize aircraft. By comparing the recognition results, it is found that the linear time-
frequency transform is more suitable for target recognition with HRRP. Then we propose the feature
fusion algorithm based on TFD which is realized by using a CNN. The recognition result based on the
fusion algorithm is much higher than single features under high SNR. To solve the poor recognition
result under low SNR, we introduce a threshold to decide whether the target is classified to one of
the pre-known targets or unknown targets to reduce the incorrect rate. Furthermore, we find that the
recognition rate of low SNR can be improved by increasing the number of feature fusion maps.

In real-time environments, the TFDs can be computed efficiently and are suitable for RATR.
Furthermore, the SNR advantages of the proposed feature fusion method and threshold scheme can
effectively reduce the incorrect rate in real applications. In the future, we will apply the algorithm to
HRRPs measured from aircrafts in real environments, and the work needs to be further explored.
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