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Transitional Behaviors of CQGLE Solitons across Boundaries
on a Phase Plane

Huai-Ming Chang and Jean-Fu Kiang*

Abstract—Soliton solutions of a cubic-quintic Ginzburg-Landau equation (CQGLE) are computed and
analyzed on a parametric plane, specifically across the transitional zones that separate regions associated
with different types of solitons. The transformations of behaviors in these transitional zones between
stationary and pulsating regions are characterized by the total pulse energy and its maximum value. It
is also found that the initial pulse waveform has little effect on bifurcation and the valid range of initial
amplitude.

1. INTRODUCTION

The solitons present in a mode-locked laser can be categorized into conventional and dissipative types [1].
The conventional solitons are formed via the balance of nonlinearity (mainly third-order) and dispersion
mechanisms. On the other hand, dissipative solitons involve more factors, including dispersion, gain/loss
and nonlinearities of different orders. The conventional solitons can be represented in terms of a set
of eigen-solutions, while the dissipative solitons appear to be independent of each other and prone to
instability, sometimes leading to chaos or disappearance.

Various types of dissipative solitons were found, including stationary, pulsating and chaotic types [2–
4]. A cubic-quintic (CQGLE) or its variation was used to model dissipative solitons in passively mode-
locked lasers [5–9]. An exploding soliton is an extreme example of pulsating solitons, which is usually
quasi-stable and will grow rapidly over some period [10, 11]. In [10], exploding solitons and their
spectrum were measured in a laser cavity.

Various soliton types were presented on a parametric plane [12]. For example, a bifurcation diagram
was presented to show periodic non-chaotic explosions and period-halving process [11]. A total energy
Q was defined to characterize the behaviors of these solitons. Boundaries between soliton types on
a parametric plane were observed [12], and the transitional behaviors across these boundaries were
reported, for example, the bifurcation across the boundary between a pulsating region and a chaotic
region. More details on the transitional behaviors across these boundaries will provide useful information
for better understanding these solitons.

Bifurcation phenomena have been observed and discussed [13–15]. In [13], an experiment was set
up to verify the prediction with the CQGLE. As the controlling parameters are changed continuously
on a parametric plane, the solution may transit from pulsating to period-doubling, period-quadrupling,
and eventually to chaotic type. In [15], different parametric planes were used to categorize solitons
obtained by solving the CQGLE, and boundaries dividing different types of solitons were drawn [14].

A creeping soliton with non-zero drift velocity [16] evolves from a pulsating soliton with zero drift
velocity. Sometimes, the center of soliton drifts back and forth in time as the soliton evolves along its
propagating path. A creeping soliton can bifurcate into two or more branches before turning chaotic.
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It can also break into a pulsating soliton with zero drift velocity and another creeping soliton with
non-zero drift velocity.

In this work, different types of dissipative solitons obtained by solving the CQGLE are studied.
The behaviors in the transitional zones across a boundary between two adjacent regions on a typical
parametric plane are investigated. This work is organized as follows. A brief review of the CQGLE
and the simulation setup are presented in Section 2, the transition between pulsating and no-solution
regions is presented in Section 3, the transition between stationary and pulsating regions is presented
in Section 4, and the effects of initial waveform and amplitude are presented in Section 5. Finally, some
conclusions are drawn in Section 6.

2. BRIEF REVIEW OF THEORETICAL MODEL AND SIMULATION SETUP

A cubic-quintic complex Ginzburg-Landau equation (CQGLE) was proposed to describe the normalized
electric field ψ in a passively mode-locked laser as [12]

∂ψ

∂z
= −jD

2
∂2ψ

∂t2
− j|ψ|2ψ − jν|ψ|4ψ + δψ + ξ|ψ|2ψ + τ

∂2ψ

∂t2
+ μ|ψ|4ψ (1)

where t is the normalized delay time in the frame moving with the group velocity; z is the normalized
propagation distance along the laser cavity; D denotes the cavity dispersion, with D > 0 for anomalous
dispersion and D < 0 for normal dispersion; ν is the quintic nonlinear coefficient; δ denotes linear gain
if δ > 0 and loss if δ < 0; τ is the gain-bandwidth coefficient; ξ and μ are the gain coefficients, of cubic
and quintic orders, respectively.

The normalized variables ψ, z and t in Eq. (1) are related to their actual counterparts ψ̃, z̃ and t̃,
respectively, as

ψ =
ψ̃√
P0
, z =

z̃

Ld
, t =

t̃

t0

where the time scale t0 is the full-width half-magnitude (FWHM) pulse width; Ld = t20/|β2| is the length
scale of dispersion, which is the distance that a pulse of width t0 is broadened by a factor of

√
2 due to

dispersion β2, in the absence of nonlinearity; β2 is the second-order dispersion coefficient; P0 = 1/(γLd)
is a power scale, which induces a nonlinear phase shift of 1 radian to a pulse propagating over a distance
Ld under nonlinear effects; γ is the third-order nonlinear coefficient or the Kerr coefficient. Hence, the
parameters D, ν, τ , δ, ξ and μ are related to the parameters β2, γ, γ1, g0, g1, g2 and 
 as [17]
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γ
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γ

(2)

where g0 is the linear gain/loss; g1 is the nonlinear gain/loss; g2 is the nonlinear gain/loss saturation;
γ1 is the saturation of γ; Ωg is a bandwidth filtering coefficient.

The actual gain g is inversely proportional to the input power P as g = g0/(1 + P/Psat), with Psat

the saturation power [17], which can be approximated as

g � g0

[
1 − P

Psat
+

(
P

Psat

)2
]

= g0 − g1|ψ̃|2 + g2|ψ̃|4 (3)

where g1 = g0/Psat and g2 = g0/P
2
sat. The CQGLE is an extension of the nonlinear Schrödinger equation

(NLSE), with the linear gain g0 augmented with higher-order terms, g1 and g2. In this work, the symbols
g0, g1 and g2 are normalized to become δ, ξ and μ, respectively, as shown in Eq. (2).

A split-step Fourier method (SSFM) is applied to solve Eq. (1) numerically, in which the
nonlinear terms and the linear terms are implemented in the time domain and the frequency domain,
respectively [18]. The step intervals Δz and Δt are sufficiently small to ensure convergent results.
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3. TRANSITION BETWEEN PULSATING AND NO-SOLUTION REGIONS

Figure 1(a) shows a map of soliton types on a μ-D plane [12], where a pulsating/no-solution boundary
and a stationary/pulsating boundary are marked. The input waveform is chosen as ψ(0, t) = 2 sech(t/t0),
with t0 = 0.3. Fig. 1(b) shows an enlarged map around point 2, where the soliton type varies
drastically. We will first investigate the behaviors of solitons near boundary 1 in this Section. Boundary
1 is composed of several transition zones, labeled as pulsating, two-branch bifurcation, four-branch
bifurcation and chaotic zones, progressively, as the absolute value of nonlinear gain saturation (|μ|) is
decreased from 0.001050 to 0.001002.

(a) (b)

Figure 1. (a) A map of soliton type in the μ-D plane [12], where boundary 1 divides pulsating and
no-solution regions, and boundary 2 divides stationary and pulsating regions, (b) enlarged map around
point 2, ψ(0, t) = 2 sech(t/t0) with t0 = 0.3, (ν, δ, ξ, τ) = (0.1,−0.1, 0.95, 0.125).

Define the total energy of a soliton as

Q(z) =
∫ ∞

−∞
|ψ(z, t)|2dt (4)

and local maxima and local minima of Q are denoted as QM and Qm, respectively. Fig. 2 shows the
spatial evolution of Q. Fig. 2(a) shows that the spatial variation of total energy follows a pattern after
the soliton propagates over certain distance. As shown in Fig. 2(b), the value of QM reaches 104.45
or 104.4 alternatively, displaying a two-branch bifurcation. The value of Qm also displays two-branch
bifurcation, as shown in Fig. 2(c). The change of QM is about 0.05 between alternations, while that of
Qm is only 0.0005, about two orders of magnitude smaller than that in QM .

Figure 3 shows the value of QM versus μ along line segment A marked in Fig. 1(b). A two-
branch bifurcation appears at μ = −0.001039, where QM alternates between two values. The soliton
takes a longer propagation distance to settle near this point than at other μ’s. The value of QM

versus μ along line segment B marked in Fig. 1(b) is also shown. A two-branch bifurcation appears
at μ = −0.001040, slightly smaller than that along line segment A, which implies that the boundary
shown in Fig. 1(b) is tilted. The bifurcation with D = −0.50069 (dashed curve) appears at larger |μ|
than that with D = −0.50071 (solid curve). Also, the QM value before the two-branch bifurcation
with D = −0.50069 is slightly larger than that with D = −0.50071. A smaller second-order dispersion
(|D|) leads to stronger nonlinear gain, thus a higher QM and a wider separation after bifurcation in
−0.001039 ≤ μ ≤ −0.001035.

As the value of μ is changed from −0.001035 to −0.001015, the two branches in Fig. 3 are separated
farther apart, and four-branch bifurcation appears around μ = −0.001015, as shown in Fig. 4. The range
−0.001015 ≤ μ ≤ −0.001010 is represented by the lower line segments C and D in Fig. 1(b). Before the
upper and the lower branches split, their associated QM are about 107.25 and 101.2, respectively.

Similar to Fig. 3, the difference of QM values in the two branches after bifurcation with D =
−0.50069 is larger than that with D = −0.50071. The bifurcation occurs at μ = −0.001013 with
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(a) (b)

(c)

Figure 2. (a) Spatial evolution of Q in 0 ≤ z/z0 ≤ 600, (b) enlarged plot around QM in
540 ≤ z/z0 ≤ 600 and (c) enlarged plot aroundQm in 540 ≤ z/z0 ≤ 600; μ = −0.001038, D = −0.50071,
other parameters are the same as in Fig. 1.

Figure 3. QM versus μ along line segment A in
Fig. 1(b), D = −0.50071 (———) and along line
segment B in Fig. 1(b), D = −0.50069 (− − −);
other parameters are the same as in Fig. 1.

Figure 4. QM versus μ along lower line segment
C in Fig. 1(b), ———: D = −0.50071, − − −:
D = −0.50069; other parameters are the same as
in Fig. 1.
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D = −0.50071, and occurs at μ = −0.001014 with D = −0.50069. The boundary between the two-
branch and the four-branch zones is also tilted, as shown in Fig. 1(b).

Figure 5(a) shows the values of QM versus μ along the upper line segment C in Fig. 1(b), with
D = −0.50071. The four branches split into eight branches at μ = −0.001008. At μ � −0.00100675,
bifurcation into ten branches occurs. At μ � −0.0010065, the bifurcation turns to chaotic (non-periodic).
At μ � −0.00100625, a twelve-branch bifurcation emerges from chaotic.

(a) (b)

Figure 5. (a) QM versus μ along upper line segment C in Fig. 1(b), (b) enlarged plot with
−1.007 ≤ 1, 000 × μ ≤ −1.004; D = −0.50071, other parameters are the same as in Fig. 1.

Both the ten-branch and twelve-branch states appear within a very narrow interval of μ. Fig. 5(b)
shows an enlarged plot, where splitting and merging of branches occur over a small interval of μ, which
is typical in a chaotic zone. At μ = −0.00100425, an indefinite number of branches in a chaotic zone
suddenly merge to six branches. At μ = −0.0010025, all eight branches suddenly vanish, beyond which
is the no-solution region where an initial waveform will vanish after propagating over a sufficiently long
distance.

Figure 6 shows the spatial evolution of Q in the no-solution region. The soliton propagates to
about z/z0 = 30 and monotonically decreases to zero. The boundary between the no-solution region
and the chaotic zone with D = −0.50071 and D = −0.50069 are μ = −0.0010024 and μ = −0.001027,
respectively. As a soliton enters the chaotic zone, |μ| is too small to sustain a pulsating soliton. When |μ|
is further decreased, the nonlinear gain ξ will dominate μ, breaking the gain-loss balance and suppressing
the soliton.

Figure 6. Spatial evolution of Q in the no-solution region; (D, ν, δ, ξ, μ, τ) =
(−0.5007, 0.1,−0.1, 0.95,−0.001, 0.125), initial waveform is ψ(0, t) = 2 sech(t/t0).
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4. TRANSITION BETWEEN STATIONARY AND PULSATING REGIONS

Next, consider the boundary between the pulsating and the stationary regions. Fig. 7 shows the evolution
of solitons with μ varied around point 1 marked in Fig. 1(a). Fig. 7(a) shows a pulsating soliton with

(a) (b)

(c)

Figure 7. Evolution of soliton at (a) μ = −0.003, (b) μ = −0.0035 and (c) μ = −0.004;
(D, ν, δ, ξ, τ) = (−0.5007, 0.1,−0.1, 0.95, 0.125).

Figure 8. Q versus μ with −0.004 ≤ μ ≤ −0.003 and D = −0.5007, other parameters are the same as
in Fig. 1.
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μ = −0.003, Fig. 7(c) shows a stationary soliton with μ = −0.004, and Fig. 7(b) shows a soliton with
μ = −0.0035, which indicates a gradual progress between those in Figs. 7(a) and 7(c). The pulsating
behavior is obvious with μ = −0.003, and becomes moderate as μ changes towards μ = −0.004. It is
also observed that with μ = −0.003, the amplitude at the pulse center (t = 0) undulates with z/z0 at
large swing. On the other hand, the amplitude at the pulse center with μ = −0.004 remains constant.

Figure 8 shows the Q values with D = −0.5007 and μ is changed from −0.004 to −0.003, marked
in Fig. 1(a). At μ � −0.003525, the soliton begins to transform from a stationary type (with single
Q value) to a pulsating type (with Q value varying periodically between QM and Qm). The difference
between QM and Qm increases as the magnitude of nonlinear gain saturation, |μ|, decreases. A wider
separation between QM and Qm indicates pulsation with a larger swing. Similar to the bifurcation
phenomenon discussed in the last section, it takes a longer propagation distance for a soliton to settle
when μ is closer to the bifurcation point.

5. EFFECTS OF INITIAL WAVEFORM AND AMPLITUDE

In this section, we will study the effects of the initial waveform at z = 0 and its amplitude on the
spatial evolution of solitons. For continuous-wave solutions of CQGLE, there exist a lower bound and
an upper bound of amplitude [19]. The initial waveform chosen to compute the results shown in Fig. 6 is
ψ(0, t) = 2 sech(t/t0), which vanishes after propagating over certain distance. Fig. 9 shows the solution
with the same initial waveform, but its amplitude is doubled, as ψ(0, t) = 4 sech(t/t0). It is observed
that the amplitude gradually increases along z and turns into a pulsating-like soliton. It is also found
that a lower amplitude fails to sustain a soliton. But will there be an upper bound of amplitude that
prevents a soliton from emerging?

Figure 9. Q-z plot with initial waveform ψ(0, t) = 4 sech(t/t0); (D, ν, δ, ξ, μ, τ) =
(−0.5007, 0.1,−0.1, 0.95,−0.001, 0.125).

Figure 10 shows the distribution of QM with an initial waveform ψ(0, t) = A sech(t/t0) at five
different initial amplitudes within 2 ≤ A ≤ 5. A chaotic solution is found within the range of
2.7 ≤ A ≤ 4.2, and no soliton can be sustained if A falls outside of this range.

To better understand the effects of initial amplitude on sustaining solitons, consider a few points
along a line segment in Fig. 1(a), with D = −0.6 and −0.004 ≤ μ ≤ −0.001. Fig. 11 shows the allowable
values of QM versus A, with μ = −0.001. It is found that a pulsating soliton with QM = 97.52 appears
over 1.3 ≤ A ≤ 11.9, 13.6 ≤ A ≤ 16.5, 18.9 ≤ A ≤ 20.9 and 23.9 ≤ A ≤ 25.1. Similarly, at μ = −0.002,
QM = 53.51 over 1.2 ≤ A ≤ 12.9, 14.8 ≤ A ≤ 18.3 and 21.0 ≤ A ≤ 23.7. At μ = −0.003, QM = 23.91
over 1.2 ≤ A ≤ 14, 15.8 ≤ A ≤ 20.4 and 23.1 ≤ A ≤ 27.2. Note that the value of QM is independent of
A in all the above cases with different μ’s. At μ = −0.004, a stationary soliton appears with Q = 16.85
over 1.2 ≤ A ≤ 15.2, 16.7 ≤ A ≤ 22.7 and 25.4 ≤ A ≤ 31.4. The results with different μ’s reveal the
same characteristics as those shown in Fig. 11, except the valid subranges of A and the values of QM

are different.
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Figure 10. Distribution of QM with ini-
tial waveform ψ(0, t) = A sech(t/t0) at five
different initial amplitudes; (D, ν, δ, ξ, μ, τ) =
(−0.5007, 0.1,−0.1, 0.95,−0.001, 0.125).

Figure 11. QM versus A with (D, ν, δ, ξ, μ, τ) =
(−0.6, 0.1,−0.1, 0.95,−0.001, 0.125). The shaded
areas indicate where solitons are allowed, and the
dots mark the allowable QM values within the
shaded areas.

(a) (b)

Figure 12. (a) Q versus z and (b) evolution of ψ, A = 22.7, (D, ν, δ, ξ, μ, τ) =
(−0.6, 0.1,−0.1, 0.95,−0.004, 0.125).

Figure 12 shows an interesting case with μ = −0.004 and A = 22.7. It is observed that the Q value
changes dramatically over the interval 6 ≤ z/z0 ≤ 15, and then converges to 33.71 at z/z0 > 20, which
is twice the Q value with A < 22.7. By taking a closer look at Fig. 12(b), two identical solitons emerge
at z/z0 > 15, which explains why the Q value is doubled. Similar phenomenon is also observed near the
upper bound of the higher subrange, A = 31.3. This sudden emergence of soliton indicates the system
is very unstable with this set of parameters, including the initial waveform and its amplitude.

Next, we will investigate the effects of initial amplitude on the soliton behavior as μ varies along
line segment C in Fig. 1(b), with D = −0.50071 and −0.00105 ≤ μ ≤ −0.001. The following values of μ
are chosen, μ = −0.001040 near the two-branch bifurcation point, μ = −0.001020 inside the two-branch
bifurcation zone and μ = −0.001010 inside the four-branch bifurcation zone.

Figure 13 shows the distributions of QM at these three μ values, with 2 ≤ A ≤ 5. When A is
increased to its upper bound, A = 25.4, the values of QM remain the same. The simulated results are
QM � 104.37 (the value slightly varies since the bifurcation is about to appear) at μ = −0.001040,
QM = 101.68, 106.98 (two-branch zone) at μ = −0.001020, and QM = 100.19, 107.14, 101.80, 107.89
(four-branch zone) at μ = −0.001010. The values of QM remain the same over the range 1.2 ≤ A ≤ 25.5
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Figure 13. Distributions of QM with 2 ≤ A ≤ 5, other parameters are the same as in Fig. 3. The
values of μ, from the left figure to the right, are μ = −0.001040, μ = −0.001020 and μ = −0.001010,
respectively.

(a) (b)

Figure 14. QM versus A with (a) μ = −0.001005 and (b) μ = −0.001004; (D, ν, δ, ξ, τ) =
(−0.50071, 0.1,−0.1, 0.95, 0.125). The shaded areas indicate where solitons are allowed and the dots
mark the allowable Q values, which are the same in the shaded areas.

at μ = −0.001040 and μ = −0.001020, and over the range 1.2 ≤ A ≤ 25.4 at μ = −0.001010. Note that
solitons exist only over certain subranges of A.

Figure 14 shows the values of QM versus A in a chaotic zone with μ = −0.001005 and μ =
−0.001004, respectively. At μ = −0.001005, the allowable range of A is consisted of five separate
subranges, 1.2 ≤ A ≤ 5.1, 8.5 ≤ A ≤ 10.7, 15.5 ≤ A ≤ 17, 19.7 ≤ A ≤ 21.2 and 24.6 ≤ A ≤ 25.2. The
values of QM in these five subranges are clustered within 99.1 ≤ QM ≤ 103.4 and 106.5 ≤ QM ≤ 108.4.
Similarly, at μ = −0.001004, the allowable range of A is also consisted of five subranges, 1.2 ≤ A ≤ 3.8,
9.4 ≤ A ≤ 10.4, 15.7 ≤ A ≤ 17, 19.7 ≤ A ≤ 21.2 and 24.6 ≤ A ≤ 25.2. The values of QM in these five
subranges are clustered around 98.9, 102.0, 103.9, 106.2, 107.2 and 108.5. As far as these two different
μ’s are concerned, the type of soliton and the associated Q values are not changed. Fig. 14(b) shows
that the values of QM appear the same in different subranges of initial amplitude A, which indicates
that changing A does not change the behaviors of solitons and the solitons exist only within certain
subranges of A.

Next, the effects of initial waveform are studied. A Gaussian waveform, frequently used as the
fundamental pulse in mode-locked lasers, is chosen. The initial Gaussian waveform is normalized as
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ψ(0, t) = 2 exp[−t2/(2.547t20)], having the sameQ value at z = 0 with the initial waveform of 2 sech(t/t0).
Consider the same parameters, D = −0.6 and −0.004 ≤ μ ≤ −0.001, as applied to the sech

waveform in the previous discussions. It is found that QM = 97.52 over 1.3 ≤ A ≤ 9.7, 12.4 ≤ A ≤ 14.3

Figure 15. QM versus A with (D, ν, δ, ξ, μ, τ) = (−0.6, 0.1,−0.1, 0.95,−0.001, 0.125), and the initial
waveform is ψ(0, t) = A exp[−t2/(2.547t20)].

(a) (b)

(c)

Figure 16. (a) Q versus z with a Gaussian initial waveform, (b) evolution over z/z0 ≤ 80 and (c)
evolution over 75 ≤ z/z0 ≤ 80; A = 24.2, μ = −0.003, other parameters are the same as in Fig. 15.
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and 17.4 ≤ A ≤ 18.2 at μ = −0.001; QM = 53.51 over 1.2 ≤ A ≤ 10.9, 13.3 ≤ A ≤ 16.0, 19.2 ≤ A ≤ 20.9
and 25.0 ≤ A ≤ 26.1 at μ = −0.002; QM = 23.91 over 1.2 ≤ A ≤ 12.1, 14.3 ≤ A ≤ 17.9 and
21.1 ≤ A ≤ 24.2 at μ = −0.003. At μ = −0.004, a stationary soliton appears, with Q = 16.85 over
1.2 ≤ A ≤ 13.4, 15.1 ≤ A ≤ 20.2 and 23.3 ≤ A ≤ 28.1. Fig. 15 shows the values of QM versus A, with
μ = −0.001. The soliton type is not affected by the initial amplitude A, and the QM values are the
same as in the sech waveform, although the valid subranges of A are different from those of the latter.

Consider an interesting case, with μ = −0.003 and A = 24.2, the upper bound in the amplitude
subrange. As Fig. 12 shows two emerging solitons with constant amplitudes, Figs. 16(a) and 16(b)
show two pulsating-like solitons emerging at z/z0 > 15. Fig. 16(c) is an enlarged plot of Fig. 16(b),
which shows that two pulsating-like solitons are coupled to each other in the sense that when one
grows in amplitude, the other declines. Fig. 16(a) shows that this coupling phenomenon is not perfectly
periodical in z.

In summary, there exist valid subranges of initial amplitude over which mode-locking of solitons
can be activated. The shape of initial waveform does not affect the soliton type, but it may affect
the valid subranges of initial amplitude. The soliton has the same set of QM ’s within the allowable
subranges of initial amplitude. Two solitons may emerge if the initial amplitude is near the upper bound
of amplitude subranges.

6. CONCLUSION

The split-step Fourier method has been applied to solve the CQGLE for passive mode-locked laser. The
soliton solutions can be categorized into stationary, pulsating and chaotic types on a μ-D parametric
plane. Based on the soliton waveforms, the boundary between pulsating and chaotic regions can be
divided into several distinct zones. The transformation between a stationary soliton and a pulsating
one is gradual across the boundary. The effects of initial amplitude and initial waveform on the soliton
type have also been studied.
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