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Side Lobe Level Reduction of Any Type of Linear Equally Spaced
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Abstract—In most applications of antenna arrays, side lobe levels (SLLs) are commonly unwanted.
Especially, the first side lobe level which determines maximum SLL is the main source of electromagnetic
interference (EMI), and hence, it should be lowered. A procedure of finding the optimum side lobe-
minimizing weights for an arbitrary linear equally spaced array is derived, which holds for any scan
direction, beam width, and type of antenna element used. In this science article, the use of convolution
procedure and the time scaling property reduces the side lobe level for any type of linear equally spaced
array. Results show that by this procedure, the side lobe level is reduced about two times or even more.

1. INTRODUCTION

Array antenna design and application has become very popular in several fields of engineering in recent
decades [1–4]. An antenna array (often called a phased array) is a set of N spatially separated antennas.
The number of antennas in an array can be as small as two or as large as several thousands. Radiating
elements might be dipoles, open-ended waveguides, slotted waveguides, microstrip antennas, helices,
spirals, etc. A phased array antenna offers the possibility to steer the beam by means of electronic
control. Array antennas provide the designer additional degree of freedom relating to a single antenna
due to existence of a number of radiating elements. By properly adjusting the relative phase or amplitude
of the array elements, radiation pattern of the array is adjusted in a desired direction, or the main beam
is suppressed along undesired directions. The antenna array can also be used to increase the overall
gain, provide diversity reception, cancel out interference from a particular set of directions, determine
the direction of arrival of the incoming signals, maximize the signal to interference plus noise ratio
(SINR), etc.

In most applications of antenna arrays, side lobe levels (SLLs) are commonly unwanted. Especially,
the first SLL which determines maximum SLL is the main source of electromagnetic interference (EMI),
and hence, it should be reduced without disturbing the width of main beam of the pattern. SLL
reduction is a crucial topic in some applications such as radar systems, which plays a significant role
in anti-jamming methods. A procedure of finding the optimum side lobe-minimizing weights for an
arbitrary linear equally spaced array is derived, which holds for any scan direction, beam width, and
type of antenna element used. In this article, by use of convolution procedure and the time scaling
property, reduce SLL for any type of linear equally spaced array. We know that time compression of
a signal results in its spectral expansion and that time expansion of the signal results in its spectral
compression. Therefore, the resulting array has low SLL but wide half power beam width. Results show
that by this procedure, the SLL is reduced about two times or even more.
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2. THEORY

Techniques for designing antenna array can be divided into two main objects: 1) finding the excitations
and 2) finding the positions of antenna elements that obtain a set of trade-off solutions between mean
beam width and SLL. In this paper, we will concentrate on uniform spacing for any type of linear
antenna array. Figure 1 exhibits a linear equally spaced array in the z axes. Let us assume that the
number of elements forming the array is N . The nth component has weight an. The z-directed elements
are spaced d apart. The output of a linear phase array can be written as

AF =
N−1∑

n=0

ane
jnψ =

N−1∑

n=0

ane
j(nkd cos(θ)+β) (1)

Figure 1. Geometry of linear equally spaced array antenna.

In the above, k is the wave vector, which specifies the variation of the phase as a function of
position, and ψ is the phase between the elements. Also, β represents the phase by which the current
in each component leads the current of the preceding element. The phase β can be written as

β = −kd cos(θ0) (2)

where θ0 is beam steering. The weight an may be uniform or may be in any form according to the
designer’s needs. This can include various weights such as the Gaussian, Kaiser-Bessel, Hamming, or
Blackman weights.

From antenna theory, we know that the excitation distribution and far-field array factor are related
by Fourier transforms. Array factor formula represents a finite Fourier series that relates the element
excitation coefficients (an) of the array. For the normalized array factor, if element excitation coefficients
of antenna array convolve by themselves, the corresponding normalized array factor is multiplied by
itself. By this work, the proposed array can provide SLL values lower than those achievable by an
arbitrary excited array. Moreover, the new array factor possesses a narrower main beam than the old
array factor, indicating that smaller half-power beam widths are produced. It is also noted that the
primary array factor and new array factor are periodic functions of ψ with period of 2π and have
similar general far-field radiation pattern structures, and the maximum and minimum point positions
will be unchanged. From mathematics theory, we know that if vectors xn and xm have n and m
elements, respectively, convolution of two vectors has n + m − 1 members. According to mentioned
rule, disadvantage of this method is increasing the number of array elements. Thus, for overcoming this
problem and fixing the length of array, the new element excitation coefficients must be rescaled. Let
us denote element excitation coefficients of new and primary arrays by an and am, respectively. The
element excitation coefficients of new array can be obtained by convoluting am by itself as follow.

an = am ∗ am (3)

According to the rule mentioned above, vector an has 2N − 1 elements, but we want to have an
array with N elements. Therefore, we should rescale the element excitation coefficients an. Hence, we
keep odd elements of vector an. This sampling method known as the time scaling property of Fourier
transform. As a rule, the time scaling property of Fourier transform implies that time compression of
a signal results in its spectral expansion and that time expansion of the signal results in its spectral
compression. Therefore, the new array has low SLL but wide beam width.
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For a specific normalized amplitude distribution plotted in Figure 2, the amplitude broad banding
factor La and the place broad banding factor Lx can be defined. In the next section, these two
coefficients will be considered to be the important parameters of aperture distribution of a linear
equally spaced array. According to the mentioned definition, the amplitude broad banding factor La
can be calculated by the difference between maximum and minimum excitation coefficient amplitudes.
Computing procedure of the place broad banding factor Lx consists of two steps. First step includes the
process of finding the middle point normalized amplitude distribution in the vertical direction. After
the middle point is determined, the second step is to draw a horizontal line passing this point. Finally,
the place broad banding factor Lx can be computed by difference points of intersection of horizontal line
with normalized amplitude distribution. In the future, these two coefficients will be used to the analysis
of directivity, half power beam width and SLL. Also, it will be shown that variation of directivity, half
power beam width and SLL is related to variation of the amplitude broad banding factor and the place
broad banding factor.

Figure 2. Amplitude distribution of specific normalized amplitude distribution.

It can be assumed that the aperture antennas are similar to array antennas. In aperture antennas,
half power beadwidth and aperture dimension in one direction are approximately related to the following
formula [5].

HPaperture-antenna =
K

L/λ
(4)

where L is length of the aperture, and K is a constant number. According to assumed rule, half power
beamwidth of an array can be approximated by similar formula as follow.

HParray =
K
Lx/λ

(5)

In the above formula, Lx is the place broad banding factor. In fact, we know that the excitation
distribution and far-field array factor are related by Fourier series. On the other hand, the time scaling
property of Fourier series implies that time compression of a signal results in its spectral expansion and
that time expansion of the signal results in its spectral compression. Hence, half power beamwidth and
Lx factor related to each other inversely. By applying convolution method, Lx factor becomes great.
Place broad banding factor compression of the aperture distribution results in its pattern expansion,
and then half power beamwidth becomes wide. Let us denote place broad banding factor of new and
primary array by Lxn and Lxo, respectively. Also, we depict HPBWs of new and primary arrays by
HPn and HP o, respectively. From Eq. (5), HPn and HPo are related approximately to each other by
the following formula.

HPo
HPn

∼= Lxn
Lxo

(6)
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It is clear from the property of convolution that SLLs of new (SLLn) and primary (SLLo) arrays
are related to each other by the following formula.

SLLn
SLLo

(dB) � 2 (7)

A linear equally spaced array with constant spacing d between the elements and the element
excitation coefficients an oriented along the z axis have directivity as follows [6].

D =

∣∣∣∣
N−1∑
n=0

an

∣∣∣∣
2

N−1∑
m=0

N−1∑
p=0

ama∗pej(m−p)βsinc[(m− p)kd]
(8)

From antenna theory, it can be remembered that for an array without grating lobe in far-field
radiation pattern, HPBW and directivity are related to each other inversely. We show directivities of
new and primary arrays by Dn and Do, respectively. According to the mentioned note and from Eqs. (6)
and (8), following formula presents relationship between Dn and Do.

Dn

Do
=
HPo
HPn

� Lxn
Lxo

=
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∣∣∣∣
2
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N−1∑
m=0
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p=0

ama
∗
pe
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N−1∑
m=0

N−1∑
p=0

bmb∗pej(m−p)βsinc[(m− p)kd]
(9)

where bn and an are excitation coefficients of new and primary arrays. Note that bn = an ∗ an.

3. RESULTS AND DISCUSSION

To verify the accuracy of the proposed method, four examples are presented. In the first one, a specific
uniform array with N = 12, d = 0.5λ, θ0 = 60◦ is considered. Figure 3 represents the comparison
between primary array factor (PAF) and new array factor (NAF). In the second example, a specific
Tschebyscheff array with d = 0.5λ, θ0 = 65◦, N = 20, SLL = −23 dB is considered. Radiation patterns
of the two arrays can be seen in Figure 4. In the third example, a specific Taylor one-parameter array
with parameters N = 16, SLL = −15 dB, d = 0.75λ, θ0 = 80◦ is considered. Figure 5 presents the
comparison between PAF and NAF. A specific array with parameters N = 24, nL = 8, nR = 5,
SLLL = −20 dB, SLLR = −40 dB, d = 0.5λ, θ0 = 60◦ is considered in the fourth example with Elliot
method. Figure 6 displays the radiation pattern of the initial and modified arrays.

Figure 3. Radiation pattern of a uniform array. Figure 4. Array factor of Tschebyscheff array.
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Figure 5. Radiation pattern of Taylor one
parameters array.

Figure 6. Radiation pattern of array synthesize
with Elliot method.

As predicted, in all examples, SLL is reduced very well so that the SLL of NAF is almost twice of
the PAF, and HPBW of NAF is greater than PAF because by reducing SLL, half power beamwidth
is increased. This can be considered as a penalty for the proposed method. Also, it can be seen that
the general form of the radiation pattern of the arrays is maintained approximately. Therefore, results
confirm the relationships of Eqs. (6), (7) and (9) with good accuracy. Due to rescaling, the element
excitation coefficients, maximum and minimum point’s positions in radiation pattern are changed. By
changing the maximum and minimum point’s positions of the radiation pattern, the zero’s location of
the array factors will also change. However, this notification does not have effect on the goal of this
paper. Using the MATLAB software to program the process of the proposed method, we can get the
SLL, HPBW, directivity, La and Lx of assumed examples. Table 1 and Table 2 show SLL, HPBW,
directivity, Lx and La of example array, respectively. Indices n and o depict the new and primary array
parameters. Results shown in theses tables confirm the relationships of Eqs. (6), (7) and (9) with good
accuracy.

Table 1. SLL, HPBW and directivity of assumed examples.

SLLn (dB) SLLo (dB) HPn (deg) HPo (deg) Dn Do

Example I −27 −13 14.42 10.1 9.5 12.51
Example II −55 −23 8.92 6.4 14.2 19.7
Example III −31 −15 6.6 4.6 10.83 14.97

Example IV Left −49 −24 8.64 6.12 15.8 23.22
Right −78 −36 8.3 6.12

Figure 7 shows the new and primary amplitude distributions, for different arrays assumed. Since the
number of elements and distances between elements for each array are specified, with a given amplitude
distribution, the amplitude excitation coefficients can be obtained easily. It is observed that as the SLL
increases the amplitude distribution from the center element(s) toward those at the edges is smoother
and monotonically decreases for the whole array. As a result, after applying the proposed method, the
amplitude broad banding factor for the modified array (Lan) becomes greater than the amplitude broad
banding factor for primary array (Lao). It means that Lan > Lao.

This method can be applied several times to any linear equally spaced array with arbitrary steering
angle, element spacing and number of elements to decrease SLL even more. Figure 8 shows variation
of La versus iteration number for considered arrays. As can be seen, growing the number of iterations
results in increasing the difference between maximum and minimum excitation coefficients. The arrays
with large La are not very practical. Hence, it is recommended that the proposed method should not
be used more than once.
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Table 2. Lx and La of assumed examples.

Lxn Lxo Lan Lao
Example I 6 11 0.91 0
Example II 4.8 5.5 0.96 0.59
Example III 4 5.35 0.96 0.25
Example IV 5.1 6.3 0.99 0.704

Figure 7. New and primary amplitude
distribution, for different assumed array.

Figure 8. Variation of La versus iteration
number for all considered arrays.

4. CONCLUSION

Since the first side lobe level which determines maximum SLL is the main source of electromagnetic
interference, it should be lowered. A procedure of finding the optimum side lobe-minimizing weights
for an arbitrary linear equally spaced array is derived, which holds for any scan direction, beamwidth,
and type of antenna element used. In this paper, by use of convolution procedure and the time scaling
property, the side lobe level for any type of linear equally spaced array is reduced. Results show that
by this simple method, the side lobe level is reduced about two times or even more.
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