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Fast and Stable Integration Method for the Aperture Admittance of
an Open-Ended Coaxial Probe Terminated into Low-Loss Dielectrics
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Abstract—The utilization of an open-ended coaxial probe for characterization of dielectric properties
or quantitative nondestructive detection of defects in materials firstly requires evaluating the aperture
admittance. For the case that the probe is terminated into low-loss dielectrics backed by a conducting
sheet, however, the admittance expression encounters poles in the vicinity of the path of integration,
resulting in low convergence rate or even overflow in numerical quadrature. In this study, locations
and properties of the singularities of the integral formulation for generally lossy, low-loss, and lossless
dielectric slabs backed by a perfectly conducting sheet are investigated above all. Subsequently, making
use of the contour integral technique, a fast and stable integration method is put forward to calculate the
admittance integral formulation. Finally, numerical experiments are conducted to justify the validity
and efficiency of the proposed integration method for low-loss dielectric cases by comparison with the
traditional integration method as well as commercial FEM software.

1. INTRODUCTION

Open-ended coaxial probes have been extensively used for characterization of dielectric properties and
nondestructive detection of defects in materials, owing to their capability of broadband measurement
at microwave frequencies along with relatively high spatial resolution [1–5]. Information about the
materials under test (MUT), such as complex dielectric properties, thickness of thin dielectric slabs,
and disbond in layered media, can be extracted from the reflected microwaves inside the coax [3–8].
These features have made coaxial probes as useful tools for quantitative testing and nondestructive
evaluation in microwave engineering, biomedicine, agriculture, geotechnology, etc. [9–15].

In the procedure of quantitative evaluation, one should at first determine the aperture admittance
of an open-ended coaxial probe terminated into different MUTs. Up to now, several techniques have
been developed for this purpose, such as analytical analysis, semi-analytical full-wave method, and
numerical simulation [16–29]. For the analytical method, it is conventionally assumed a probe flange of
an infinite area and only fundamental TEM mode propagation inside the coax [16–18]. Moreover, most
of the models studied in these methods pertain to an aperture terminated into an infinite dielectric
half-space [8, 30–33]. A more general analytical formulation for the cases of layered media backed by a
conducting sheet or an infinite half-space was derived by Bakhtiari et al. [18, 34]. However, the aperture
expression confronts poles on the real axis along the path of integration when coping with lossless
MUTs [18, 34]. Even for low-loss dielectrics, some of the poles in complex domain are quite close to the
positive real axis, leading to the possibility of low convergence rate or overflow error in the integration
procedure by traditional integration methods (TIMs) (e.g., Gauss-Legendre method, the midpoint rule,
etc.) [18, 38]. One promising approach to resolve this issue is to apply the contour integral technique
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(CIT) to calculate the aperture admittance. To the authors’ knowledge, however, most of the studies
reported in the literature were focused on the cases of generally lossy materials [17–19, 34–37]. In
such situations, one can arrive at accurate results for the aperture admittance very efficiently by any
traditional numerical integration routine.

In this paper, locations and properties of the singularities of the formulation for the aperture
admittance terminated into a conducting sheet backed single-layered dielectric of general loss, low
loss, and non-loss are investigated. Based on CIT, a fast and stable numerical method which carries
out integration in complex domain is proposed for efficient calculation of the aperture admittance.
Numerical simulations are conducted to demonstrate CIT is more stable and efficient when coping with
low-loss dielectrics in comparison with TIM as well as commercial FEM software.

2. CIT FOR THE APERTURE ADMITTANCE

Figure 1 depicts the geometry of an open-end coaxial probe with a flange of an infinite diameter
terminated into a dielectric slab backed by a perfect conductor. The filling dielectric inside the coax is
assumed to have a relative complex permittivity of εrc. The outer radius of the inner conductor and
inner radius of the outer conductor for the coax are denoted by a and b, respectively. A nonmagnetic
dielectric slab with relative permittivity εr1 = ε′r1−j ·ε′′r1 and thickness d1 backed by a conducting sheet
is treated as the MUT with infinitely transverse dimensions. Taking into account only the fundamental
TEM mode, Bakhtiari et al. [18] derived the terminating admittance normalized with respect to the
characteristic admittance of the coax as

ys =
1 − R

1 + R
=

∫ +∞

0
g (ζ) · f (ζ) dζ (1)

in which

g (ζ) =
εr1√

εrc ln (b/a)
· [J0(k0ζb) − J0(k0ζa)]2

ζ
(2)

where R refers to the complex reflection coefficient, J0 the first-kind Bessel function of order zero, and k0

the wave number in free space. In view of a conducting sheet backed single-layered MUT, the function
f(ζ) in Eq. (1) is in terms of d1, k0, and εr1, and takes the form

f (ζ) =
1√

εr1 − ζ2

1

j · tan
(
k0d1

√
εr1 − ζ2

) (3)

Conventionally, the dielectric slab in Fig. 1 is replaced with a reference liquid of general loss with
well-known dielectric properties, such that the MUT serves as a known load for calibration of the
coaxial probe. Under such circumstances, it is quite straightforward and easy to calculate the aperture
admittance through Eq. (1) by TIMs, because there are no poles in the vicinity of the positive real axis

Figure 1. Open-ended coaxial probe terminated into a dielectric slab backed by a perfect conductor.
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along the path of integration. As for lossless materials, the path of integration will encounter poles as
indicated by Eq. (3). However, most studies were emphasized on MUTs of general loss, and low-loss or
lossless dielectrics were not well considered [18, 37]. In this work, we will investigate the locations and
properties of the isolated singularities of Eq. (1) for the cases of both ε′′r1 > 0 and ε′′r1 = 0, and then put
forward a fast and stable integration method based on CIT.

In order to find out the poles, the integrant g(ζ) · f(ζ) in Eq. (1) should be investigated. For g(ζ)
as expressed by Eq. (2), there exists a singularity (ζ = 0) on the real axis along the path of integration.
However, the limit of g(ζ) as ζ approaches zero is found to be zero, proving that ζ = 0 is merely a
removable singularity [39]. During the numerical integration procedure, the removable singularity ζ = 0
can be ignored. As for f(ζ) in Eq. (3), one can achieve the locations of the isolated singularities in
complex domain by solving the equations

√
εr1 − ζ2 = 0 and tan(k0d1

√
εr1 − ζ2) = 0, resulting in

ζs
n =

√
ε′r1 − [(nπ)/(k0d1)]

2 − j · ε′′r1 (4)

where n = 0, 1, 2, 3 . . .. In consideration of ε′′r1 > 0 (loss tangent tan δ = ε′′r1/ε′r1 > 0), all of the
singularities ζs

n are in the second and fourth quadrants, and none of them falls on the path of integration
for Eq. (1).

For the case of low-loss MUTs presented in Fig. 1, the imaginary part of relative permittivity ε′′r1
and the loss tangent tan δ will approach zero. In such a situation, the singularities ζs

n tend to be a real
number

√
ε′r1 − [(nπ)/(k0d1)]2. Considering the dielectric constant should be greater than 1.0, namely

ε′r1 ≥ 1.0, there must exist an integer N satisfying

(N · π)/(k0d1) ≤
√

ε′r1 < [(N + 1) · π]/(k0d1) (5)

One can observe that there are (N + 1) singularities near the real axis along the path of integration,
and they are close to these points right on the real axis:

An =
√

ε′r1 − [(nπ)/(k0d1)]
2 (6)

where n = 0, 1, 2, . . . , N . Further inspection of the above equation shows that all of these points An

on the real axis fall within the interval [0, A0]. In other words, all of the poles are located nearby a
segment of the integration path in Eq. (1). If the MUT in Fig. 1 is lossless (ε′′r1 = 0), the singularities ζs

n

subsequently can be directly derived from Eq. (4) as ζs
n =

√
ε′r1 − [(nπ)/(k0d1)]2, and they are located

exactly on the real axis.
The straightforward approach to calculate the terminating admittance expressed by Eq. (1) is to

carry out quadrature directly along the positive real axis by TIMs. Since the integral interval ranges
from zero to infinite, the integral should be divided into two portions at an interior breakpoint at the
first step. For TIM, the integral interval of Eq. (1) can be divided into two portions C1 : [0, 2A0] and
C2 : [2A0,+∞] as presented in Fig. 2(a). Subsequently, application of transformation of variables [38]
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Figure 2. (a) Paths of integration by TIM. (b) Paths of integration by CIT.
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on the aperture admittance ys renders an integral with an integral interval of [0, 1], as expressed by

ys =
∫ 2A0

0
Ys (ζ) dζ +

∫ +∞

2A0

Ys (ζ) dζ =
∫ 1

0

[
2A0 · Ys (2A0 · t) + 2A0

/
t2 · Ys (2A0/t)

]
dt (7)

in which Ys(ζ) = g(ζ) · f(ζ). To obtain the numerical results of Eq. (7), one can employ any TIM such
as the midpoint rule to readily carry out the integration [38].

As mentioned above, however, there exist (N + 1) isolated singularities that are close to the path
C1 : [0, 2A0] if the MUT is of low loss. The integral may be difficult to converge to a value with
relatively high accuracy when utilizing a TIM to solve it by iteration. Moreover, TIMs are not available
to do the integration for the cases of lossless dielectrics due to the existence of singularities on the
integrating path. In this study, a fast and stable numerical method based on CIT is proposed to
execute the integration for Eq. (1). As described above, the singularities of Eq. (1) fall either within
the second and fourth quadrants for the cases of MUTs with loss, or on the real axis for those without
loss. This means none of the singularities is located in the first quadrant, indicating that the integrant
of Eq. (1) is smooth and analytical in this region. In accordance with Cauchy’s theorem [39], the
integral along the path C1 : [0, 2A0] is equivalent to the one along any path lying within the first
quadrant with a starting point at the origin and an ending point at 2A0 on the real axis. For the
sake of flexibility and simplicity, the integration path in the first quadrant, as presented in Fig. 2(b),
can be assumed a semi-ellipse with a center at A0 and a semi-axis of αA0 parallel to the imaginary
axis. The integration path in the first quadrant is denoted by Cz1 as depicted in Fig. 2(b), and is
expressed as Cz1 : z = A0 + A0 · (cos θ + jα sin θ) with θ ∈ [π, 0]. Since Bessel functions exhibit a
divergence behavior as the imaginary part of the argument increases, it is better to choose α < 1 to
avoid numerical errors [40]. By using variable substitution, the integral along the path C1 can be derived
as∫

C1

Ys (ζ) dζ =
∫

Cz1

Ys (z) dz = −
∫ π

0
Ys [z(θ)] dz (θ) =

∫ 1

0
πA0 [sin (π · t) − jα cos (π · t)] · Ys [z(π · t)] dt

(8)
Because no singularity lies in the vicinity of the integration path of C2, the integral along this path

can be operated the same as presented in Eq. (7). Consequently, with the aid of CIT the integral of
Eq. (1) finally takes the form

ys =
∫

Cz1

Ys (z) dz +
∫

C2

Ys (ζ) dζ (9)

It should be noted that Eq. (9) is applicable to any cases of ε′′r1 ≥ 0, no matter the MUT is of general
loss, low loss or non-loss.

3. RESULTS AND DISCUSSION

In this section, a series of numerical simulations will be presented to examine the efficiency and stability
of the proposed CIT compared to TIM as well as commercial FEM software. In all the computation
cases, the filling material inside the coax depicted in Fig. 1 is assumed to be Teflon with complex
dielectric constant εrc = 2.08 · (1 − 0.0006j). Dimensions for the coax are chosen as a = 0.52 mm and
b = 1.2 mm. Note that the feasible operating frequencies of the coax ranges from DC to 40 GHz.

To begin with, the stability and efficiency of CIT is compared to TIM as the loss tangent of the
MUT is varied. In all the simulations, the midpoint rule is adopted as the TIM to calculate the aperture
admittance expression of Eq. (7). In this case, the dielectric of the MUT in Fig. 1 is assumed to have
a dielectric constant of ε′r1 = 2.08 with a thickness of 2.0 mm. The operating frequency is arbitrarily
chosen as 10 GHz in the numerical experiments. For both methods, the number of sample points for
calculating the integrals of Eq. (7) and Eq. (9) at the first iteration step is chosen as 100, and that of
the next ith iteration step would be 100 · 2i−1. A computational accuracy of 0.0001 is selected as well.
Table 1 presents the effect of MUT’s loss tangent on the efficiency and stability of the two integration
methods as the loss tangent is varied between 10−7 and 101. One may observe from the calculation
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results that, for generally lossy cases (tan δ > 10−2), the iteration steps of CIT and TIM are nearly the
same, indicating the two methods yield similar computational efficiency. It can also be seen that the
iteration steps are less than 8 for both methods. Clearly, the calculations for MUTs of general loss are
easy to converge by either CIT or TIM. As a decrease in the MUT’s loss tangent from 10−2 to 10−5

occurs, however, the iteration steps for TIM substantially increase. As for CIT, those values maintain a
constant of 7 as the loss tangent changes from 10−2 to 10−7, proving that CIT is less sensitive to low-loss
dielectrics and has higher numerical efficiency compared to TIM. Further inspection of the results in
the last two rows of Table 1 displays that TIM renders incorrect results as tan δ descends to less than
10−6. The problem arises from the existence of the poles in the vicinity of the real axis and resulting
overflow error encountered in the computational procedure. As a result, one can infer that the proposed
CIT in this study is more stable and efficient than TIM for calculating the coax aperture admittance
involving low-loss MUTs.

Table 1. Comparison of the two integration methods for generally lossy and lossless materials.

tan δ
Integration by Eq. (7) (TIM) Integration by Eq. (9) (CIT)

Iteration Steps Aperture Admittance Iteration Steps Aperture Admittance
101 7 1.1279 + 0.0450j 7 1.1279 + 0.0450j
100 7 0.1245 − 0.1161j 7 0.1245 − 0.1161j
10−1 7 0.0145 − 0.1216j 7 0.0145 − 0.1216j
10−2 7 0.0034 − 0.1220j 7 0.0034 − 0.1220j
10−3 8 0.0023 − 0.1221j 7 0.0023 − 0.1221j
10−4 11 0.0022 − 0.1221j 7 0.0022 − 0.1221j
10−5 14 0.0021 − 0.1221j 7 0.0021 − 0.1221j
10−6 7 0.0000 − 0.1221j 7 0.0021 − 0.1221j
10−7 7 0.0000 − 0.1221j 7 0.0021 − 0.1221j

In order to further examine the properties of the proposed CIT in this study, the convergence
rate of the two methods at different accuracies is investigated as well. In this case, the calculation
parameters depicted in Fig. 1 are chosen as ε′r1 = 2.08, tan δ = 10−4, d1 = 2.0 mm and an operating
frequency of 10 GHz. It should be noted that the loss tangent of low-loss materials is typically in the
order of 10−4, such as those of quartz and Teflon [41]. The simulation results are shown in Table 2, in
which the influence of truncation error from 10−4 to 10−7 on the convergence rate of the two methods is
displayed. One can see that a decrease in truncation error from 10−4 to 10−7 leads to an increase in the
iteration steps for both TIM and CIT. However, CIT requires less iteration steps and computational
cost as compared to TIM for the same accuracy. It can be concluded that CIT inherently possesses
higher computational efficiency in contrast to traditional integration routine.

Table 2. Efficiency of the two integration methods with diverse computational accuracies.

Truncation Error Iteration Steps by Eq. (7) (TIM) Iteration Steps by Eq. (9) (CIT)
10−4 11 7
10−5 11 8
10−6 12 11
10−7 15 15

In the meanwhile, reflection coefficient of three distinct low-loss materials versus frequency in the
range of 1GHz to 40 GHz is calculated by TIM, CIT, as well as the commercial software HFSS. In
the numerical simulations, air, Teflon, and quartz are chosen as the low-loss dielectrics with complex
dielectric constant 1.0 · (1 − 0.0001j), 2.08 · (1 − 0.0006j), and 3.82 · (1 − 0.0004j), respectively. Each
dielectric is assumed to have a similar thickness of 1.0 mm. The simulation results for the three low-loss
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MUTs are shown in Fig. 3. Firstly, comparison between TIM and CIT indicates that they render the
same calculated values in the whole frequency range for different dielectrics. This is attributed to the
same theoretical formulation of Eq. (1) in conjunction with Eqs. (2) and (3) is employed in both TIM
and CIT, although the former one executes integration along the real axis whereas the later one does
so in complex domain. Calculations by HFSS are also performed to verify the numerical results of the
theoretical formulation by TIM and CIT. One may observe from Fig. 3 that the reflection coefficient
obtained by TIM and CIT is consistent with that by the FEM software. However, higher frequencies
and greater dielectric constant values result in relatively greater difference between the theoretical
and FEM results. Nevertheless, the simulations verify the validity and applicability of the proposed
CIT for the purpose of broadband measurement. In order to investigate the efficiency, the amount of
computational time for the three approaches is counted. In the computations, the reflection coefficient
of each dielectric case is calculated in the 1 GHz to 40 GHz range with an interval of 0.5 GHz, namely 79
frequency samples are simulated for each low-loss MUT. The statistic results are displayed in Table 3.
It is evident that for all dielectric cases, CIT is the least time-consuming method while FEM software
requires maximum computational time. One may see that time cost by TIM is approximately three
times larger than that by CIT. For FEM software, a dramatically ascending trend in time consumption
is also observed as the dielectric constant raises. In contrast, TIM and CIT exhibit stable time cost for
different dielectrics, owing to the fact that they both pertain to analytical methods. As a summary, all
the simulation results demonstrate that the proposed CIT in this study has higher efficiency than both
TIM and FEM software.

(a) (b)

(c)

Figure 3. Reflection coefficient amplitude and phase of different dielectrics calculated by TIM, CIT,
and HFSS at frequencies ranging from 1 GHz to 40 GHz: (a) air, (b) Teflon, (c) quartz.
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Table 3. Computational time cost by TIM, CIT, and HFSS.

Dielectric Time Cost by TIM Time Cost by CIT Time Cost by HFSS
Air 40 s 10 s 1554 s

Teflon 18 s 8 s 7057 s
Quartz 24 s 7 s 9568 s

4. CONCLUSION

The formulation for aperture admittance of an open-ended coaxial probe terminated into low-loss
dielectrics backed by a perfectly conducting sheet encounters poles close to the path of integration,
leading to low convergence rate or even overflow error in numerical calculations. In this paper, locations
and properties of the singularities of the integral for the aperture admittance involving generally lossy,
low-loss, and lossless dielectrics are studied. The contour integral method by which the integral is done in
complex domain is proposed to calculate the aperture admittance. Numerical calculations demonstrate
that the proposed integral method, as compared to traditional integration routines and commercial
FEM software, is more stable and efficient for low-loss dielectric cases. The numerical method proposed
here can be further used for utilizing an open-ended coaxial probe to fast quantitatively evaluate low-loss
dielectrics.
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