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Efficient Bayesian Multifidelity Approach in Metamodeling
of an Electromagnetic Simulator Response

Tarek Bdour1, 2, *, Christophe Guiffaut1, and Alain Reineix1

Abstract—Several computer codes with varying accuracy from rigorous full-wave methods (high-
fidelity models) to less accurate Transmission Line (TL) approaches (low-fidelity model) have been
proposed to solve EMC problems of interference between parasitic waves and wired communication
systems. For solving engineering tasks, with a limited computational budget, we need to build surrogate
models of high-fidelity (HF) computer codes. However, one of their main limitations is their expensive
computational time. Rather than using only the computationally costly HF simulations, we apply
another type of surrogate models, called Multifidelity (MF) metamodel which efficiently combines,
within a Bayesian framework, high and low-fidelity (LF) evaluations to speed up the surrogate model
building. The numerical results of combination of an expensive EMC simulator and a cheap TL code
to solve a plane wave illumination problem, show that, compared to Kriging, a reliable Bayesian MF
metamodel of equivalent or higher predictivity can be obtained within less simulation time.

1. INTRODUCTION

The analysis of the coupling between high-frequency electromagnetic fields and conducting wires has
become a primary issue in EMC domain, due to various sources of electromagnetic field that can impact
the devices connected by power or signal transmission lines.

The problem of electromagnetic field-to-line coupling can be solved by using different approaches
that can be classified into two main categories with respect to their complexity: the classical transmission
line (TL) theory [1] and full-wave methods.

The full-wave approach based on Method of Moments (MoM) and implemented in Numerical
Electromagnetic Code (NEC-2) [2] is one of the well adapted approaches to solve the field-to-line problem
in both low and high frequencies. However, when electrically long or high lines are involved, NEC-2
simulator becomes very time consuming, which penalizes the numerical cost to build a surrogate model
with a reasonable accuracy. Multifidelity surrogate (MFS) models have been developed to compensate
for inadequate expensive high-fidelity data with cheap low-fidelity data by modeling the connection
between them.

The last two decades have seen a major increase in publications on multifidelity methods for
computational design. These methods use two types of models for the evaluation of designs: the high-
fidelity model (HF) provides the reference in terms of accuracy and the low-fidelity (LF) models produce
less accurate response values, but at significantly lower expense.

Space Mapping (SM), initiated in [3], is a physical multifidelity method based on a linear
transformation (mapping) that makes a coarse model behave as a fine model. In electromagnetics,
Koziel and Bandler [4] have used the SM technique to model microwave devices.
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Relying on the success of the geostatistical technique called kriging [5, 12], the first MFS model
based on Gaussian Process (GP) [6] was introduced by Kennedy and O’Hagan [7]. The direct Co-
Kriging, introduced by Forrester et al. [8], provides a deterministic formulation for fitting the GP
parameters with a non-informative prior. This Co-Kriging approach has been applied in [9] to design
metamaterial circuits for optimization purposes. However, the variance of the surrogate response could
be underestimated [7].

The Bayesian Co-Kriging model, developed in [10], allows the incorporation of prior information on
GP hyperparameters and is based on joint estimation between these hyperparameters. It is important
to highlight that this method benefits from good computational characteristics of Bayesian approaches
such as having information about the uncertainties of the estimation parameters (through their prior
and updated distributions). In [13], the authors have applied a multifidelity Bayesian support vector
regression to surrogate the input of planar antenna. To the authors’ knowledge, this work is the first
contribution that applies a Co-Kriging based Bayesian multifidelity framework to electromagnetics.

In this article, the direct and Bayesian approaches of MF Co-Kriging will be used to build surrogates
models for the EMC computer code, and their numerical performances will also be compared and
discussed.

This paper is organized as follows. Section 2 describes the derivation of the transmission line model
(LF model). Section 3 gives a brief theoretical background of the multifidelity modeling approach. In
Section 4, the adopted multifidelity method is applied to a typical EMC problem, and its efficiency is
compared to other metamodeling techniques. Some concluding remarks are provided in Section 5.

2. LOW-FIDELITY MODEL

The aim of this section is to derive a simple Transmission Line model (low-fidelity model) to investigate
the radiated susceptibility of a perfect electric conductor (PEC) cable illuminated by an external
electromagnetic field.

The geometry of the studied EMC problem is illustrated in Fig. 1. A wire of length L and radius
a is located over an infinite and perfectly conducting ground at height h in the presence of a transverse
electric (TE) plane wave of amplitude E0 and incidence angle θ. The terminal resistances between the
wire and the ground are R1 and R2.
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Figure 1. Geometry of a PEC line illuminated by a TE plane wave.

Using Baum-Liu-Tesche (BLT) equation [1], the induced currents at the line terminals I1 and I2

can be written in a matrix form as:[
I1

I2

]
=

1
Zc

[
1 − ρ1 0

0 1 − ρ2

] [−ρ1 eγL

eγL −ρ2

]−1 [
S1

S2

]
(1)

where S1 and S2 are the voltage excitation source terms; γ = jk is the propagation constant at
the frequency of interest; Zc is the characteristic impedance of the line; ρ1 and ρ2 are the reflection
coefficients at resistances R1 and R2, respectively.
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When the height of the cable above ground h is no longer electrically small, the field variation
along the vertical risers should be taken into account. Then, the excited lumped sources into both
vertical risers have to be incorporated in BLT equation. To simplify this latter, the three transmission
lines (cable and two risers) are supposed to have the same characteristic impedance Zc, so the wave
propagation can be considered in a single line of effective length L+2h. The resulting voltage excitation
sources are given by [11]:[

S1

S2

]
=

E0

2

(
ejkzh − e−jkzh

)
×

⎡
⎣ (

e(γ−jkx)L − 1
) (

A
γ−jkx

− B
jkz

)
eγL

(
e−(γ+jkx)L − 1

) (
A

(γ+jkx) + B
jkz

)
⎤
⎦ (2)

with A = − cos θ, B = sin θ, kx = k sin θ and kz = −k cos θ.

3. MULTIFIDELITY METAMODELING: BAYESIAN CO-KRIGING

In this section, the theoretical background of Kriging [12] and Bayesian Co-Kriging [10] approaches
are described. Only the main properties and equations are provided. For further details, the reader is
referred to the mentioned references.

Let us suppose that we want to surrogate an expensive computer code output zs(x) with
x = [x1, . . . , xd]T a vector of d design variables. We assume also that low fidelity versions of this
code (zl(x))l=1,...,s−1 are available. These codes are sorted by order of fidelity from the less accurate
z1(x) to the most accurate zs−1(x). Our prior belief is that all code levels zl(x) can be modeled as
realizations of Gaussian processes (Zl(x))l=1,...,s.

For each level l = 1, . . . , s, let define the experimental design Dl = {x1, . . . , xnl} with nl samples,
such that Ds ⊆ Ds−1 ⊆ . . . ⊆ D1 i.e., ns ≤ ns−1 . . . ≤ n1), the vectors of true and approximated
responses, respectively zl = [zl(x1), . . . , zl(xnl)]T and Zl = [Zl(x1), . . . , Zl(xnl)]T and the iteratively-
formed sets z(l) = (z1, . . . , zl) and Z(l) = (Z1, . . . ,Zl).

3.1. Kriging

In this section, we model each computer code zl(x) as a draw from an independent Gaussian process
(GP) distribution [12].

Given the experimental design of nl samples Dl and its corresponding response vector zl, the
Kriging model Zl(x) approximates the true function zl(x) as

Zl(x) ∼ GP
(
μl

nl
(x), Sl(x)

)
= μl

nl
(x) + Sl(x) (3)

where the deterministic function μl
nl

(x) = fl(x)Tβl is the mean value of the Gaussian process; T stands
for the transpose; βl = [βl

0, . . . , β
l
pl

]T is a vector of pl regression parameters; fT
l (x) = [f l

1(x), . . . , f l
pl

(x)]
is a vector of pl basis functions; the stochastic model Sl(x), corresponding to the deviation from μl

nl
at

x, is defined as the Gaussian random variable N (0, σ2
l ), with variance σ2

l and a stationary covariance
function Cl(x, x′) = Corr[Sl(x), Sl(x′)] = σ2

l Rl(x, x′,ϕl). The autocorrelation function Rl describes the
correlation between two samples x and x′ of the d-dimensional input space, and depends on the vector
of hyperparameters ϕl = [ϕl

1, . . . , ϕ
l
d]

T. It is defined as

Rl(x, x′, ϕl) =
d∏

k=1

rl
k

(
xk, x

′
k, ϕ

l
k

)
(4)

where rl
k(xk, x

′
k, ϕ

l
k) is a 1D correlation function along the k-th component xk of sample x.

One of the popular choices for the correlation function is the Gaussian function, related to the
weighed distance between the two corresponding points x and x′ as

rl
k

(
xk, x

′
k, ϕ

l
k

)
= exp

[
−ϕl

k

∣∣xk − x′
k

∣∣2] (
ϕl

k ≥ 0
)

(5)

where the hyperparameter ϕl
k is the weight for the distance along each design variable xk(k = 1, . . . , d).
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Based on the best linear unbiased prediction (BLUP) [12], the Kriging predicted response at an
unobserved point x∗ is a Gaussian variable Zl(x∗) with mean μl

nl
(x∗) and variance ŝ2

l (x
∗), defined as

μl
nl

(x∗) = E[Zl(x∗)|zl] = fTl β̂l + rT
l Rl

−1
(
zl − Flβ̂l

)
(6)

ŝ2
l (x

∗) = V[Zl(x∗)|zl] = σ̂l
2
[
1 − rl

TRl
−1rl + ul

T
(
Fl

TRl
−1Fl

)
ul

]
(7)

where the optimal Kriging variance σ̂2
l and the generalized least square regression weights β̂l are

respectively given by:

σ̂2
l =

1
nl

(
zl − Flβ̂l

)T
R−1

l

(
zl − Flβ̂l

)
(8)

β̂l =
(
FT

l R−1
l Fl

)−1
FT

l R−1
l zl (9)

where, for i, j = 1, . . . , nl and k = 1, . . . , pl, Fl = [Fl,ik] = [f l
k(x

i)] is the design matrix; fl is a vector
whose k-th element is f l

k(x
∗); Rl = [Rl,ij] = [Rl(xi, xj , ϕ̂l)] is the correlation matrix of the experimental

design Dl; rl is a vector whose i-th element is rli = Rl(xi, x∗, ϕ̂l); the vector of optimal hyperparameters
ϕ̂l is obtained through maximum-likelihood estimation.

In summary, to build the model Zs, surrogate of the HF code zs, we start from generating a
random experimental design Ds, calculate the vector of its corresponding responses zs by applying the
computer code zs and assume an a priori spatial correlation between design variables (here a Gaussian
correlation function Rs is chosen). After algebraic operations in Eqs. (6) and (7), we can get a Kriging-
based prediction μs

ns
(x∗) on an untried point x∗, and even more we can get an idea about prediction

uncertainty at x∗ with the mean squared error ŝ2
s(x

∗). This is the key advantage of Kriging, in opposite
to other metamodels that cannot provide an inherent error measure.

3.2. Co-Kriging Framework

Instead of metamodeling the computer code zs only from its expensive HF evaluations, we manage to
combine it, within a unified Co-Kriging framework, to all of its LF s − 1 versions zl(l=1,...,s−1).

Since we have hierarchy of s responses, we can use the following autoregressive model proposed by
Kennedy and O’Hagan [7]:⎧⎨

⎩
Zl(x) = ρl−1Z

∗
l−1(x) + δl(x)

Z∗
l−1(x) ⊥ δl(x)

Z∗
l−1(x) ∼ [

Zl−1(x)|Z(l−1) = z(l−1),βl−1,ρl−1,σ2
l−1,ϕ

l−1
] (10)

where ρl−1 is the adjustment coefficient between two successive levels l and l − 1; ⊥ denotes the
independence relationship; δl(x) models the discrepancy between the level l and the adjusted level
l − 1. By convention, Z1(x) has the same distribution as δ1(x) (ρ0 = 0).

For l = 1, . . . , s, conditioning on vectors of regression parameters βl = [βT
1 , . . . ,βT

l ]T, adjustment
coefficients ρl = [ρ1, . . . , ρl]T, variances σ2

l = [σ2
1 , . . . , σ

2
l ]

T and correlation parameters ϕl =
[ϕT

1 , . . . ,ϕT
l ]T, the discrepancy function δl(x) is modeled as a Gaussian process, starting from the

vector δl(Dl) containing the values of δl(x) at the points in Dl as:

δl(x) ∼ GP (
fT
l (x)βl, σ

2
l rl

(
x, x′,ϕl

))
(11)

From the assumption of conditional independence between δl(x) and Zl−1(x), . . . , Z1(x) in Eq. (10),
we can separately estimate the Co-Kriging hyperparameters {(β1,ϕ1, σ

2
1), (β2,ρ1,ϕ2, σ

2
2), . . . , (βs,ρs−1,ϕs,

σ2
s)} to build the s-level model of interest Zs(x), surrogate of the most accurate code zs(x), given all

the HF and LF observations Z(s) = z(s). There are two main approaches to estimate the Co-Kriging
hyperparameters: Forrester’s Co-Kriging [8] that uses deterministic parameter estimation with the Max-
imum Likelihood Estimate (MLE) method and Le Gratiet’s Co-kriging [10] which is based on Bayesian
approach that integrates prior information in the parameter estimation.
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3.3. Bayesian Estimation of Co-Kriging Hyperparameters

Using Bayes theorem, the probabilities of Co-Kriging hyperparameters, at level l, are updated to
a posterior estimation given the probability distributions of their priors and the observation sets
Z(l) = z(l) [10].

Within this Bayesian framework, not only the Co-Kriging parameters are estimated with a
deterministic mean value, but also their estimation uncertainties are calculated. In the following, we
give the main formulas of posterior hyperparameter estimates using the Bayesian approach.

For all l = 1, . . . , s and thanks to the nested property Dl ⊆ Dl−1, the joint posterior Bayesian
distribution of parameters ρl−1 and βl has the following closed form:(

ρl−1

βl

)
∼ N

((
HT

l R−1
l Hl

)−1
HT

l R−1
l zl, σ2

l

(
HT

l R−1
l Hl

)−1
)

(12)

with Hl = zl−1(Dl)Fl.
For each level l = 1, . . . , s, the variance parameter σ2

l is estimated with a restricted maximum

likelihood method. Its estimate is given by σ̂2
l = (zl − Hl(

ρ̂l−1

β̂l
))T R−1

l (zl − Hl(
ρ̂l−1

β̂l
))/(nl − pl − 1)

where (
ρ̂l−1

β̂l
) is the mean estimate of ( ρl−1

βl
) in Eq. (12).

The predictive distribution Z∗
s (x∗) is not Gaussian. Nevertheless, we can obtain closed form

expressions for its mean μs
ns

(x∗) and variance ŝ2
s(x∗) (expression given in [10]).

Finally, the Bayesian Co-kriging-based prediction μs
ns

, resulting from the combination of a HF
code zs and its LF versions (zl)l=1,...,s−1, at an unobserved point x∗ is given by the following iterative
relationship for all l = 1, . . . , s:

μl
nl

(x∗) = ρ̂l−1μ
l−1
nl−1

(x∗) + μδl
(x∗) (13)

where
μδl

(x) = fT
l (x)β̂l + rT

l (x)R−1
l

(
zl − Flβ̂l − ρ̂l−1zl−1(Dl)

)
(14)

4. NUMERICAL RESULTS

In this section, a plane wave illumination example is used to demonstrate the characteristics of the Co-
Kriging multifidelity surrogate model developed in Section 3. With reference to the geometry described
in Fig. 1, a line of length L = 8 m, radius a = 0.01 m, and height above the ground h = 4 m is illuminated
by a TE polarized plane wave with amplitude E0 = 1V/m, at frequency f = 20 MHz. The terminal
loads are respectively R1 = 50Ω and R2 = 50Ω.

Despite its simplicity, this EMC problem is chosen for didactic purposes. In fact, the corresponding
high-fidelity simulations can be conducted in a reasonable amount of time in order to numerically and
graphically show the advantages of the Bayesian multifidelity technique.

Here, the output of interest is the magnitude of the induced current response I1 on the load R1. The
simulation results are obtained by the proposed analytic BLT model in Eq. (1) (LF model) and full-wave
commercial software NEC-2 (HF model). The average CPU runtime of a single NEC-2 simulation is
0.67 s on a 2.6 GHz I7 processor computer with 1GB of RAM, whereas one BLT simulation takes only
0.52 ms (one LF simulation is 1288 times faster than one HF run).

Our purpose is to build an efficient MF model M̂ (with s = 2 levels) that replaces the expensive
NEC-2 code M and gives accurate predictions for the whole input space. According to the framework
in Eq. (10), BLT and NEC-2 simulations are denoted respectively by levels 1 and 2.

Next, we assume uncertainty (due to randomness or engineering design requirements) in the plane
wave incidence angle θ and the value of the terminal resistance R1.

4.1. One-Dimensional Problem

The design variable is x = θ. The input space is defined by −85 ≤ θ ≤ 85◦. The next step is to derive
a surrogate model M̂(θ) that replaces the intensive NEC-2 model M(θ) = z2(θ) = I1(θ) using some
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HF simulations z2(θi)i=1,...,n2 and a lot of LF simulations z1(θi)i=1,...,n1 obtained by the cheapest code
(BLT equation).

The goal of this section is to compare the numerical performances of metamodels built using
Kriging [6], direct Co-Kriging [8] and Bayesian Co-Kriging [10].

To investigate the accuracy of each metamodel, the Mean Relative Square Error (MRSE) of a
separate validation dataset is chosen here as a criterion to measure the prediction ability of such

metamodels at non-observed locations. It is defined by MRSE =

√
1

Nv

Nv∑
i=1

(M(xi)−M̂(xi)
M(xi)

)
2
, where Nv is

the number of validation samples.
We choose n2 = 6 HF training points (D2) to build the Kriging metamodel of the induced current

response. It is worth noting that the relative small budget n2 = 6 is deliberately chosen since it is
challenging to any metamodel surrogating the multimodal NEC-2 response illustrated in Fig. 2. The
Kriging method is implemented using a Matlab code called DACE [6]. The interpolated Kriging curve
M̂K(θ), using Eq. (6), is illustrated in Fig. 2. The n1 = 69 LF training points (D1) are generated using
a uniform spatial step Δθ = 2.5◦. We recall here the nested property (D2 ⊂ D1) noted earlier.

To build the MFS models, the 6 HF points are combined to the 69 LF points to generate the
Bayesian Co-Kriging model M̂BCoK according to the framework in Eq. (10) and the direct Co-Kriging
model M̂DCoK according to Forrester’s method [8]. Both Co-Kriging curves are plotted in Fig. 2.

The MRSE of each metamodel is computed at Nv = 18 random test samples. The numerical
values of RMSEs are given in Table 1. The resulting relative errors are MRSEBCoK = 0.0258,
MRSEK = 0.0993 and MRSEDCoK = 1.620. This means that, with only 6 HF training points, the
Bayesian Co-Kriging captures the actual behavior of NEC-2 current response better than Forrester’s
method and significantly improves the Kriging metamodel. The difference between BCoK and DCoK
approaches can be explained by the fact that Bayesian approach takes into account the uncertainties of
its estimation hyperparameters while the Direct approach tends to underestimate them.

Table 1. RMSEs of surrogate models.

Surrogate model 1D 2D
Kriging 0.0993 0.0847

Bayesian Co-Kriging 0.0258 0.0214
Direct Co-Kriging 1.620 -

Figure 2. Metamodeling methods applied to the
one-dimensional problem M(θ) = I1(θ).
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In the next section, the Bayesian approach will be retained as the main MF metamodeling technique.

4.2. Two-Dimensional Problem

In this section, we assume an additional uncertainty in the value of the terminal resistance R1. Thus, the
design variables are x = [θ R1]T , and the design space is defined by −85 ≤ θ ≤ 85◦ and 50 ≤ R1 ≤ 500Ω.

For training input data, n2 = 20 HF points and n1 = 116 LF points were randomly selected
respecting the nested property (D2 ⊂ D1). The corresponding experimental designs D2 and D1 are
depicted in Fig. 3.

Figure 4 depicts the high-fidelity output of the induced current I1 computed by NEC-2 simulator.
As shown in Fig. 5, the Kriging of HF samples fails to accurately predict the output of interest compared
to the accurate response in Fig. 4. As shown in Table 1, the MRSE calculated at a validation set of
Nv = 100 random samples gives MRSEK = 0.0847, which shows that the 20 HF observation points
are not sufficient to build a metamodel with a good predictivity. However, the same set of accurate
observation samples, combined to the 116 low-level samples in the Bayesian Co-Kriging framework
in Eq. (10) yields a reliable MF metamodel with a good mean relative error MRSEBCoK = 0.0214.
Moreover, the goodness of fit of the obtained metamodel can be graphically checked by comparing

Figure 4. High-fidelity response surface using
NEC-2 simulations.

Figure 5. Response surface of the Kriging
metamodel using [6].

Figure 6. Response surface of the co-Kriging metamodel using [10].
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Fig. 6 to Fig. 4. Numerical experiences show that we need to add more than 6 HF samples for the
Kriging framework [6] in order to obtain the same mean error as the Co-Kriging metamodel, e.g.,
MRSEK = MRSEBCoK which costs additional runtime of 4.02 s while the overall runtime of 116 LF
simulations is only about 0.06 s (6600% runtime gain). This computational gain highlights the strength
of the proposed Co-Kriging framework [10], since it allows us to make good low-cost predictions of the
expensive NEC-2 code in a reasonable computational time by efficiently combining both expensive and
cheap computer code simulations.

5. CONCLUSION

In this paper, a methodology to speed up the solution of coupling between electromagnetic fields and
terminated lines of finite length is proposed by means of a metamodeling technique. In fact, a cost-
effective multifidelity surrogate model based on a Bayesian Co-Kriging method is built by combining
two independent high- and low-fidelity samples computed respectively by NEC-2 and BLT codes.

The results obtained so far with multifidelity metamodeling on field-to-wire coupling are
encouraging. Further tests should be performed on more complex cases where we have more than
two code levels or more than two design parameters. Also, we have only considered fixed designs of
experiments. It would be interesting to investigate sequential designs to iteratively improve the accuracy
of multifidelity metamodels.
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