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Higher Radial Modes of Azimuthal Surface Waves in Cylindrical
Waveguides without External Magnetic Field
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Abstract—The properties of higher order radial modes of electromagnetic azimuthal surface-type waves
(ASW) which propagate in partially plasma-filled cylindrical waveguides without external magnetic field
are analyzed using analytical and numerical techniques. For a waveguide with plasma surrounded by
dielectric material and encased in metal, the eigenfrequencies for higher order radial modes are obtained.
It is found that the ASW higher radial modes propagate with shorter vacuum wavelength than the zero-
th order radial modes and that the more favourable conditions for higher order radial mode propagation
are for ASW’s with larger azimuthal wavenumber in waveguides with wider dielectric layer and larger
dielectric constant. A further salient feature of ASW higher radial modes is that a change in plasma
waveguide parameters causes a drastic change in ASW eigenfrequency in contrast to the zero-th order
modes which have a smoother frequency variation with effective wavenumber.

1. INTRODUCTION

The properties of electromagnetic surface waves (SW) which propagate along a planar boundary between
two different media and those that propagate along a boundary with a finite value of curvature radius
differ substantially [1]. For instance, in the case of the planar plasma boundary shape, most of the SWs
are slow waves; they are either potential ones or at least can be considered in the potential approach
(see, e.g., [2, 3]), unlike the case of SW propagating along the plasma boundary with finite value of
curvature radius [1].

Theoretical results from studying the SWs properties are widely used in different branches of
radio-physics and electronics, plasma technologies and nano-physics. One of the actively developing
spheres of SWs application is the evaluation and construction of plasma-antenna systems. Utilization
of antenna with plasma coating has been known for some time [4–6]. It has undisputed advantages,
namely, application of a plasma allows for an increase in the electromagnetic radiation and control of the
frequency spectrum. Experimental results presented in [5, 6] have illustrated an essential enhancement
of the plasma-antenna efficiency for transmission and reception of electromagnetic signals. At the
present time the main efforts of scientists which are working in this area are directed towards solving
the following problems: (i) expansion of the working frequency range; (ii) making the plasma antenna
invisible; (iii) protection from electronic warfare; (iv) operation in the regime of shielding; and (v)
reduction of electromagnetic noise in the antenna system. Generally speaking, it has been shown that
plasma-antenna systems can now work at least as well as metal antennas.

The other area of utilization of SW propagation is gas discharges and their practical applications
(see, e.g., monograph [7] and references therein). Comparative analysis of different types of plasma
production methods has shown the advantages of the plasma source sustained by SWs in comparison
with other high-density plasma sources. It has allowed the authors of [8] to conclude that the regime of
low-pressure discharge sustained by azimuthally non-symmetric SWs is attractive for sustaining a high
density, large-scale non-magnetized plasma that can be utilized for various solids processing technologies.
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One other sphere of SW utilization under current active development is in nano-physics. The
possibility to build up nano-plasma materials makes them attractive for applications such as antenna
systems and elements of millimetre wave electronic devices [9]. Reference [10] presents the material
devoted to various technologies for metal plasma production, especially on the formation of nano-
structures using the metal-plasmas. These techniques allow one to obtain a trench-filling and a conformal
coating of a substrate surface down to the 100 nm size; to fabricate super-hard and tough nano-structures
by depositing the titanium-aluminium and titanium-zirconium films and even to reduce the friction
coefficient between nano-structures by incorporating the ions of yttrium or vanadium.

Finally, we remark on another SW application such as elaboration of bio-sensors which utilize
surface plasmon resonance for their operation [11, 12]. Devices based on these bio-sensors are utilized
for important operations that include: diagnostics of animal and plant pathogens in order to organize
a quarantine zone, gene analysis, remote rapid testing of a malarial strain, water purity analysis, and
detecting an unexpected chemical processes in laboratories. Thus, the presence of such a variety of
important practical applications of the SWs’ properties is the motivation to investigate the properties
of azimuthally non-symmetric SWs, which can propagate in isotropic plasma-filled waveguides.

In a previous paper [13] we have studied the dispersion properties of transverse surface waves
propagating across the axis of a cylindrical metal waveguide that is partially filled with isotropic
plasma, so-called azimuthal SW (ASW). The configuration has been restricted to the assumption of
a thin dielectric layer, (b − a) � a, where a and b refer to the inner and outer radii. This assumption
invoked to ensure that just the zero-th order radial mode was considered. In this case, the authors
expected that this was the main influence of plasma column parameters on the dispersion properties
of the electromagnetic waves. On the other hand, practical applications of the waves need the highest
possible frequency of the waveguide’s eigenmodes. The waves under consideration can propagate in
the frequency range below the Langmuir frequency, ω < Ωe [1, 14]. In the present paper we continue
studying these waves and focus on the problem of the dispersion properties of their higher radial modes.
In the waveguides with small values of effective wave number kef = |m|δ/a (δ = c/Ωe is skin-depth),
higher radial modes of ASW are found to propagate with the frequencies higher than those of the zero-th
order radial modes.

The paper is arranged as follows. Section 2 is devoted to the formulation of the problem, in
particular, the description of the geometry of the plasma waveguide and boundary conditions applied
for the derivation of the set of equations for harmonics of the tangential electric field of these waves.
Section 3 is devoted to a theoretical analysis of the dispersion relation of these modes. Results of
numerical analysis of the dispersion relation of these ASW are discussed in Section 4. Section 5
summarizes the main results.

2. FORMULATION OF THE PROBLEM

Let us consider a uniform plasma cylinder of radius a, being placed concentrically inside the metal
chamber of radius b (see Fig. 1). The plasma cylinder is separated from the metal by a dielectric with
dielectric constant εd. We assume the waveguide to be uniform along the axis: ∂/∂z = 0. Plasma
electromagnetic properties are described by the permittivity, εp = 1 − Ω2

e/ω
2.

First, we consider the propagation of electromagnetic waves along the small azimuth, such that
the wave fields depend on time and spatial coordinates as follows: f(�r) = f1(r) exp(imϕ − iωt). In this
case Maxwell’s set of equations is separated into two subsets which describe independent propagation
of two waves: that of ordinary polarisation with the components Ez, Br, Bϕ and that of extraordinary
polarisation with the components Er, Eϕ, Bz. We study here just the surface-type extraordinary wave.
This means that the amplitudes of the wave fields decrease when going from the plasma boundary to
the axis. Such waves are called azimuthal surface waves (ASW) and in addition to being surface-type
in the plasma column, they are of volumetric nature in the dielectric layer.

Next we discuss the restrictions of our model. Propagation of the ordinary ASW was studied
in [15] and the influence of a weak radial plasma density inhomogeneity on the dispersion properties
of ASW was studied in [16]. If the plasma density has a linear profile near the boundary, then the
ASW dispersion properties are similar to those of a uniform plasma by replacing the penetration depth
of these waves into the plasma with an “effective” value of this parameter [17]. The propagation of
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Figure 1. Schematic of the geometry. Figure 2. Dependence of ASW eigenfrequency
normalised by electron Langmuir frequency versus
effective wave number. Parameters used are: εd =
4, Δ = 0.5, m = 1.

surface-type electromagnetic waves with small axial wavenumber kz was studied in [18]. It was shown
that the presence of finite axial wavenumber results in a decreasing of the eigenfrequency as compared
to the case of ASW, and onset of the new slow mode solution that does not exist in the case of ASW.
The eigenfrequency of the slow mode is almost proportional to kz. The presence of the small kz < |m|/a
weakly effects the eigenfrequency of the fast mode which becomes the ASW in the limit kz → 0. The
correction to the eigenfrequency caused by the small kz is proportional to k2

z .
To get the ASW dispersion relation one applies the following boundary conditions: wave fields

should be of finite value inside the waveguide, in particular, at its axis; tangential components of electric
and magnetic fields Eϕ and Bz should be continuous at the boundary plasma-dielectric; tangential
electric field Eϕ should be equal to zero at the ideal metal wall. The dispersion relation was derived
in [14] (see also [1, 13]):

J ′
m (x1) N ′

m (x2) − J ′
m (x2)N ′

m (x1)
J ′

m (x2) Nm (x1) − Jm (x1)N ′
m (x2)

=
x1

x3

I ′m (x3)
Im (x3)

. (1)

In Eq. (1), Jm(x) and Nm(x) are Bessel functions of the first and second kinds, respectively; Im(x) is
modified Bessel function of the first kind [19]; prime denotes the derivative with respect to the argument;
x1 = (ω/c)a

√
εd; x2 = (ω/c)b

√
εd; x3 = (ω/c)a

√−εp.

3. THEORETICAL ANALYSIS OF THE DISPERSION RELATION

Since we deal with higher radial modes of ASW we should operate with large arguments in the cylindrical
functions Jm(x) and Nm(x) in the dispersion relation (1):

x1 =
ω

Ωe

|m|√εd

kef
. (2)

Taking into account the asymptotic expressions for cylindrical functions Jm(x) and Nm(x) of large
argument [19], one can derive the asymptotic expansion of the left-hand side of the dispersion relation
in Eq. (1):

J ′
m (x1)N ′

m (x2) − J ′
m (x2) N ′

m (x1)
J ′

m (x2)Nm (x1) − Jm (x1) N ′
m (x2)

≈ − tan (x2 − x1) . (3)

Let us assume the waveguide to be wide, i.e., its radius is larger than the radial wave penetration depth,

x3 = x1

√
|εp|
εd

� 1. (4)
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This assumption is true for the case of low frequencies, ω � Ωe: x3 ≈ |m|/kef . Then the right-hand
side of the dispersion relation is approximately equal to

x1

x3

I ′m (x3)
Im (x3)

≈ ω

Ωe

√
εd. (5)

Searching for the eigenfrequency of the l-th radial mode, x2 − x1 ≈ πl − (ω/Ωe)
√

εd, we derive the
following approximate expression:

ω

Ωe
≈ πl√

εd

kef

|m|Δ , (6)

where Δ = (b−a)/a is not a small value. By inspection of formula (6) one can predict the almost linear
dependence of the ASW higher radial modes eigenfrequency versus effective wave number kef , inverse
proportionality of ω to the width of dielectric layer Δ and to the square root of dielectric constant εd.
This rough evaluation does not indicate any dependence of the ASW eigenfrequency from neither ASW
azimuthal wave number m (since kef ∝ |m|) nor plasma density ne (since kef ∝ Ω−1

e ).
It should be noted that when we say “l-th radial mode” we mean that the wave magnetic field has

l zeros in the range 0 < r < b except for r = 0. The zero-th ASW radial mode has only one zero of
its magnetic wave’s field for r = 0, and its radial derivative is equal to zero at the metal wall of the
chamber at r = b.

4. NUMERICAL ANALYSIS

In this section we make a numerical analysis of the dispersion relation (1) and plot the dependence of
the ASW eigenfrequency (normalized by the Langmuir frequency, Ωe) versus the effective wave number
kef for the first three azimuthal wave numbers: m = 1, 2, 3, and for the lowest four radial modes: zero-
th, first, second and third (see Figs. 2–4). Numerical analysis makes it possible also to study spatial
distribution of the waves under consideration (see Figs. 5–7).

To distinguish the branches corresponding to different radial modes we checked the phase incursion
for each root of the dispersion relation. Numerals on the Figs. 2–4 denote the numbers of the radial
modes. Higher radial modes are pronounced in the range of small values of kef , that is for large radius
a of plasma column and high plasma density ne. Numerical calculations define the dependence of the
ASW eigenfrequency on plasma density ne or more accurately, ω = C1 − C2n

−1/2
e , the constants being

positive: C1 > 0, C2 > 0.
Numerical analysis confirms that the range of effective wave numbers, within which the ASW

higher radial modes propagate, increases in the direction of higher kef with increase of azimuthal wave
number m, width of the dielectric layer Δ and dielectric constant εd. This is the reason for choosing

Figure 3. The same as in Fig. 8, but for m = 2. Figure 4. The same as in Fig. 8, but for m = 3.
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the following plasma waveguide parameters. Figs. 2–4 demonstrate the dependence of the normalized
ASW eigenfrequency ω/Ωe on the effective wave number kef for a rather narrow dielectric layer Δ = 0.5
and a moderate dielectric constant εd = 4. We restrict the ordinate axes of our plots on Figs. 2–4 by
the value ω/Ωe < 1 since the waves under consideration are those of surface-type just in this frequency
range.

Figures 2–4 confirm the analytical prediction that larger dielectric constant εd = 4 provides better
conditions for higher radial mode propagation even for the case of moderate dielectric width of Δ = 0.5.
The lines in these figures are very similar to those calculated for the case of twice larger width of
the dielectric layer, Δ = 1.0, and four times less dielectric constant, εd = 1. Analytical estimations
(approximate formula (6)) predict the same values for the eigenfrequencies of the ASW higher radial
modes in these two cases. Indeed, eigenfrequencies of ASW first radial mode in these two cases coincide
with the accuracy of about 11%. For instance, in the middle of the range of kef where the first ASW

Figure 5. Radial distribution of ASW electro-
magnetic fields amplitudes: Er (dotted line), Eϕ

(dashed line), Bz (solid line). εd = 4, Δ = 0.5,
m = 2, l = 2, kef = 0.25, ω/Ωe = 0.659.

Figure 6. Radial distribution of ASW azimuthal
electric field Eϕ amplitudes for four radial modes:
l = 0 (solid line), l = 1 (dashed line), l = 2 (dotted
line), l = 3 (dash-dotted line). εd = 4, Δ = 0.5,
m = 2, kef = 0.25.

Figure 7. Radial distribution of ASW azimuthal electric field Eϕ amplitudes for three azimuthal wave
numbers: m = 2 (solid line), m = 3 (dashed line), m = 4 (dotted line). εd = 4, Δ = 0.5, m = 2,
kef = 0.25, l = 2.
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radial modes exist, namely, for kef = 0.33, the eigenfrequency of the ASW is ω/Ωe = 0.771 for the case
Δ = 1.0 and εd = 1, and ω/Ωe = 0.683 for the conditions of the Fig. 2.

Spatial distribution of ASW fields in azimuthal direction is determined by the factor exp(imϕ).
The phases of the axial magnetic field Bz and radial electric field Er coincide with each other and lag
behind the phase of azimuthal electric field Eϕ by π/2.

Typical radial distribution of the ASW fields is given in Figs. 5–7 in arbitrary units. In Fig. 5,
one can see the radial distribution of the amplitudes of the fields Er (dotted line), Eϕ (dashed line),
Bz (solid line) for second radial mode. The other plasma waveguide parameters are as follows: εd = 4,
Δ = 0.5, m = 2, kef = 0.25. In this case ASW propagates with the frequency ω = 0.659Ωe, and its
fields weakly penetrates into the plasma, x3 = 6.017 (this means that plasma radius is 6.017 times
larger than the field’s penetration depth). The amplitude of the radial electric field Er is discontinuous
at the plasma-dielectric interface, r = a. The amplitude of the azimuthal electric field Eϕ is equal to
zero at the internal surface of the metal chamber, r = b, which is accompanied with the derivative of
the amplitude of the axial magnetic field Bz being equal to zero there. Note that the phase incursion
of the Eϕ is just 2π as it should be for the second radial mode being under the consideration.

Figure 6 presents the radial distribution of the first four radial modes of azimuthal ASW electric
field Eϕ, other plasma waveguide parameters being the same as in Fig. 5. The zeroth radial mode
is given by the solid line (ω/Ωe = 0.092), the first mode — by the dashed line (ω/Ωe = 0.33), the
second mode — by the dotted line (ω/Ωe = 0.659), and the third mode — by the dash-dotted line
(ω/Ωe = 0.989). Let us underline the increase of the phase incursion in the dielectric region, a < r < b:
x2 − x1 = 0.736 in the case l = 0, x2 − x1 = 2.64 in the case l = 1, x2 − x1 = 5.273 in the case l = 2,
and x2 − x1 = 7.912 in the case l = 3. The surface nature of the ASW is less pronounced for the
higher radial modes: x3 = 7.966 (this means that plasma radius is 7.966 times larger than the field’s
penetration depth) for the zeroth radial mode, l = 0, x3 = 7.552 for l = 1, x3 = 6.017 for l = 2, and
x3 = 1.183 for l = 3.

The radial distribution of the amplitude of the second radial mode of azimuthal electric field Eϕ for
ASWs with azimuthal wave numbers m = 2 is given in Fig. 7 by the solid line, the plasma waveguide
parameters being the same as in Fig. 5. In this case ASW propagates with the frequency ω = 0.659Ωe.
The radial distribution of the amplitude of the same radial mode of Eϕ for m = 3 is given there by the
dashed line (ω/Ωe = 0.465), and for m = 4 — by the dotted line (ω/Ωe = 0.364). ASW with m = 1
does not propagate in the form of the second radial mode for the chosen plasma-waveguide parameters.
An increase in azimuthal wave number m causes a decrease in both ASW frequency and the penetration
depth.

5. CONCLUSIONS

Both analytical and numerical studies of the dispersion properties of higher radial modes of
electromagnetic surface-type waves which propagate in cylindrical waveguides, partially filled by plasma,
along the small azimuth are carried out. These mode branches complement previous results [1, 13, 14]
obtained for the zero-th order radial mode. The most favourable conditions for these higher radial
modes propagation are observed for waves with larger azimuthal wave numbers in the waveguides
with wider dielectric layer, and larger dielectric constant. An approximate expression (6) satisfactorily
describes the eigenfrequency of the ASW higher radial modes. The possibility of ASW higher radial
mode propagation is demonstrated for small values of the effective wavenumber, i.e., in the waveguides
with large radius of plasma column and plasma density. One particular merit of the ASW higher radial
modes dispersion properties is that a change in plasma waveguide parameters causes a drastic change
in ASW eigenfrequency. This is in contrast to the possibility of obtaining smoother frequency tuning
for the ASW zero-th order radial mode.

The advantage of ASW higher radial modes is that their eigenfrequencies are larger than those of
the zero-th radial modes effectively studied earlier. In other words, ASW higher radial modes propagate
with shorter vacuum wavelength than the zero-th modes. The results presented here are of interest for
the purposes of plasma electronics. The possibility of ASW irradiation from the narrow axial slot in
the waveguide metal wall was demonstrated in [13].
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