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Underwater Electromagnetic Holography Imaging Techniques
for Shallow Water Mediums

Nicolas P. Valdivia1, *, Earl G. Williams2, and Hatim F. Alqadah3

Abstract—We propose an approach to characterize the AC underwater radiation produced by a ship
over a shallow water medium using dipole sources distributed over an interior surface to the ship.
The proposed approach relies on the accurate and efficient representation of dipole sources over the
shallow water medium that characterizes the behavior of the electric or magnetic field. The approach
is reduced to the solution of the resultant matrix system from the dipole representation. These systems
are ill-posed, i.e., if the matrix systems are not solved by special regularization methods, the resultant
solution will amplify the measurement noise. The regularization method applied is the least squares
QR iterations combined with a new stopping rule that uses a numerical estimate of the measurement
noise. Numerically generated data is used to study the validity of the different dipole representations.
Finally, we validate our methodology using magnetic measurements that result from degaussing coils of
a mid-size vessel.

1. INTRODUCTION

The identification of sources of alternating current (AC) radiation has a wide application in civilian
and military marine based electromagnetics. The traditional work in underwater electromagnetic
radiation has primarily focused on magneto-static fields (DC fields) arising from interactions between
the ferromagnetic steel portions of the ship and earth’s magnetic field [1], where this magnetic field can
be exploited by magnetic influence mines [2]. Although it is known that there is high attenuation of AC
electromagnetic waves for conductive mediums (like seawater) there is a current interest to study AC
radiation due to the inclusion of new electric motor propulsor designs and electromagnetic machinery.
These studies focus on the Extremely Low Frequency (ELF) (1–200 Hz) range where possible AC sources
include cathodic related currents and roll-induced eddy currents [3].

Due to the integral surface representation theory developed by Stratton-Chu [4, 5], the
electromagnetic field over a homogeneous medium outside an object will be determined only from
its surface components. Although measurement devices may be placed as close as desired to sample the
field components on the object’s surface, such invasive interrogation can perturb the surface fields being
sought. The best alternative is to estimate surface quantities by back-propagating fields measured on
a more distant surface where the interaction between the measurement devices and the test object is
reduced. This idea is currently applied to both underwater and in-air acoustic measurements in the
Near-field Acoustical Holography (NAH) approach. The NAH method is a super-resolution approach —
accurate details of the source field down to a fraction of a wavelength are obtained. The resultant AC
underwater radiation over the ELF has resultant underwater wavelengths (or equivalent skin depths) of
1500 m at the low end. For that reason, there is no doubt that super-resolution approaches are needed.
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The transition from acoustics to underwater electromagnetics also implies the transition from the wave
equation to the diffusion equation, and from a real wavenumber to a complex one.

By its physical nature, the recovery of the electromagnetic field in the vicinity of sources from
near-field measurements is an ill-posed problem, i.e., the presence of noise in the measurements will be
amplified in the solution and in most cases this solution will be useless. There have been previous authors
that have implemented this procedure when the radiating surface is a separable geometry of the wave
equation like planar [6, 7], cylindrical [8, 9] and spherical [10]. The inverse problem of back-propagation
in these geometries relies on the expansion of the measured field by a complete set of eigenfunctions
that provides an explicit form of the Green’s function expansion that relate the measurements to the
surface tangential components. The regularization method is applied by truncating this expansion in
such a way that the effect of measurement noise is reduced in the final solution. When the radiating
surface vary appreciably in shape from these separable geometries the measurements are represented by
surface integrals [11] that can be calculated accurately using boundary element methods (BEM). This
representation reduces the inverse problem into the solution of a linear matrix system that corresponds
to a surface integral equation. The solution of the matrix system has to be carefully executed by special
regularization methods that deals with the ill-posed nature of the problem. The BEM approach is
well suited for radiation problems since the required accuracy of the solution justifies the expensive
computations. In previous acoustic studies the authors [12] have shown that the equivalent sources
method (ESM) is a valid approximation of BEM for near-field acoustic holography (NAH), i.e., the back-
propagating problem of acoustics. It was determined that the error involved in the approximation given
by ESM is of lesser magnitude than the measurement errors amplified in the reconstruction. Similar
results have been found for the ESM based near-field electromagnetic holography (NEH) method for
electromagnetic back-propagation in a recent publication [13]. The beauty of this approach is that the
formulas for the corresponding matrix systems depend on the explicit representation of dipole sources,
which can effectively reduce the computational expense to produce the numerical matrices from this
system.

In this work we will focus on the application of the NEH technique over shallow water mediums
that model the realistic conditions found at the magnetic silencing ranges [3]. The layout of the
paper is as follows. In Section 2 we describe the mathematical formulation for the current shallow
water electromagnetic radiation phenomena. In Section 2.1 we describe the ESM representations with
dipole sources that satisfy the shallow water medium utilized for the electromagnetic field and the
matrix equations that result from each formulation. Section 2.2 will describe the special regularization
techniques that are used for the numerical solution of the resultant matrix systems. Section 3 is devoted
to the numerical validation of the ESM based NEH method. In Sections 3.1, 3.2 and 3.3 we discuss
the validity of the different ESM dipole representations and demonstrate the super-resolution property
using the Poynting vector. In Section 4, we validate our methodology with physical experiments from a
magnetic sensor array data from the Earth Field Simulator (EFS) experimental facility. We demonstrate
a plane-to-plane reconstruction which accurately reconstructs the AC radiation from a ship’s degaussing
coil. Finally, we conclude the paper with some final remarks in Section 5.

2. FORMULATIONS AND EQUATIONS

Let G be a volume in R
3 interior to the surface Γ where we assume that Γ is allowed to have edges and

corners. Similarly we will denote as G+ the region outside of G that shares the same boundary Γ (see
Fig. 1). For a time-harmonic (e−iωt) disturbance of frequency ω the electrical field �Ej := (Ej

x, Ej
y, E

j
z)T

and magnetic field �Hj := (Hj
x,Hj

y ,H
j
z )T in a shallow water medium, where the jth index denotes the

layer medium, satisfy Maxwell’s equations

∇× �Ej − iωμj
�Hj = 0, ∇× �Hj + iωγj

�Ej = 0, j = 1, 2, 3, (1)

where γj = εj +iσj/ωj , σj ≥ 0 is the electric conductivity (S/m), εj > 0 the electric permittivity (H/m),
and μj > 0 the magnetic permeability (F/m). The units of �Ej are V/m and of �Hj are A/m. �Ej and
�Hj satisfy one of the Silver-Müller radiation conditions [14].
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Figure 1. Setup for shallow water environment.

The region G+ is assumed to be free of any charges or currents, then the Stratton-Chu
representation [4] can be modified into the layer representation

�E = ∇× �A − 1
iωγ

∇×∇× �F , �H = ∇× �F +
1

iωμ
∇×∇× �A, (2)

where

A (x) :=
∫

Γ

�Πe

(
�J(y),x − y

)
dS(y),

F (x) :=
∫

Γ

�Πm

(
�M(y),x − y

)
dS(y).

(3)

The Green’s functions �Πe and �Πm are defined in Eqs. (A4) and (A5). For an infinite medium, i.e.,
ε1 = ε2 = ε3, μ1 = μ2 = μ3 and σ1 = σ2 = σ3, we have the explicit expression

�Πm

(
�M(y),x − y

)
= �M(y)Φ(x,y), �Πe

(
�J(y),x − y

)
= �J(y)Φ(x,y), k2 = γμω2. (4)

where
Φ(x,y) =

exp (ik |x− y|)
4π |x− y| .

In Eq. (3) �J is the surface electric current density (given in units of A/m2) and �M is the surface magnetic
current density (given in units of V/m2). For the classical Stratton-Chu formula, we get that �J = �n× �E

and �M = �n × �H where �n is the unit outward normal. The authors have demonstrated in [11, 13] that
the electromagnetic field can be represented by a magnetic dipole layer

�H =
1

iωμ
∇×∇× �F , �E = ∇× �F , (5)

or an electric dipole layer
�H = −∇× �A, �E =

1
iωγ

∇×∇× �A, (6)

When the conductivity σ > 0, it have been proved, in Theorem 2.2 of [11] in an infinite medium, that
representations in Eqs. (5) and (6) hold for a unique vector density function �M and �J . For σ = 0 the
representations in Eqs. (5) and (6) fail to provide a unique solution at certain problematic frequencies.
This uniqueness is a purely mathematical problem arising from the surface integral formulation rather
than the nature of the physical problem. In practice for ill-posed problems like NEH will still produce
reconstructions with a moderate loss of accuracy.
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2.1. Equivalent Sources Method

In order to avoid expensive numerical calculations devised to compute the discretizations of the singular
integrals in Eqs. (2)–(3) we utilize the equivalent source method (ESM). This method approximates the
electromagnetic field by a combination of fictitious dipole sources distributed over a source surface.

The ESM formulation expresses the electromagnetic field as a finite combination of Ns elementary
source distributed at points {yj}Ns

j=1 ⊂ Γs. More specifically, we approximate Eq. (5) as a sum of
magnetic dipoles ⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

�E(x) =
Ns∑
j=1

∇×
{

�Πm (�mj,x − yj)
}

,

�H(x) =
1

iωμ

Ns∑
j=1

∇×∇×
{

�Πm (�mj ,x− yj)
}

,

(7)

where each �mj denotes the strength and orientation, and yj denotes the position of the jth magnetization
coefficient (units of V). Similarly we approximate Eq. (6) as a sum of electric dipoles⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

�H(x) = −
Ns∑
j=1

∇×
{

�Πe (�ej ,x− yj)
}

,

�E(x) =
1

iωγ

Ns∑
j=1

∇×∇×
{

�Πe (�ej,x − yj) .
} (8)

where each �ej denotes the jth electric current coefficient (units of A). Additionally a combined potential
can be represented as⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

�E(x) =
Ns∑
j=1

∇×
{

�Πm (�mj,x − yj)
}

,+
1

iωγ

Ns∑
j=1

∇×∇×
{

�Πe (�ej ,x− yj)
}

�H(x) = −
Ns∑
j=1

∇×
{

�Πe (�ej ,x − yj)
}

,+
1

iωμ

Ns∑
j=1

∇×∇×
{

�Πm (�ej ,x − yj)
}

,

(9)

The fully discrete formulation is constructed by taking M tri-axial measurements of the field points
{xj}M

j=1 ⊂ Γ0. We express this electromagnetic field in vector notation as

E =

[ Ex

Ey

Ez

]
, H =

[ Hx

Hy

Hz

]
where Ex, Ey, Ez, Hx, Hy, Hz are column vectors of M entries that represent the three components
of the electric and magnetic field respectively. Next the projection matrices are constructed[

Kd
Γ0

]
=

⎡⎣ Kd
11 Kd

12 Kd
13

Kd
21 Kd

22 Kd
23

Kd
31 Kd

32 0

⎤⎦ , (10)

and [
Ld

Γ0

]
=

⎡⎣ Ld
11 Ld

21 Ld
31

Ld
12 Ld

22 Ld
32

Ld
13 Ld

23 Ld
33

⎤⎦ , (11)

where d = m, e (to denote magnetic or electric potential). The complex matrices in Eqs. (9) and (10)
are defined

Kd
11 = [∂x∂yVd(xi − yj)] , Kd

12 =
[
∂2

yVd(xi − yj) − ∂zUd(xi − yj)
]
, Kd

13 = [∂yWd(xi − yj)] ,

Kd
21 =

[
∂zUd(xi − yj) − ∂2

xVd(xi − yj)
]
, Kd

22 = [−∂x∂yVd(xi − yj)] , Kd
23 = [−∂xWd(xi − yj)] ,

Kd
31 = [−∂yUd(xi − yj)] , Kd

32 = [−∂xUd(xi − yj)] ,
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and

Ld
11 =

[− (
∂2

y + ∂2
z

)
Ud(xi − yj) + ∂2

x∂yVd(xi − yj)
]
, Ld

12 = [∂x∂yUd(xi − yj) + ∂x∂y∂zVd(xi − yj)] ,

Ld
13 = [∂x∂zWd(xi − yj)] , Ld

21 = [∂x∂yUd(xi − yj) + ∂x∂y∂zVd(xi − yj)] ,

Ld
22 =

[− (
∂2

x + ∂2
z

)
Ud(xi − yj) + ∂2

y∂zVd(xi − yj)
]
, Ld

23 = [∂y∂zWd(xi − yj)] ,

Ld
31 =

[
∂x∂zUd(xi − yj)−

(
∂3

x − ∂x∂2
y

)
Vd(xi − yj)

]
, Ld

32 =
[
∂y∂zUd(xi−yj)−

(
∂2

x∂y+∂3
y

)
Vd(xi−yj)

]
Ld

33 =
[− (

∂2
x + ∂2

y

)
Wd(xi − yj)

]
,

where xi ∈ Γ0, yj ∈ Γs and the components Ud, Vd, Wd are given in Appendices A, B and C.
Then we obtain the following matrix system as a result from the electric dipoles representation

1
iωγ

[Le
Γ0

]e = E, −[Ke
Γ0

]e = H, (12)

the magnetic dipoles representation in Eq. (9)

[Km
Γ0

]m = E,
1

iωμ
[Lm

Γ0
]m = H, (13)

and the combined approach [
Km

Γ0
− 1

iωμ
Le

Γ0

] [
m
e

]
= E,[

1
iωγ

Lm
Γ0

Ke
Γ0

] [
m
e

]
= H,

(14)

Once the amplitudes and directions of the dipole sources are recovered, the fields at any arbitrary
surface Γa ⊂ G+ can be computed by constructing the appropriate forward projections KΓa, LΓa and
applying them to the dipole coefficients. What is remarkable in this sense is that from 2-D measurements
we are able to obtain a 3-D volumetric model of the radiation pattern in the near and far-field regions
if we can faithfully recover the dipole coefficients.

2.2. Numerical Regularization

For the experimental problem, the exact electric E or magnetic H fields are perturbed by measurement
errors. We denote the measured fields as Ẽ, H̃. If the elements of the perturbation e = Ẽ − E or
e = H̃−H are Gaussian (unbiased and uncorrelated) with covariance matrix σ2

0I, then E(‖e‖2
2) = 3Mσ2

0 ,
where ‖ · ‖2 is the 2-norm. It is well known [11] that any matrix equation in (12), (13) or system in (14)
is ill-posed, i.e., the errors in Ẽ or H̃ will be amplified when conventional matrix systems solvers (like
Gaussian elimination) are used to obtain the coefficient vector, and in most of the cases the recovery
will be useless. For that reason special regularization methods are used to find the solution of these
linear systems.

Consider the solution of the generic ill-posed linear matrix system

[A]y = P̃. (15)

Here [A], y, P̃ represent the ill-posed matrix, the solution of the linear system and the measurement
vector (electric field measurements Ẽ or magnetic field measurements H̃) of (12), Eq. (13) or (14). Let
M ×N be the dimension of the matrix [A]. Then y, P̃ are column vectors of N , M entries respectively.
For (12) and (13), M = 3M and N = 3Ns. For Eq. (14), M = 3M and N = 6Ns. To stabilize the
ill-posedness of the matrix [A] will be to alternatively solve

min
y

{
‖y‖2 : x minimizes

∥∥∥[A]y − P̃
∥∥∥

2

}
(16)

which is a well-defined problem whose unique solution is given by the generalized inverse [A]†.
Unfortunately this approach does not address the ill-conditioning of [A] and tends to over-fit the noisy



100 Valdivia, Williams, and Alqadah

data. To prevent over-fitting of the data we need to add additional constraints on the solution space;
in other words we need to employ some form of regularization. The classical Tikhonov regularization
approach injects the prior knowledge that an physical solution should not have an unbounded (or very
large) norm. This constraint can be mathematically stated as

min
y

{∥∥∥[A]y − P̃
∥∥∥

2
+ λ ‖y‖2

}
(17)

where λ is the regularization parameter. There are well known methods to choose the regularization
parameter λ which require the explicit computation of the Singular Value Decomposition (SVD), which
can be a computationally expensive decomposition and should be avoided when the dimensions of [A]
are considerably big. Iterative regularization should be used instead, since these methods access the
matrix [A] only via matrix-vector multiplication with [A] and [A]H . In this work we will be interested in
the application of Krylov subspace iterative regularization methods like least squares QR (LSQR) [15].

LSQR produces a sequence of iteration vectors y(l), l = 1, 2, 3, . . . that approaches the optimal
regularization (solution with minimal relative error) after a few iterations. If the iteration is not stopped,
the solution y(l) amplifies the noisy data P̃. This phenomenon is known as “semi-convergence” [16].
There are a wealth of works [17] that address the analysis of the semi-convergence phenomena, but
only a few papers that consider stopping rules that approximate the optimal regularization. From
these works we can mention a few stopping rules like the method suggested by Hanke-Rauss [18] and
the well-known L-curve analysis [19]. The main reason that we have few works dedicated to stopping
rules for Krylov subspace iterative regularization is that a reliable stopping rule will require the use of
additional information about the problem that is being solved. Under this requirement, the authors
have proposed a successful stopping rule [20] for the acoustic problem that can be easily adapted to the
current problem.

3. NUMERICAL EXPERIMENTS

We present a series of numerical experiments in order to illustrate and validate the different concepts
behind the proposed application of the shallow water NEH based ESM technique. Through these
experiments, we assume that the electromagnetic radiation is generated by the Canadian vessel CFAV
QUEST where the surface that generates the radiation is located underwater with an approximate length
of 71 m, beam of 13 m and draft of 5.2 m (see Fig. 2(a)). Notice that this underwater surface contains
many geometric details, like the keel and turbines, that normally will be included for the accurate
numerical approximations of electromagnetic radiation [21–23]. For the purpose of this paper (and for
many ill-posed problems) it is common practice to use a simplified model that can account for the basic
mechanisms of the electromagnetic radiation. This simplification, naturally, reduces the accuracy of
the reconstruction but potentially increases its stability which is critical for inverse problems. For that
reason we define the source surface Γs (see Fig. 2(b)) as an interior surface to the radiating shiphull
surface and the shape of Γs assumes that there are no sources from the keel or turbines. In addition,
as shown in Fig. 2(c), the surface Γs is decomposed into 828 points and 1414 triangles. The triangles
forming the surface Γs have an the average diameter length of 1 m and the approximate draft is 4.2 m.
This definition of Γs satisfies the parameters recommended in [12]. Fig. 2(d) shows the measurements
surface Γ0 which consist of 379 measurement positions for Tri-axial magnetometers aligned on a planar
grid located at the sea bottom (area covered = 36m × 94 m). The positioning of the sensors and ship-
hull surface Γ shown in Fig. 3 models the sensor positioning of the Earth’s Field Simulator (EFS) at
Borgstedt/Schirnau, Germany [3].

The shallow water electromagnetic quantities at the EFS are given in Table 1 and we use these
parameters to generate numerical data with added random noise using a line of dipoles sources located
at the plane z = −2. This simulation generates 3 magnetic holograms that represent the 3 field
components at Γ0 that are used to reconstruct Hr (3 components of the magnetic field) and Er (3
components of the electric field) on the reconstruction surface Γr. The surface Γr is a planar surface
located at z = −5.3 m with an uniform distribution of points that create a 37 × 95 array over the x-y
plane (area covered = 36m×94 m). The spacing between sensors in Γr is about 1 m, so that is the reason
we require the spacing in Γs to be approximately 1m and the draft of Γs to be 4.2 m (approximately
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1m away from Γr). As studied in more detail in [12], these conditions will guarantee that the ESM
approach produce stable numerical representations of the electromagnetic radiation problem.

Table 1. Abbreviated subscript notation.

ε (F/m) μ (NA−2) σ (S/m)
air ε0 ≈ 8.85 × 10−12 μ0 = 4π × 10−12 0

water 80ε0 μ0 0.64
sediment 8ε0 μ0 0.2

Our objective for these experiments are two fold: first to investigate the global accuracy of
reconstructed back-projected fields from the proposed NEH methodology. To asses this in a meaningful
way, we utilize the relative error for the electric field at Γr

REE =
‖Eexact −Er‖2

‖Eexact‖2

, (18)

and a similar formula was used for the magnetic field relative error which we denote as REH. The second
objective for these experiments was to determine whether the proposed NEH methodology is able to
resolve the position of the dipole sources. To visualize this in a clear and concise manner, we utilize the
Poynting vector (average power per unit area) at Γr, i.e.,

�P =
1
2

{
�E × �H∗

}
.

(a) (b)

(c) (d)

Figure 2. Setup for numerical ESM back-projections experiments. (a) Underwater shiphull of the
Canadian vessel CFAV QUEST, (b) spatial setup of the numerical experiment. Planar array is assumed
to lay over the sea bottom and the reconstruction is performed over a plane that coincides to the vessel
draft, (c) Γs the respective source surface, and (d) Γ0 the measurement array that consists of 379
measurement positions for tri-axial magnetometers.
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Figure 3. Earth Field Simulator (EFS) at Borgstedt/Schirnau in Germany. Distribution of 379 Tri-
axial magnetic sensors aligned on a grid below the vessel (area covered = 39m×94 m) and corresponding
ship position.

The real part of �P is called the active intensity and provides the power radiated out of the surface Γr.
The imaginary part is called the reactive intensity.

The simulated data is produced by a line of either magnetic or electric equally spaced dipoles and
we are interested in the frequency band from 1 to 1000 Hz. At frequencies above 1 kHz the attenuation in
water overrides the practicality of this imaging approach. The dipoles are considered to be point dipoles
located at z(l)

s = (15+5(l−1), 0,−2), l = 1, . . . , 9, so that the equations of the fields generated are given
by (A4) and (A5). Each dipole uses the orientation (1, 1, 1)/

√
3 and we alternate the sign of each dipole

to increase the complexity of the field, i.e., the dipole amplitudes look like +,−,+,−,+,−,+,−,+.
Fig. 4 displays the “phase shifted” image of the magnetic field generated by the dipoles. What we
denote as phase shift for the magnetic fields, means that we determine the point (x0, y0) over the 3
components with maximum absolute value. The corresponding phase angle θ0 of the point (x0, y0) is
utilized to visualize the real part of the magnetic phase shifted field, i.e., Re{(Hx,Hy,Hz)e−iθ0}. We
prefer to display data in this way instead of real or imaginary parts, since from our experience physical
phenomena are better illustrated this way.

Spatially random noise is added to the electric holograms with signal to noise ratios (SNR) of 40
or 20 dB, using the standard definition of the L2 norm of the noiseless field divided by the standard
deviation of the added random noise. 40 dB corresponds to the common setup of a fixed facility like the
EFS, where we encounter a controlled experiment. 20 dB corresponds to a fairly noisy experiment and
we feel provides a realistic, if not pessimistic, in-situ level that one might encounter underwater. We
reconstruct the field at two water depths: 9.5 m and 16 m. The first depth corresponds to the depth
encounter in the setup of the EFS and the second depth is the common depth of the shallow water
ranges. We reconstruct the holograms using the ESM methodology described in Section 2.1 combined
with the LSQR regularization (described in Section 2.2). When the ESM methodology utilizes the
shallow water sources (formulas in (A4) and (A5)) we denote the methodology as ESMSS and when we
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Figure 4. Phase shifted image of the 3 holograms that correspond to the numerically generated
cartesian components of the magnetic field at 1Hz over the planar surface Γ0. (a) Data for magnetic
dipoles and (b) data for electric dipoles.

utilize infinite medium sources formula (4) we denote as ESMIS.

3.1. Electric Dipoles

In Fig. 5 we compare the relative errors that results from the use of ESMIS and ESMSS for electric
dipoles (in both ESM approaches, we utilize the electric dipole system (12) with LSQR using the
optimal iteration). Figs. 5(a), (b) show the reconstruction error respectively for the ESMIS and ESMSS
methodology for the water depth of 9.5 m. Notice that the ESMSS produces consistently smaller errors
than the ESMIS methodology. The ESMIS doesn’t seem to be affected by the different SNR levels,
while the ESMSS can change about 10% for both REH and REE. Similarly, Figs. 5(c), (d) show the
reconstruction error respectively for the ESMIS and ESMSS methodology for the water depth of 16 m.
As for Fig. 5(a), here in Fig. 5(c) we observe that ESMIS produces higher errors, but the errors are
slightly affected by the different SNR levels. Fig. 5(d) shows that the ESMSS can change about 20%
for both REH and REE.

The next figure, Fig. 6 plots the real part of the Poynting vector at Γr. For this electric dipole
source case we show the exact Poynting vector field image on Fig. 6(a), the ESMSS reconstructed field
images from a water depth of 9.5 m on Fig. 6(b) and 16 m on Fig. 6(c). Each cartesian field image title
shows the respective relative error. The 9 electric dipoles are clearly resolved (separation of 5 m) from
the reconstructed image at a water depth of 9.5, while at 16 m the dipoles cannot be resolved. This
result is quite interesting as it shows an impressive resolution given the fact that the effective wavelength
at 1Hz is over 1400 m in seawater. This result agrees with the results in [9], where it was found that the
resolution depends upon the standoff distance and the SNR, but not on the wavelength (or skin depth)
in the medium.
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(a) (b)

(c) (d)

Figure 5. Relative error results for the ESM reconstruction for the electric dipole data for a frequency
range between 1–1000 Hz and 40 and 20 SNR. (a) ESMIS with a measurement distance of 9.4 m, (b)
ESMSS with a measurement distance of 9.4 m, (c) ESMIS with a measurement distance of 15.9 m, and
(d) ESMSS with a measurement distance of 15.9 m.
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Figure 6. Images of the cartesian components of the real part of the Poynting vector at 1 Hz over the
plane Γr. The title of each component shows the relative error between the reconstructed component of
the Poynting vector and exact. (a) Exact Poynting vector, reconstructed ESMSS Poynting vector using
a distance of (b) 9.4 m, and (c) 15.9 m.
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(a) (b)

(c) (d)

Figure 7. Relative error results for the ESM reconstruction for the Magnetic dipole data for a frequency
range between 1–1000 Hz and 40 and 20 SNR. (a) ESMIS with a measurement distance of 9.4 m, (b)
ESMSS with a measurement distance of 9.4 m, (c) ESMIS with a measurement distance of 15.9 m, and
(d) ESMSS with a measurement distance of 15.9 m.

3.2. Magnetic Dipoles

With the same parameters used for the electric dipole above, we investigate the reconstruction of
magnetic dipole sources. In Fig. 7 we compare the relative errors that results from the use of ESMIS
and ESMSS for magnetic dipoles (in both ESM approaches, we utilize the magnetic dipole system (13)
with LSQR using the optimal iteration). Figs. 7(a), (b) show the reconstruction error respectively for
the ESMIS and ESMSS methodology for a water depth of 9.5 m. As we observe, ESMSS produces
errors of about 60% smaller for REH and 20% smaller for REE than the ESMIS methodology. Similarly
Figs. 7(c), (d) show that ESMSS produces smaller errors than ESMIS for the depth of 16 m and this
error is of approximately 60% for REH and up to 20% for REE. As found in the previous section ESMSS
is more sensitive than ESMIS for the increase of SNR, specially for the reconstructions of depth 16 m.
Similarly the ESMSS errors are consistently smaller than ESMIS for the magnetic dipole data, as we
found for the electric dipole data.

The results for the reconstruction of the real part of the Poynting vector components, for comparison
with Fig. 6, are shown in the Fig. 8. As can be seen in Fig. 7, the relative errors for the ESMSS
reconstructions of the magnetic dipole data are similar to the electric dipole data. This can be explained
by the reciprocity relation. However, the phase shifts to arrive at the maximum field amplitude between
the electric and magnetic fields differ by nearly 90 degrees. This implies that a highly reactive Poynting
vector will arise for the magnetic dipole sources. This is unlike the electric dipole case in which the
fields were almost either in phase or 180 degrees apart implying a non-reactive Poynting vector. These
conclusions were discussed in [9].



106 Valdivia, Williams, and Alqadah

As we now suspect, computing the real part of the Poynting vector for the magnetic source
reconstructions shown in Fig. 8 produces a completely different result in comparison with the electric
dipole array result in Fig. 6. First looking at the exact fields in Fig. 8(a), we see that unlike the electric
dipole array, the components of the intensity vector for the magnetic dipole array are both positive
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and negative indicating strong circulation of the power flux vector. The reconstructed field for a water
depth of 9.5 m is shown in Fig. 8(b) and for 16 m is shown Fig. 8(c). As indicated in the titles, the
errors are very large for the three reconstructed components of the Poynting vector compared with the
exact result. Surprisingly, the error is largely due to the enormous difference in the amplitudes between
the actual and the reconstructed fields.

Plotting the reactive Poynting vector is also very useful at source localization. The reactive energy
introduced into the medium is revealed in the plot of the Poynting vector shown in Fig. 9. Organized
as Fig. 8, Fig. 9(a) shows the cartesian component of the exact imaginary part of the Poynting vector
and Figs. 9(b), (c) show the ESMSS reconstructions from water depths of 9.5 m and 16 m respectively.
The blue color indicates a negative imaginary part, corresponding to an inductive field (negative due
to the use of the time convention eiωt, instead of the circuit theory convention of e−jωt). The errors are
indicated on the titles and can be seen to range from 40% to 60%. These results indicate that for the
magnetic source imaging of the reactive Poynting vector is successful.

3.3. Combination of Magnetic and Electric Dipoles

With the same parameters used for the magnetic and electric dipole data from the previous subsections,
we investigate the reconstruction using the combined potential approach. In Fig. 10 we compare the
relative errors that results from the use of ESMSS for the combined dipoles (we utilize the combined
dipole system (14) with LSQR using the optimal iteration). Figs. 10(a), (c) show the reconstruction

(a) (b)

(c) (d)

Figure 10. Relative error results for the ESM reconstruction for a frequency range between 1–1000 Hz
and 40 and 20 SNR, using the hybrid system. ESMSS reconstructions for magnetic dipole data (a) with
a measurement distance of 9.4 m, (c) with a measurement distance of 15.9 m, and for electric dipole
data in (b) with a measurement distance of 15.9 m, and (d) with a measurement distance of 15.9 m.
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error for the ESMSS methodology of the magnetic dipole data respectively for a water depth of 9.5 m and
16 m. As we observe, the REH and REE are similar to the results given in Figs. 7(b), (d). Figs. 10(b),
(d) show the reconstruction error for the ESMSS methodology of the electric dipole data respectively
for a water depth of 9.5 m and 16 m. Here we observe that the REH and REE at a water depth of
9.5 m are greater than Fig. 5(b), and in particular this result is more dramatic at for a water depth of
16 m in Fig. 5(d). In Section 3.1, we reconstruct magnetic dipole data using the ESM magnetic dipole
system, but if we use the ESM electric dipole system instead we will see a considerable increase in both
REH and REE. A similar problem can be encounter if we use the ESM magnetic dipole system for the
electric dipole data. In conclusion, the combined dipole reconstruction will contain bigger errors than
the use of the specialized ESM magnetic dipole system or electric dipole system for the correct physical
data, but when we do not have this knowledge, the use of the ESM combined dipole approach will be
a feasible alternative.

4. PHYSICAL EXPERIMENTS

As part of the multi-national collaborative signature management trial, known as RIMPASSE 2011, a
series of underwater electromagnetic measurements were performed using the Canadian vessel CFAV
QUEST. Many of the performed measurements were performed over magnetic ranges distributed over
different parts of the world, but in particular for this work we will use the measurements performed
at the magnetic Earth Field Simulator (EFS) at Borgstedt/Schirnau in Germany [3] (see Fig. 3). The
EFS was designed to simulate any magnetic condition that naval vessels may face worldwide and to
generate magnetic conditions to obtain proper settings for the degaussing system. Magnetic fields inside
the simulator are generated with 14 coils in longitudinal and 3 coils each in the transversal and vertical
direction. The EFS contains Tri-axial magnetometers aligned on two planar grids below the vessel (area
covered = 36m × 94 m). Each level contains 379 sensors, where the first level of sensors are located at
the sea bottom and the second level is located 4m below (the position of each level of Tri-axial magnetic
was described in Section 3 and Fig. 2). For the purpose of the physical electromagnetic experiments we
only use the sensors located at the sea bottom.

Built in 1969, CFAV QUEST has a relatively simple degaussing (DG) system by present standards
as shown in Figs. 10(a), (b). The system includes just 5 coils which are powered by two separate
supplies. The M supply is a Sorenson SGI 10 kW (240 V/40 A) and it powers the series combination of
the MM, MF and MQ coils as shown in Fig. 11(a). The I supply is 5 kW Sorenson SGI (200 V/25 A)
and it powers the series combination of the FI and QI coils as shown in Fig. 11(b). The FI-QI coils are
wound in opposite directions to create an upward field at the FI coil and a downward field at the QI
coil, which creates longitudinal magnetic field effect beneath ship. Figs. 11(c), (d) show the paths in
the x-y plane used with the AC coil model formulas in Eqs. (D1) and (D2).

For all reconstructions of the experimental data we assume that the measurements are located at
z = −8.96 m and the resultant water depth is 9.06 m. We use the ESMSS reconstruction methodology
with the combined dipole matrix system (14) and the regularization procedure described in Section 2.1.
For the first experiment we reconstruct the magnetic field from the resultant measurements from the
MM coil excited at 1Hz AC current of 5 Amperes (EFS run 1504). Fig. 12 shows the reconstructions
of the electromagnetic components at three different x-y planes located at z = −8.96, z = −7 and
z = −5.3. Fig. 11(d) shows the phase shifted image of the Hz measurement located at the plane
z = −8.96. Fig. 12(c) shows the phase shifted image of Hz, Ex and Ey at the measurement plane.
Fig. 12(b) shows the phase shifted image of Hz, Ex and Ey at z = −7, and Fig. 12(a) shows the same
components at z = −5.3. The later plane coincides with the vessel draft. Notice how this reconstruction
shows the effective localization of the source and the increasing magnitude of the fields (specially with
Hz) as the reconstruction plane approaches the vessel draft. Notice that each image title shows the field
component magnitude in dB levels.

For the second experiment we compare the reconstruction the electromagnetic field from the
resultant measurements from both the MM and FI-QI coil excited over an 1Hz AC current at 5 Amperes
(respectively EFS run 1504 and 1526) with the corresponding AC coil model shown in Appendix D. We
use the curve path shown in Fig. 11(c) with the 1 Hz AC model for the MM coil with I = 10 A using (D1).
Similarly Fig. 11(d) shows the paths used for the 1 Hz AC model of the FI-QI coil. The comparisons
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Figure 11. Degausing system at CFAV QUEST vessel. (a) The M supply powers the series combination
of the MM, MF and MQ coils, (b) the I supply powers the series combination of the FI and QI coils.
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Figure 12. ESM back-projections for MM coil excited with 1 Hz AC current at 5 Amperes. Images
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z = −8.96, (d) measurement of the Hz component.

are made at the plane z = −5.3. Fig. 13(a) shows the cartesian components of the reactive Poynting
vector for the MM AC coil model and Fig. 13(b) the corresponding components for the FI-QI AC coil
model. Figs. 14(a), (b) show the ESM reconstructed reactive Poynting vector respectively for the MM
and FI-QI coil. Notice that simple AC model described in Appendix D describes the main behavior
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Figure 13. Images of the cartesian components of the imaginary part of the Poynting vector that
results from a AC magnetic coil model. (a) MM coil excited at 1 Hz, and (b) FI-QI coil excited at 1 Hz.
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of the ESM reconstructions from the Degaussing coils. Specially the reactive part of Pz localizes the
position of the MM coil and of the FI-QI coil. This describes the ESM reconstructions from the EFS
measurements. Similarly the reactive part of Px, Py produces respectively a longitudinal and athwarship
dipole behavior, and this can be observed in the ESM reconstruction for the Py component.

5. FINAL REMARKS

In this work we present an electromagnetic field back-projection technique designed for a shallow water
medium. This method is based on the ESM explicit shallow water dipole representation that increases
the quality of the reconstruction in comparison to the use of infinite medium dipole representation.

The presented numerical and physical experiments indicate a number of important implications
concerning electromagnetic field back-projection techniques. The first implication is related to
the nature of the source problem. As encountered in previous publications for underwater
reconstructions [13], the nature of the dipole source (electric or magnetic) is crucial to the accuracy
of the back-projection. This explains the relevance of the numerical experiments in Section 3.3 for
the combined dipole system representation that avoids the knowledge of the source nature of the
radiating phenomena. The second implication concerns the super-resolution capability of the proposed
holographic electromagnetic back-projection. We have visually demonstrated that electric dipoles
separated by 5m at 1 Hz from measurements 9 m apart can be resolved using the active intensity
of the Poynting vector and similar results were found for magnetic dipoles using the reactive intensity.
On the other hand, we encountered issues resolving the sources when the measurements were 16 m away
from the reconstruction planar surface.

There is good potential for future investigation of the presented work. We mentioned the
incorporation of sparse regularization methodologies to improve the source reconstruction. Also, the
results of this work can be incorporated for the analysis of ship’s radiation in magnetic ranges.
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APPENDIX A. HERTZ VECTOR REPRESENTATION

Given a magnetic potential �Πm we can represent a magnetic dipole located at y⎧⎪⎨⎪⎩
�E(x) = ∇×

{
�Πm(�m,x − y)

}
�H(x) =

1
iωμ

∇×∇×
{

�Πm(�m,x − y)
} (A1)

where �m = (mx,my,mz) is the magnetic moment. Similarly, given the electric potential �Πe we represent
the electric dipole located at y⎧⎪⎨⎪⎩

�H(x) = −∇×
{

�Πe(�e,x − y)
}

�E(x) =
1

iωγ
∇×∇×

{
�Πe(�e,x− y)

} (A2)

where �e = (ex, ey, ez) is the electric moment.
The magnetic potential can be represented as a sum of three potentials �Πv

m, �Πha
m , �Πhl

m where

�Πv
m(x) = (0, 0,Wm(x)) , �Πha

m (x) = (Um(x), 0, ∂xVm(x)) , �Πhl
m(x) = (0, Um(x), ∂yVm(x)) (A3)

then
�Πm(�m,x) = mx

�Πha
m (x) + my

�Πhl
m(x) + mz

�Πv
m(x)

= (mxUm(x),myUm(x),mzWm(x) + mx∂xVm(x) + my∂yVm(x)) . (A4)



112 Valdivia, Williams, and Alqadah

Similarly we have the representation for the electric dipole
�Πe(�e,x) = ex

�Πha
e (x) + ey

�Πhl
e (x) + ez

�Πv
e(x)

= (exUe(x), eyUe(x), ezWe(x) + ex∂xVe(x) + ey∂yVe(x)) . (A5)

APPENDIX B. REPRESENTATION FORMULAS

The scalar quantities for the Hertz potential are represented over cylindrical coordinates (ρ, z) using
the transform Sk, that denotes the Sommerfeld Integral Transform [Chapter 6] [24]

Sk {f, ρ, z} :=
1
4π

∫ ∞

0

λ

λk
f(λ, k)e−λk |z|J0(λρ)dλ, (B1)

where J0 is the cylindrical Bessel function of order 0 and λk =
√

λ2 − k2 (the real part is positive).
We use the polar expression for the fundamental solution of the Helmholtz equation

Φk(ρ, z, h) =
eik

√
ρ2+z2

4π
√

ρ2 + z2
(B2)

to the define the components of the potentials in (A4) and (A5). Since for our problem we assume that
the source is underwater (0 ≥ −h ≥ −L), then we have the vertical components expression

Wm(ρ, z) :=

⎧⎪⎨⎪⎩
2γ1Sk1 {φ1, ρ, z} , z > 0,
Φk2(ρ, z,−h) − Sk2 {φ2, ρ, z + h} + Sk2 {φ3, ρ, z + L} , 0 ≤ z ≤ −L,

2γ3Sk3 {φ4, ρ, z + L} , −L ≤ z.

(B3)

We(ρ, z) :=

⎧⎪⎨⎪⎩
2μ2Sk1 {ϕ1, ρ, z} , z > 0,
Φk2(ρ, z,−h) − Sk2 {ϕ2, ρ, z + h} + Sk2 {ϕ3, ρ, z + L} , 0 ≤ z ≤ −L,

2μ2Sk3 {ϕ3, ρ, z + L} , −L ≤ z.

(B4)

and the horizontal components

Um(ρ, z) := We(ρ, z)

Vm(ρ, z) :=

⎧⎪⎨⎪⎩
2Sk1 {g1, ρ, z + h} , z > 0,
2Sk2 {g2, ρ, z} + 2Sk2 {g3, ρ, z + L} , 0 ≤ z ≤ −L,

2Sk3 {g4, ρ, z + L} , −L ≤ z.

(B5)

Ue(ρ, z) :=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
2γ2

μ2

μ1
Sk1 {φ1, ρ, z} , z > 0,

Φk2(ρ, z,−h) − Sk2 {φ2, ρ, z + h} + Sk2 {φ3, ρ, z + L} , 0 ≤ z ≤ −L,

2γ2
μ3

μ2
Sk3 {φ4, ρ, z + L} ,−L ≤ z.

Ve(ρ, z) :=

⎧⎪⎨⎪⎩
2Sk1 {g5, ρ, z + h} , z > 0,
2Sk2 {g6, ρ, z} + 2Sk2 {g7, ρ, z + L} , 0 ≤ z ≤ −L,

2Sk3 {g8, ρ, z + L} , −L ≤ z.

(B6)

For the explicit expression of the functions φi, ϕi, i = 1, . . . , 4, we refer to [25], but since we were
unable to obtain a reference for the explicit expressions of gi, i = 1, . . . , 8, we include the formulas

g2(λ) = λk2

(γ2μ2 − γ1μ1)C
γ
2,L−hAμ

2eλk2
L − (γ3μ3 − γ2μ2)D

γ
1,hBμ

1(
γ2λk1C

γ
2,L + γ1λk2D

γ
2,L

)(
μ2λk1C

μ
2,L + μ1λk2D

μ
2,L

)
g3(λ) = λk2

(γ2μ2 − γ1μ1)C
γ
2,L−hBμ

2 + (γ3μ3 − γ2μ2)D
γ
1,hAμ

1eλk2
L(

γ2λk1C
γ
2,L + γ1λk2D

γ
2,L

)(
μ2λk1C

μ
2,L + μ1λk2D

μ
2,L

)
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g6(λ) = λk2

(γ2μ2 − γ1μ1)C
μ
2,L−hAγ

2eλk2
L − (γ3μ3 − γ2μ2)D

μ
1,hBγ

1(
γ2λk1C

γ
2,L + γ1λk2D

γ
2,L

)(
μ2λk1C

μ
2,L + μ1λk2D

μ
2,L

)
g7(λ) = λk2

(γ2μ2 − γ1μ1)C
μ
2,L−hBγ

2 + (γ3μ3 − γ2μ2)D
μ
1,hAγ

1eλk2
L(

γ2λk1C
γ
2,L + γ1λk2D

γ
2,L

)(
μ2λk1C

μ
2,L + μ1λk2D

μ
2,L

)
where we use the notation for the superscript γ

Aγ
i = γi+1λki

+ γiλki+1
, Bγ

i = γi+1λki
− γiλki+1

Cγ
i,L = Aγ

i eλk2
L + Bγ

i e−λk2
L, Dγ

i,L = Aγ
i eλk2

L − Bγ
i e−λk2

L

and the same relations apply for the superscript μ.

APPENDIX C. EXPONENTIAL APPROXIMATIONS

If the function φ is represented as a sum of exponential functions

φi(λ) ≈
N∑

l=1

a
(i)
l e−λkb

(i)
l , i = 1, . . . , 8, (C1)

then notice if z > 0 we have

Sk {φi(λ), ρ, z} =
1
4π

∫ ∞

0
J0(λρ)

λ

λk
e−λk |z|f(λ, λk)dλ

≈
N∑

l=1

a
(i)
l

∫ ∞

0
J0(λρ)

λ

λk
e−λk(z+bl)dλ

=
N∑

l=1

a
(i)
l Φk(ρ, z,−b

(i)
l ), (C2)

and for z < 0

Sk {φi(λ), ρ, z + h} =
N∑

l=1

a
(i)
l Φk(ρ, z, b

(i)
l ), (C3)

Then we have the vertical components representation for 0 ≤ z ≤ −L

Wm(ρ, z) := Φk2(ρ, z,−h) +
8∑

j=1

w
(1)
j Φk2(ρ, z, s

(1)
j )

We(ρ, z) := Φk2(ρ, z,−h) +
3∑

j=1

w
(2)
j Φk2(ρ, z, s

(2)
j )

(C4)

and the horizontal components
Um(ρ, z) := We(ρ, z)

Vm(ρ, z) :=
4∑

j=1

w
(3)
j Φk2(ρ, z, s

(3)
j )

Ue(ρ, z) := Wm(ρ, z)

Ve(ρ, z) :=
4∑

j=1

w
(4)
j Φk2

(
ρ, z, s

(4)
j

)
(C5)

Finally in Table C1 and Table C2, we include the source coefficients with z-axis position z = −2
for 3 different frequencies. The water depth is L = 9.5 m, and the electromagnetic parameters for the
EFS shallow water conditions are given in Table 1. Notice that these coefficients are used to generate
the dipole data used in Section 3.2 for the numerical experiments.
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Table C1. Complex image positioning and coefficient values for Wm and We components.

frequency (Hz) w(1) s(1) w(2) s(2)

1

−0.0001i 7.18 + 0.04i −0.99 − 0.0001i 2
−0.0006i 22.81 + 0.21i −0.14 − 0.0006i −13.84 − 0.01i
−0.0041i 59.45 + 0.78i 0.15 − 0.0030i −39.03 + 0.67i

2.82 − 1.13i 300.53 + 47.09i
−0.0001i −22.93 − 0.05i
−0.0005i −39.60 − 0.24i
−0.0029i −76.94 − 0.83i

1.23 − 0.47i −302.98 − 47.98i

10

−0.0006i 7.05 + 0.12i −0.99 − 0.0004 1.99
0.0004 − 0.006i 22.20 + 0.61i −0.143 + 0.0005i −13.78 + 0.03i
0.0028 − 0.0376i 57.45 + 2.13i 0.153 − 0.015i −40.87 + 1.39i

4.06 − 5.23i 235.56 + 38.71i
−0.0005i −22.78 − 0.16i

0.0003 − 0.0045i −38.97 − 0.70i
0.0021 − 0.027i −74.90 − 2.31i

1.83 − 2.06i −238.26 − 38.75i

100

0.0006 − 0.0049i 6.65 + 0.28i −0.99 − 0.0006i 1.99
0.0067 − 0.0477i 20.48 + 1.33i −0.14 − 0.008i −13.84 + 0.27i
0.0146 − 0.3108i 52.17 + 3.99i 0.17 − 0.078i −44.07 + 0.74i
−27.27 − 31.34i 186.77 + 27.27i
0.0006 − 0.0043i −22.34 − 0.38i
0.0055 − 0.0373i −37.00 − 1.62i
0.0118 − 0.2245i −69.43 − 4.41i
−6.68 − 13.48i −189.5 − 27.9i

Table C2. Complex image positioning and coefficient values for Vm and Ve components.

frequency (Hz) w(3) s(3) w(4) s(4)

1

25.3 + 0.58i 10.17 + 0.14i 17.1 + 64.3i 13.04 + 0.53i
1282 + 885.68i 155.96 + 23.77i 3207 + 3488i 168.70 + 24i

−0.0368i −58.92 − 0.73i −33.3 + 4.1i −31.98 + 0.03i
588.6 + 240.95i −348.90 − 70.98i −2155.9 − 1028.3i −187.64 − 23.56i

10

23.42 + 1.45i 9.61 + 0.36i 55.7 + 16.6i 12.37 + 0.81i
664.84 + 253.18i 121.71 + 20.86i 1777.6 + 1083.9i 134.61 + 21.52i

0.06 − 0.32i −57.20 − 2.12i −29.1 + 2.5i −31.31 − 0.25i
446.12 − 7.72i −249.12 − 61.43i −1032 − 178.3i −153.55 − 20.96

100

19.19 + 2.53i 8.29 + 0.66i 44.1 + 14.04i 10.9 + 1.18i
500.4 − 106.7i 92.30 + 15.96i 1570.9 − 218.5i 104.73 + 18.26i
0.92 − 1.85i −52.02 − 4.89i −22.8 + 0.79i −29.81 − 0.67i

482.05 − 447.71i −169.46 − 44.76i −693.3 − 123.64i −123.64 − 17.75i
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APPENDIX D. AC COIL MODELING

The model of the resultant electromagnetic field from a coil from an AC current is given by

∇× �E − iωμ �H = 0, ∇× �H + iωγ �E = �J,

where �J is the current density given in A/m2. The field can be represented using the current potential
�A as

�H = −∇× �A, �E =
1

iωγ
∇∇ · �A − iμω �A, (D1)

where
�A(x) =

∫
R3

Φ(x,y) �J(y)dy

and Φ is defined in Section 2.
For the modeling of an AC coil we have that

�A(x) = I

∮
C

Φ(x,y)�a(y)dl(y), (D2)

where C is a curve that describes the coil, I the coil current and �a a unit vector in the direction of the
current flow.

REFERENCES

1. Holmes, J. J., Modeling a Ship’s Ferromagnetic Signatures. Synthesis Lectures on Computational
Electromagnetics, 1st Edition, 16, Morgan & Claypool, 2007.

2. Holmes, J. J., Exploitation of A Ship’s Magnetic Field Signatures. Synthesis Lectures on
Computational Electromagnetics, 1st edition, 9, Morgan & Claypool, 2006.

3. Bradley Nelson, J., T. C. Richards, M. Bisan, C. Greene, R. Dewey, F. Ludwar, K. Hofener,
J. Rhebergen, and F. de Wolf, “Rimpasse 2011 electromagnetic trials quick-look report,” Technical
Report, Defence R&D Canada-Atlantic, November 2011.

4. Stratton, J. A. and L. J. Chu, “Diffraction theory of electromagnetic waves,” Physical Review,
Vol. 56, 99–107, 1939.

5. Stratton, J. A., Electromagnetic Theory, IEEE Press Series on Electromagnetic Wave Theory, John
Wiley and Sons, New Jersey, 1941.

6. Guo, Y., H. W. Ko, and D. M. White, “3-D localization of buried objects by nearfield
electromagnetic holography,” Geophysics, Vol. 63, No. 3, 880–889, 1998.

7. Harms, P., J. Maloney, M. P. Kesler, E. J. Kuster, and G. S. Smith, “A system for unobstrusive
measurement of surface currents,” IEEE Transactions on Antennas and Propagation, Vol. 49, No. 2,
174–184, 2001.

8. Morgan, M. A., “Electromagnetic holography on cylindrical surfaces using k-space transforma-
tions,” Progress In Electromagnetics Research, Vol. 42, 303–337, 2003.

9. Williams, E. G. and N. Valdivia, “Near-field electromagnetic holography in conductive media,”
IEEE Transactions on Antennas and Propagation, Vol. 58, No. 4, 1181–1192, 2010.

10. Guler, M. G. and E. B. Joy, “High resolution spherical microwave holography,” IEEE Transactions
on Antennas and Propagation, Vol. 43, No. 5, 464–472, 1995.

11. Valdivia, N. and E. G. Williams, “The reconstruction of surface tangential components of
the electromagnetic field from near-field measurements,” Inverse Problems, Vol. 23, 785–798,
March 2007.

12. Valdivia, N. and E. G. Williams, “Study of the comparison of the methods of equivalent sources and
boundary element methods for near-field acoustic holography,” Journal of the Acoustical Society of
America, Vol. 120, No. 6, 3694–3705, December 2006.



116 Valdivia, Williams, and Alqadah

13. Alqadah, H. F., N. P. Valdivia, and E. G. Williams, “A super-resolving near-field electromagnetic
holographic method,” IEEE Transactions on Antennas and Propagation, Vol. 62, No. 7, 3679–3692,
2014.

14. Colton, D. and R. Kress, Inverse Acoustic and Electromagnetic Scattering Theory, Vol. 93 of
Applied Mathematical Sciences, 3rd edition, Springer, Berlin, 2013.

15. Paige, C. C. and M. A. Saunders, “LSQR: An algorithm for sparse linear equations and sparse
least squares,” ACM Transactions on Mathematical Software, Vol. 8, No. 1, 43–71, 1982.

16. Hanke, M., Conjugate Gradient Methods for Ill-posed Problems, Kluwer Academic Publishers,
Boston, 1995.

17. Hansen, P. C., Rank-deficient and Discrete Ill-posed Problems, SIAM, Philadelphia, PA, 1998.
18. Hanke, M. and T. Raus, “A general heuristic for choosing the regularization parameter in ill-posed

problems,” SIAM Journal on Scientific Computing, Vol. 17, No. 4, 956–972, 1996.
19. Hansen, P. C. and D. P. O’Leary, “The use of the L-curve in the regularization of discrete ill-posed

problems,” SIAM Journal on Scientific Computation, Vol. 14, No. 6, 341–373, 1993.
20. Valdivia, N., E. G. Williams, P. C. Herdic, and B. Houston, “Surface decomposition method for

near-field acoustic holography,” Journal of the Acoustical Society of America, Vol. 132, No. 1,
186–196, 2012.

21. Le Dorze, F., J. P. Bongiraud, J. L. Coulomb, P. Labie, and X. Brunotte, “Modeling of degaussing
coils effects in ships by the method of reduced scalar potential jump,” IEEE Transactions on
Magnetics, Vol. 34, No. 5, 2477–2480, September 1998.

22. Nguyen, T. S., J. M. Guichon, O. Chadebec, P. Labie, and J. L. Coulomb, “Ship magnetic anomaly
computation with integral equation and fast multipole method,” IEEE Transactions on Magnetics,
Vol. 47, No. 5, 1414–1417, May 2011.

23. Nguyen, T. T., G. Meunier, J. M. Guichon, and T. S. Nguyen, “An integral formulation for the
computation of 3-D eddy current using facet elements,” IEEE Transactions on Magnetics, Vol. 50,
No. 2, 7013504–7013508, 2014.

24. Sommerfeld, A., Partial Differential Equations in Physics, Volume VI of Lectures on Theoretical
Physics, Academic Press, 1949.

25. Arutaki, A. and J. Chiba, “Communication in a three-layered conducting media with a vertical
magnetic dipole,” IEEE Transactions on Antennas and Propagation, Vol. 28, No. 4, 551–556, 1980.


