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Reconstruction of the S-Matrix of N -Port Waveguide Reciprocal

Devices from 2-Port VNA Measurements

Leonardo Zappelli*

Abstract—Two approaches to reconstruct the S-matrix of N -port waveguide reciprocal devices from
2-port S-matrix measurements are proposed and discussed. The main advantage of the proposed
approaches is that measurements are done always at the same two ports, without moving the device.
The remaining N -2 ports are loaded with different loads, either matched or short. The first approach,
based on a manipulation of the 2-port S-matrices, requires N -2 matched and two other loads, while
the second approach, based on the evaluation of an equivalent circuit, requires N -2 short and two
other loads. The measurement technique is based on standard loads (short, shift and matched) in the
waveguide calibration kit of the 2-port VNA.

1. INTRODUCTION

2-port vector network analyzer (VNA) is a common measurement equipment used in microwave
laboratories. Its development is principally due to the contribution of Speciale and his research group [1].
During the years, alternative calibrations or some refinement procedures to enhance the calibration of
2-port VNA were proposed by several authors [2–5].

Recently, multi-port devices have been proposed for many applications, and they need very
expensive N -port VNA to perform the requested measurements. Hence, some techniques to perform
measurements of N -port devices with 2-port VNA were analyzed and discussed [6–18].

The most used method to perform N -port measurements with 2-port VNA consists in the excitation
of 2 ports, i and j, loading the remaining N -2 ports with proper loads. This implies several
disconnections of the device under test (DUT) [7, 9, 12] or the implementation (and realization) of
switch-matrices to excite ports i and j to perform measurements [8, 10, 14–17]. Moreover, the possibility
of reducing the number of known loads [14, 15] or the use of virtual loads [18] have been analyzed.

Another technique consists in fixing two measurement ports, loading the other N -2 ports with
proper loads, without disconnecting the DUT several times [11, 13]. In [11], the measurement of 3-port
devices is discussed: 2 ports are connected to the VNA, and the third is loaded with three different loads
to obtain the overall 3-port S-matrix. This approach is useful for a 3-port device but questionable for
devices with more ports [19]. In [13], the approach used in [11] is partially used, and two port-reduction
methods are proposed to reconstruct N -port S-matrix with a reduction of the connections to the VNA.

The aim of this paper is to refine these techniques to reconstruct N -port S-matrix of waveguide
reciprocal devices using 2-port VNA, performing measurements always at the same two ports, without
moving the DUT, and taking into account the presence of the VNA calibration kit. In particular,
the FLANN calibration kit for WR90 waveguide contains: two shorts, two matched loads and two
waveguides of lengths λ

8 and 3λ
8 , hereinafter called “λ

8 shift” and “3λ
8 shift”. This equipment is sufficient

to measure up to 4-port waveguide devices, while for 5 or more ports other components are needed.
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The approaches proposed in this paper are two. The first is a deep variation of the approach
used in [11], which will be defined as “S-direct” approach. The second is a new approach based
on the reconstruction of an equivalent circuit for N -port waveguide device, based on 2-port VNA
measurements, which will be defined as “EC” (Equivalent Circuit) approach. This approach starts from
the possibility of defining a set of equivalent circuits for a device, in the sense defined by Marcuvitz [20]
and Montgomery [21]: an equivalent circuit can represent a simple frequency dependence or the
minimization of the electrical parameters, or the effects of evanescent modes. . .. Hence, any device
can be represented with various equivalent circuits, and each one represents a particular characteristic
and is “correct”.

In the past, the author has defined some equivalent circuits to represent the presence of evanescent
accessible modes and a fast and simple method for the identification of the electrical parameters of the
equivalent circuits for waveguide devices [22–25]. Hence, in the second approach an equivalent circuit
will be proposed to reconstruct the N -port S-matrix waveguide device, starting from 2-port VNA
measurements, in order to minimize and simplify the evaluation of its N(N + 1)/2 circuit parameters.
Afterwards, the N -port Z-matrix can be obtained by applying the Kirchhoff’s Voltage Law (KVL) to
the circuit, and the S-matrix is evaluated by the usual matrix manipulations.

The results show good agreement for the two approaches. Only the scattering parameters with
very low value (< −35 dB) could contain errors in their evaluation, related to the quality of the loads
and to VNA measurement uncertainty.

2. THEORY

2.1. S-Direct Approach

The first method to reconstruct the S-matrix of a reciprocal waveguide device based on 2-port VNA
measurements is based on the approach discussed in [11]. In this paper, Davidovitz proposed a method
to reconstruct the S-matrix of a 3-port device, based on three sets of 2-port VNA measurements. In
particular, the third port of the device is closed on three different loads. In absence of experimental
errors, the reconstruction is correct. Though the approach is valid, the extension to the measurement
of S-matrix of devices with more ports is not trivial [19]. Moreover, the presence of experimental errors
can cause an incorrect reconstruction. The important reading key of [11] is that all the measurements
are done always at the same two ports, without disconnecting and reconnecting the device, as instead is
done in most papers cited in the Introduction. To avoid the disconnection and reconnection, switching
matrices must be developed and inserted between the VNA ports and the device, increasing the cost of
the overall equipment. To the Author’s opinion, the approach used in [11] is very interesting because
the disconnection and reconnection of the device can cause supplementary measurement errors. In fact,
it is well known that if we measure the S-matrix of a 2-port device and we disconnect and reconnect
the second port of the same device to the VNA, the measured S-matrix in the second case has different
values for the transmission and for the reflection at the second port. Obviously, the differences are small
and explainable, firstly, in terms of correct alignment of the device in the second reconnection (which
can be reduced with the presence of precision dowels at the flanges of the device and of the waveguide-
coax adaptors) and, secondly, to the unwanted movements of the cable connecting the second port of
the device and the VNA, during the phase of device re-connection.

On the contrary, the main advantage in blocking the two ports used to measure the N -port device
is that the cable disposition to connect the device and the VNA is fixed, and no other measurements
errors due to the cable movements are introduced. Moreover, the cost of the measurement procedure
proposed in [11] is limited to the cost of the calibrated loads, because switching matrices are not used.
Hence, in order to reduce these measurement errors and cost of the overall measurements, the technique
of fixing the two measurement ports (ports 1 and 2) should be used, and the reconstruction of the N -
port S-matrix should be based on loading the remaining N -2 ports with three different loads connected
to each port in a proper way that will be discussed in the following. How can we choose these loads?
The simplest choice is to use just the standard loads contained in the VNA calibration kit, as stated in
the Introduction: two shorts, two matched loads and a λ

8 shift and a 3λ
8 shift. The main advantage is

that they are well realized and certified; for example, the λ
8 shift and 3λ

8 shift contained in our FLANN
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kit for WR-90 waveguides are certified to have lengths ta = 4.835 mm and tb = 14.458 mm, respectively.
For a 3-port device, the procedure to evaluate its 3-port S-matrix consists in loading port 3 with

a matched load and two different loads and measuring the three corresponding 2-port reduced devices
with the VNA always connected to ports 1 and 2. The two loads can be chosen between the three
combinations, shown in Table 1, that can be obtained with the calibration kit. “λ

8 & short” and
“3λ

8 & short” stand for λ
8 shift (length ta) and 3λ

8 shift (length tb) connected to a short. The obtained
three 2-port S-matrices, SI, SII and SIII, permit the reconstruction of the 3-port S-matrix [11]. The
superscripts I, II and III refer to three loads connected to port 3, chosen in Table 1. The first
measurement, SI, done with the matched load connected to port 3, gives the scattering coefficients
S11, S12 and S22.

Table 1. Possible combination of loads connected to port 3. “λ
8 & short” and “3λ

8 & short” stand for
λ
8 shift (length ta) or 3λ

8 shift (length tb) connected to a short. Γ is the load reflection coefficient.

Load I ΓI Load II ΓII Load III ΓIII

(a) matched 0 short −1 λ
8 & short −e−2jβta

(b) matched 0 short −1 3λ
8 & short −e−2jβtb

(c) matched 0 λ
8 & short −e−2jβta 3λ

8 & short −e−2jβtb

Unfortunately, [11] does not analyze the redundancy of the obtained measurements. In fact, in the
hypothesis of a reciprocal device, SII (three complex numbers, SII

11, S
II
12, S

II
22) and SIII (three complex

numbers, SIII
11 , SIII

12 , SIII
22 ) are composed of six complex scattering parameters, while the scattering

parameters of the 3-port S-matrix to be evaluated are only three, because S11, S12 and S22 have
already been measured. Hence, three measured scattering parameters are redundant, and they are
linearly dependent on the other three. The relationships between the three unknown independent
parameters and the three linear dependent scattering parameters can be easily found. In fact, if we
start from the measurement of SI and assume its scattering parameters as linearly independent, only
two scattering parameters of SII and only one scattering parameter of SIII are linearly independent.

This can be shown starting from the evaluation of the reduced 2-port S-matrix (S3→2), obtained
by connecting the third port of the 3-port S-matrix to a load with reflection coefficient Γ,

S3→2 =

⎡
⎢⎢⎣

S11 +
S2

13Γ
1 − S33Γ

S12 +
S13S23Γ
1 − S33Γ

S12 +
S13S23Γ
1 − S33Γ

S22 +
S2

23Γ
1 − S33Γ

⎤
⎥⎥⎦ (1)

With simple mathematical steps, we can write the three redundant scattering parameters of the
three measured 2-port S-matrices, obtained with three different loads connected to port 3, characterized
by reflection coefficients ΓI = 0,ΓII,ΓIII, in the following form:

SII
22 = SI

22 −
(
SI

12 − SII
12

)2
SI

11 − SII
11

SIII
12 =

−SII
11S

I
12 + SIII

11

(
SI

12 − SII
12

)
+ SI

11S
II
12

SI
11 − SII

11

(2)

SIII
22 = SI

22 −
(
SI

11 − SIII
11

) (
SI

12 − SII
12

)2(
SI

11 − SII
11

)2 (3)

In Eqs. (2)–(3), the independence of SI
11, S

I
12, S

I
22, S

II
11, S

II
12, S

III
11 has been supposed. With this choice,

the values of the scattering parameters of the reconstructed 3-port S-matrix are:

S23 = ± (SI
12 − SII

12

)√ (ΓII − ΓIII)
(
SI

11 − SIII
11

)
ΓIIΓIII

(
SI

11 − SII
11

) (
SII

11 − SIII
11

) (4)
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S13 =
(SI

11 − SII
11)S23

SI
12 − SII

12

S33 =
SI

11 − SII
11(

SI
12 − SII

12

)2 S2
23 +

1
ΓII

(5)

S11 = SI
11 S12 = SI

12 S22 = SI
22 (6)

Obviously, any other choice of the three linearly independent scattering parameters is correct,
producing different relationships of the linearly dependent scattering parameters, similar to Eqs. (2)–
(3), and different expressions for the scattering parameters, similar to Eqs. (4)–(5). The possible choices
of the three independent parameters are nine and are shown in Table 2. In absence of experimental
errors, Equations (2)–(3) are always satisfied, and any choice of the three independent scattering
parameters gives always the same 3-port S-matrix. In presence of experimental errors, the scenario
is slightly different with respect to the approach discussed in [11]. In fact, the linear dependent
scattering parameters do not satisfy Eqs. (2)–(3) just for the experimental errors occurring on all
measured scattering parameters. Moreover, the user does not know which are the “most correct” three
independent parameters, and this fact produces an uncertainty in the S-matrix reconstruction. Hence,
the user must take into account all the nine combinations of the independent parameters, obtaining
nine possible 3-port S-matrices.

Table 2. Possible combinations of the linearly independent scattering parameters. SII and SIII are
2-port S-matrices measured with the third port of the device connected to two different loads.

1 SII
11 SII

12 SIII
11 2 SII

11 SII
12 SIII

12 3 SII
11 SII

12 SIII
22

4 SII
11 SII

22 SIII
11 5 SII

11 SII
22 SIII

12 6 SII
11 SII

22 SIII
22

7 SII
12 SII

22 SIII
11 8 SII

12 SII
22 SIII

12 9 SII
12 SII

22 SIII
22

Moreover, to take into account all the possible combinations, the user must consider as second load
any of the chosen loads, in order to ensure that three independent parameters belong to SII or to SIII.
For example, for the first row of Table 1, the user should evaluate the reconstructed 3-port S-matrix
for the following two combinations of the same three loads:

(i) matched, short, λ
8 & short,

(ii) matched, λ
8 & short, short.

In so doing, the user changes the first two independent scattering parameters, associating them to the
2-port S-matrix measured with a short (item i) or a λ

8 & short (item ii) connected to port 3. Hence, the
total possible combinations of the reconstructed 3-port S-matrix corresponding to each row of Table 1
are 18 : 9 (the combinations of the chosen independent scattering parameters shown in Table 2) ×2
(possible choices of the order of the second and third loads). The average of the 18 values of each
scattering parameter is applied to find the most correct 3-port S-matrix. Averaging improves the
evaluation of the scattering parameters if the experimental errors are not systematic.

In presence of a reciprocal device with four ports, the previous approach becomes more complex. In
fact, if two loads with reflection coefficients γ3, γ4 are connected to ports 3 and 4 of a 4-port S-matrix,
the following 2-port S-matrix is obtained:

S4→2
11 =

{
2S13S14S34γ3γ4 + S2

14(1 − S33γ3)γ4 + S2
13(1 − S44γ4)γ3 + S11 [1 − S44γ4 − S33γ3

+γ3γ4(S33S44 − S2
34)
]}

/
[
1 − S44γ4 − S33γ3 +

(
S33S44 − S2

34

)
γ3γ4

]
(7)

S4→2
12 = {S14(S24 − S24S33γ3 + S23S34γ3)γ4 + S13(S23 + S24S34γ4 − S23S44γ4)γ3 + S12 (1 − S44γ4)

+S12

[
γ3γ4(S33S44 − S2

34) − S33γ3

]}
/
[
1 − S44γ4 − S33γ3 +

(
S33S44 − S2

34

)
γ3γ4

]
(8)

S4→2
22 =

{
2S23S24S34γ3γ4 + S2

24(1 − S33γ3)γ4 + S2
23(γ3 − S44γ3γ4) + S22 [1 − S44γ4 − S33γ3

+γ3γ4(S33S44 − S2
34)
]}

/
[
1 − S44γ4 − S33γ3 +

(
S33S44 − S2

34

)
γ3γ4

]
(9)

The procedure to reconstruct the 4-port S-matrix consists in loading port 3 with three loads,
being a load connected to port 4, then loading port 4 with three loads, being one of the previous load
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connected to port 3, and, finally, loading ports 3 and 4 with two loads in a combination not used in the
previous cases. Six 2-port S-matrices are measured (18 complex scattering parameters are measured) to
find 10 complex scattering parameters of the 4-port S-matrix: even in this case, there is measurement
redundancy. Unfortunately, an approach similar to that discussed for a 3-port device, i.e., to find some
equations as Eqs. (2)–(3) and Eqs. (4)–(6), is quite difficult to apply because it is not easy to solve
Eqs. (7)–(9) for the scattering parameters of the four-port S-matrix. Nevertheless, the solution to this
problem exists, if two calibrated matched loads are available, as in the calibration kit.

In fact, if the first matched load is connected to port 4 (γ4 = 0), the 4-port S-matrix reduces to a 3-
port S-matrix containing only the scattering parameters of the first 3 ports (S11, S12, S13, S22, S23, S33),
which can be reconstructed connecting three loads to port 3, with a combination chosen between the
first three rows (a)–(c) of Table 1, including the second matched load. The procedure to reconstruct
these six scattering parameters follows the previously discussed approach in Eqs. (4)–(6).

Afterwards, the first matched load is connected to port 3, and in this case, the 4-port S-matrix
reduces to a 3-port S-matrix containing only the scattering parameters relative to ports 1, 2 and 4
(S11, S12, S14, S22, S24, S44), which can be reconstructed with Eqs. (4)–(6), connecting port 4 to three
loads, chosen in rows (a)–(c) of Table 1, including the second matched load. It should be noted that only
two measurements must be made, because the combination of the two matched loads at ports 3 and 4
has already been measured when the first six scattering parameters relative to port 3 are reconstructed.

The last scattering parameters S34 is obtained loading ports 3 and 4 with a combination of two
loads, characterized by reflection coefficients γ3, γ4, without the use of matched loads. The seven possible
combinations are shown in Table 3, cases (a)–(g), with i = 3 and j = 4.

Table 3. Possible combinations of loads, with reflection coefficient γ, to be connected to ports i and j.

Port i load γi Port j load γj Port i load γi Port j load γj

(a) short −1 short −1 (b) short −1 λ
8

& short −e−2jβta

(c) short −1 3λ
8

& short −e−2jβta (d) λ
8

& short −e−2jβta short −1

(e) 3λ
8

& short −e−2jβtb short −1 (f) λ
8

& short −e−2jβta 3λ
8

& short −e−2jβtb

(g) 3λ
8

& short −e−2jβtb λ
8

& short −e−2jβta (h) λ
8

& short −e−2jβta matched load 0

(i) 3λ
8

& short −e−2jβtb matched load 0 (j) matched load 0 matched load 0

The last measurement gives a scattering matrix Sγ3γ4 (three scattering parameters
Sγ3γ4

11 , Sγ3γ4
12 , Sγ3γ4

22 ) that permits to obtain S34 from one of Eqs. (7)–(9), for example from Eq. (7):

S34 =
S13S14

S11 − Sγ3γ4
11

±
√

S2
13γ3 + (S11 − Sγ3γ4

11 ) (1 − S33γ3)
(S11 − Sγ3γ4

11 )
√

γ3γ4

√
S2

14γ4 + (S11 − Sγ3γ4
11 ) (1 − S44γ4) (10)

The uncertainty about the sign of the square root is solved by replacing both values of S34 in Eq. (7)
and verifying which sign of the square root in Eq. (10) gives the correct values of Sγ3γ4

11 , Sγ3γ4
12 , Sγ3γ4

22 .
In absence of experimental errors, any choice of Eqs. (7)–(9) gives always the same S34. In presence

of experimental errors, the values of S34 that solve each of Eqs. (7)–(9) must be obtained, for a total of
three possible values. The average of these values is applied to find the most correct value for S34.

The same approach can be used to reconstruct the S-matrix of N -port devices with measurements
performed always at ports 1 and 2. In this case, N -2 matched loads are needed, and the measurement
procedure is the application of the procedure for a 4-port device at different port combinations:

(i) load ports 3, 4, . . . , N with N -2 matched loads and measure the S-matrix to obtain S11, S12, S22.
(ii) load ports 4, 5, . . . , N with N -3 matched loads, and port 3 with two different loads, chosen between

the combinations (a)–(c) of Table 1, and measure the two 2-port S-matrices at port 1 and 2, to
obtain the scattering parameters S13, S23, S33 with (4)–(6).

(iii) repeat step 2) for port 4, to obtain S14, S24, S44.
(iv) . . .

(v) repeat step 2) for port N , to obtain S1n, S2n, Snn.
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(vi) load ports 3 and 4 with one combination of loads chosen between cases (a)–(g) of Table 3, and
ports 5, . . . , N with N -2 matched loads, and measure the S-matrix at port 1 and 2, to obtain the
scattering parameters S34 with (10).

(vii) repeat step 7) for ports 3 and 5, to obtain S35.
(viii) repeat step 7) for ports i and j (3 ≤ i ≤ N − 1, i + 1 ≤ j ≤ N), to obtain Sij.

2.2. Equivalent Circuit Approach (EC-Approach)

The second proposed approach to reconstruct N -port S-matrix consists in evaluating an equivalent
circuit from N(N − 1)/2 S-matrix measurements at ports 1 and 2 of the N -port waveguide device.
From the knowledge of the electrical parameters of the equivalent circuit, the S-matrix of the overall
N -port device can be evaluated with simple manipulations.

The first step consists in drawing an equivalent circuit that is suitable to evaluate its electrical
parameters from 2-port S-matrix measurements. The proposed circuit for a 4-port device is shown in
Fig. 1(a), and it is derived from the equivalent circuits discussed in [22–25]. The transformers are used
to normalize the admittances in the circuit kernel. The simple application of the equivalent circuits
proposed in [25] is useless because it is quite hard to obtain the electrical parameters of those circuits
from 2-port S-matrix measurements at ports 1 and 2. In fact, if we load ports 3 and 4 of the circuit
discussed in [25] with N(N−1)/2 combinations of two loads, the evaluation of the electrical parameters is
obtained solving ten nonlinear equations, containing ten scattering parameters of the 4-port S-matrix.
Hence, that circuit is unable to solve this problem efficiently, and another equivalent circuit should
be defined, recalling that many equivalent circuits can be defined for the same device, each of them
satisfying a particular property (frequency dependence, simplicity, parameter reduction. . .) [20, 21].
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Figure 1. (a) The equivalent circuit of a 4-port device. (b) The reduced equivalent circuit of the 4-port
device when two short circuits are connected to ports 3 and 4 of the circuit shown in Fig. 1(a).

Following this advice, the kernel of the circuit shown in Fig. 1(a) (i.e., the admittances placed at
the sides and at the symmetry axes of the rectangle) and the two lines connecting the kernel to the
measurement ports 1 and 2 are the same of [25], redrawn and rearranged for convenience. The difference
is the presence of the series impedances −jZ0k tan θk, k = 3, 4 between the kernel and connecting lines
of the loaded ports 3 and 4. These series impedances are the key to simplify the evaluation of the circuit
parameters (lines and admittances) from 2-port S-matrix measurements done at ports 1 and 2.

In fact, let’s suppose to load ports 3 and 4 of the circuit shown in Fig. 1(a) with two shorts. The
impedances seen at sections CC′ and DD′ are respectively jZ03 tan θ3 and jZ04 tan θ4, which resonate
with the series impedances −jZ0k tan θk, k = 3, 4, resulting in two short circuits at sections cc′ and dd′
of the kernel and a global short circuit between nodes 1 and 3. Hence, the equivalent circuits reduce
to that shown in Fig. 1(b). If the same loads are connected to the actual device at ports 3 and 4, the
corresponding 2-port S-matrix, S0,0, can be measured at ports 1 and 2. The two superscript characters
of S represent the two loads connected to ports 3 and 4. Hence, the electrical lengths θ1, θ2 and the
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sum of the admittances connected to node 2

yp = y12 + y23 + y24 (11)

can be easily evaluated from this measurement, as described in [25] and here reported:

ejθ1 =

√√√√√−
√

S0,0
22√

S0,0
11 S0,0

12 + S0,0
11

√
S0,0

22

ejθ2 =

√
S0,0

11

S0,0
22

ejθ1 yp = 2

√
S0,0

11 S0,0
22

S0,0
12

(12)

From the knowledge of θ1 and θ2, it is possible to evaluate the other electrical lengths θ3 and θ4.
In fact, if port 4 of the circuit shown in Fig. 1(a) is connected to a short circuit, port 4 disappears,
being short-circuited by the resonance of the input impedance and the series impedance −jZ04 tan θ4.
Moreover, if port 3 is connected to a shorted waveguide of length ta, the circuit reduces to that shown
in Fig. 2, with k = (3). The normalized input admittance seen at section cc′ can be evaluated with
simple mathematical manipulations, β being the propagation constant of the fundamental waveguide
mode

ysw
input (ta, θ3) = j

sin (2θ3)
2

− j
cos2 (θ3)
tan (βta)

(13)
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Figure 2. The equivalent circuit of the 4-port device shown in Fig. 1(a) with port 3 or 4 loaded
with a short. If port 3 is connected to a load and port 4 is connected to a short, k = (3)
and the normalized admittances are: y

(3)
12 = y12 + y24, y

(3)
13 = y13 + y34, y

(3)
23 = y23. If port 4 is

connected to a load and port 3 is connected to a short, k = (4) and the normalized admittances
are: y

(4)
12 = y12, y

(4)
23 = y23 + y24, y

(4)
13 = y13 + y14.

The admittance in Fig. 2 between nodes i and j, y
(k)
ij , when port k is loaded with a load and the

other port with a short, is

y
(3)
12 = y12 + y24 y

(3)
13 = y13 + y34 y

(3)
23 = y23 (14)

The corresponding 2-port S-matrix, Sta,0, can be measured at ports 1 and 2, and the following
manipulations can be done on the circuit shown in Fig. 2: (a) a line of electrical length −θ1 is added
to port 1, to vanish the overall transmission line at the same port; (b) a line of electrical length −θ2

connected to a short circuit (shorted line) is added to port 2. The equivalent circuit is simplified as
shown in Fig. 3(a). The normalized input admittance seen from section aa′, y

(3)
aa′(ta, 0), is:

y
(3)
aa′(ta, 0) =

i
(3)
1

v
(3)
1

= y
(3)
12 + y

(3)
13 + ysw

input(ta, θ3) (15)
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Figure 3. The equivalent circuit shown in Fig. 1(a) when port 4 is connected to a short circuit, port 3
to a shorted waveguide of length ta, and (a) port 2 to a shorted line of electrical length −θ2 and port 1
to a line of electrical length −θ1; or (b) port 2 to a line of electrical length −θ2 and port 1 to a shorted
line of length −θ1.

Obviously, the same transformation can be mathematically applied to the measured 2-port S-
matrix, Sta,0, obtaining the corresponding value of y

(3)
aa′(ta, 0):

y
(3)
aa′(ta, 0) = y

(3)
12 + y

(3)
13 + ysw

input(ta, θ3) =
1 − Γta,0

aa′

1 + Γta,0
aa′

(16)

Γta,0
aa′ = e2jθ1

⎡
⎢⎣Sta,0

11 −
e2jθ2

(
Sta,0

12

)2

1 + e2jθ2Sta,0
22

⎤
⎥⎦ (17)

Similarly, adding a shorted line of electrical length −θ1 to port 1 and a line of electrical length −θ2

to port 2, the equivalent circuit is simplified as shown in Fig. 3(b), and the normalized input admittance
seen from section bb′, y

(3)

bb′(ta, 0), is:

y
(3)

bb′(ta, 0) =
i
(3)
2

v
(3)
2

= y
(3)
23 + y

(3)
13 + ysw

input(ta, θ3) =
1 − Γta,0

bb′

1 + Γta,0
bb′

(18)

Γta,0
bb′ = e2jθ2

⎡
⎢⎣Sta,0

22 −
e2jθ1

(
Sta,0

12

)2

1 + e2jθ1Sta,0
11

⎤
⎥⎦ (19)

Equations (16) or (18) are the key to find θ3. In fact, if we load port 4 with a short circuit and
port 3 with a second shorted waveguide of length tb and measure the corresponding S-matrix, Stb,0,
from Eqs. (16) and (18) we can write:

y
(3)
aa′(tb, 0) = y

(3)
12 + y

(3)
13 + ysw

input(tb, θ3) =
1 − Γtb,0

aa′

1 + Γtb,0
aa′

(20)

y
(3)

bb′(tb, 0) = y
(3)
23 + y

(3)
13 + ysw

input(tb, θ3) =
1 − Γtb,0

bb′

1 + Γtb,0
bb′

(21)

where Γtb,0
aa′ ,Γtb,0

bb′ are obtained from Eqs. (17) and (19), replacing ta with tb and Sta,0 with Stb,0. Hence,
from Eqs. (13), (16), (20)

θ3 = arccos

⎡
⎣±
√

y
(3)
aa′(ta, 0) − y

(3)
aa′(tb, 0)

j cot (βtb) − j cot (βta)

⎤
⎦ = arccos

⎡
⎢⎢⎢⎢⎢⎣±
√√√√√√

1 − Γta,0
aa′

1 + Γta,0
aa′

− 1 − Γtb,0
aa′

1 + Γtb,0
aa′

j cot (βtb) − j cot (βta)

⎤
⎥⎥⎥⎥⎥⎦ (22)



Progress In Electromagnetics Research B, Vol. 72, 2017 137

If the shorted waveguide of length tb is replaced by a matched waveguide, the normalized admittance
seen at section cc′ is

ymw
input (θ3) =

1
1 − j tan (θ3)

(23)

and ymw
input replaces ysw

input in Figs. 2 and 3. Moreover, Eq. (22) becomes

θ3 = arccos

⎡
⎢⎢⎢⎢⎢⎣±
√√√√√√

1 − Γta,0
aa′

1 + Γta,0
aa′

− 1 − Γmw,0
aa′

1 + Γmw,0
aa′

−1 − j cot (βta)

⎤
⎥⎥⎥⎥⎥⎦ (24)

Γmw,0
aa′ = e2jθ1

[
Smw,0

11 − e2jθ2(Smw,0
12 )2

1 + e2jθ2Smw,0
22

]
(25)

Smw,0 being the 2-port S-matrix measured with ports 3 and 4 loaded with a matched waveguide and a
short circuit, respectively.

Similarly, the value of the electrical length θ4 can be obtained by loading port 3 with a short circuit
that simplifies the equivalent circuit as shown in Fig. 2, with k = (4). Loading port 4 with two shorted
waveguides of lengths ta and tb, or a shorted waveguide of length ta and a matched load, and defining
S0,ta , S0,tb , S0,mw the corresponding measured 2-port S-matrices, Equations (16)–(21) become

y
(4)
aa′(0, ta) = y

(4)
12 + y

(4)
13 + ysw

input(ta, θ4) =
1 − Γ0,ta

aa′

1 + Γ0,ta
aa′

(26)

y
(4)
aa′(0, tb) = y

(4)
12 + y

(4)
13 + ysw

input(tb, θ4) =
1 − Γ0,tb

aa′

1 + Γ0,tb
aa′

(27)

y
(4)

bb′(0, ta) = y
(4)
23 + y

(4)
13 + ysw

input(ta, θ4) =
1 − Γ0,ta

bb′

1 + Γ0,ta
bb′

(28)

y
(4)

bb′(0, tb) = y
(4)
23 + y

(4)
13 + ysw

input(tb, θ4) =
1 − Γ0,tb

bb′

1 + Γ0,tb
bb′

(29)

y
(4)
12 = y12 y

(4)
23 = y23 + y24 y

(4)
13 = y13 + y14 (30)

with Γ0,ta
aa′ ,Γ0,tb

aa′ ,Γ0,ta
bb′ ,Γ0,tb

bb′ obtained from Eqs. (17) and (19), inverting superscripts ta and 0 and
replacing ta with tb. θ4 can be obtained from Eq. (22) or (24), replacing θ3, S

ta,0, Stb,0, Smw,0 with
θ4, S

0,ta , S0,tb , S0,mw.
The evaluation of the kernel normalized admittances is quite simple. In fact, the susceptances

connected to node 2, y12, y23, y24, can be obtained from Eqs. (11), (12), (14), (16)–(21) and (26)–(30):

y12 =
yp + y

(4)
aa′(0, ta) − y

(4)

bb′(0, ta)
2

=

yp +
1 − Γ0,ta

aa′

1 + Γ0,ta
aa′

− 1 − Γ0,ta
bb′

1 + Γ0,ta
bb′

2
(31)

y23 =
yp − y

(3)
aa′(ta, 0) + y

(3)

bb′(ta, 0)
2

=

yp −
1 − Γta,0

aa′

1 + Γta,0
aa′

+
1 − Γta,0

bb′

1 + Γta,0
bb′

2
(32)

y24 =
1
2

(
1 − Γta,0

aa′

1 + Γta,0
aa′

− 1 − Γta,0
bb′

1 + Γta,0
bb′

− 1 − Γ0,ta
aa′

1 + Γ0,ta
aa′

+
1 − Γ0,ta

bb′

1 + Γ0,ta
bb′

)
(33)
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The remaining three admittances y34, y14, y13 can be evaluated with a linear equation system. In
fact, two independent equations can be obtained from Eqs. (11), (12), (14), (16), (18), (26), (28), (30):

y13 + y34 =
1
2

(
1 − Γta,0

aa′

1 + Γta,0
aa′

− 1 − Γta,0
bb′

1 + Γta,0
bb′

− yp

)
− ysw

input(ta, θ3) (34)

y13 + y14 =
1
2

(
1 − Γ0,ta

aa′

1 + Γ0,ta
aa′

− 1 − Γ0,ta
bb′

1 + Γ0,ta
bb′

− yp

)
− ysw

input(ta, θ4) (35)

The third equation can be obtained loading ports 3 and 4 with a load combination not yet used
and not containing short, chosen between cases (f)–(j) of Table 3, and measuring the corresponding
S-matrix, Scross, at ports 1 and 2. A simple manipulation is done on Scross: two lines of electrical length
−θ1 and −θ2 are connected to ports 1 and 2, to evaluate the S-matrix of the circuit kernel without the
input/output lines, Sker, as shown in Fig. 4(a). The voltages and currents at sections aa′ and bb′ of the
circuit shown in Fig. 4(a) can be evaluated from the knowledge of Sker, for any value of the scattering
amplitudes a1, a2, which can be chosen arbitrarily. For example, if ports 3 and 4 are loaded with two
shorted waveguides with lengths ta and tb. We set a1 = 1, a2 = 1, and we can write:

v1 = a1 + b1 = 1 + Sker
11 + Sker

12 i1 = a1 − b1 = 1 − Sker
11 − Sker

12 (36)

v2 = a2 + b2 = 1 + Sker
21 + Sker

22 i2 = a2 − b2 = 1 − Sker
21 − Sker

22 (37)

i12 = −y12v1 i23 = −y23v2 v24 =
i24
y24

=
i12 + i1 − i2 − i23

y24
(38)

v14 = v24 − v1 v13 = −v1 − v2 (39)

It should be noted that the normalization of the scattering amplitudes with respect to the modal
impedances

√
Z01 and

√
Z02 disappears in Eqs. (36)–(37) because sections aa′ and bb′ are placed at the

output section of the transformers with ratio
√

Z01 : 1 and
√

Z02 : 1 shown in Fig. 4(a).
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Figure 4. (a) The equivalent circuit of the 4-port device shown in Fig. 1(a) with ports 3 and 4 loaded
with two different shorted waveguides of length ta and tb, port 2 with a line of length −θ2 and port 1
with a line of length −θ1. (b) The equivalent circuit of 5-port device. External lines have been omitted.

The equation at node 1 (or 3 or 4) is the third equation that must be written to find the last three
unknown admittances y34, y14, y13:

−i1 = i13 + i12 + i14 = v13y13 − v1y12 + v14

[
y14 + ysw

input(tb, θ4)
]

(40)
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v13, v1, v14 being known quantities, evaluated with Eqs. (36)–(39). Equations (40), (34) and (35) form
a linear equation system in y34, y14, y13 that can be easily solved.

Summing up, the proposed approach permits to evaluate the electrical lengths θ1, θ2 connected to
ports 1 and 2, loading ports 3 and 4 with two shorts, measuring the 2-port S-matrix S0,0 and using
Eq. (12). The other electrical lengths θ3, θ4 are obtained with Eq. (22) applied at port 3 (loading
port 4 with a short and port 3 with two different shorted waveguides and measuring S0,ta , S0,tb) and
at port 4 (loading port 3 with a short and port 4 with two different shorted waveguides and measuring
Sta,0, Stb,0). The three admittances connected to node 2, shared by ports 1 and 2, are obtained with
Eqs. (31)–(33). Finally, loading ports 3 and 4 with a load combination chosen between cases (f)–(j)
in Table 3 and measuring Scross, the remaining three admittances can be evaluated solving the linear
equation system Eqs. (34), (35) and (40), with Sker obtained from Scross. The 4-port Z-matrix of the
proposed equivalent circuit shown in Fig. 1(a) can be easily obtained and transformed in the 4-port
S-matrix. The needed measurements are six.

In absence of experimental errors, the proposed approach gives the exact identification of the
electrical parameters, while in presence of experimental errors some other steps are needed. In fact, any
2-port S-matrix suffers from measurement errors, and the number of error in the scattering parameters
is unknown. Moreover, we can observe that when θ1, θ2 and the electrical length connected to
port k are evaluated, we obtain three S-matrices (for example S0,0, Sta,0, Stb,0 for k = 3) that are
related by the property that only six scattering parameters are linearly independent, as discussed in
Subsection 2.1. Hence, we can apply Eqs. (2)–(3) to evaluate the other three dependent scattering
parameters. Obviously, which are the six most correct scattering parameters is unknown, hence a
procedure similar to that described in Subsection 2.1 must be applied, taking into account all the
combinations of the six independent scattering parameters and evaluating the corresponding electrical
length θk and admittances yk

12, y
k
23, y

k
13 with Eqs. (14), (22), for each combination. The average of all

combinations of each electrical parameter is applied to find the most correct value. This procedure must
be applied to all N -2 ports.

The same approach can be extended to 5-port device, characterized by the equivalent circuit shown
in Fig. 4(b), based on a 5-side polygon, with 10 admittances between nodes, similar to that discussed
in [23] and here redrawn for convenience, with series impedances −jZ0k tan θk, k = 3, 4, 5 in the load
ports. The external lines of length θk, k = 1, . . . , 5 have been omitted. The procedure to evaluate the
circuit parameters follows that previously discussed.

(i) Load ports 3, 4, 5 with 3 short loads and measure the S-matrix at ports 1 and 2, S0,0,0, to obtain
θ1, θ2 and yp with Eq. (12), replacing S0,0

ij with S0,0,0
ij , being yp = y12 + y23 + y24 + y25. (In this

procedure, the superscript characters represent the sequence of loads connected to ports 3, 4, 5).
(ii) Load port 3 with two shorted waveguides of lengths ta and tb and ports 4, 5 with 2 short loads.

Measure the two S-matrices, Sta,0,0 and Stb,0,0, evaluate Γta,0,0
aa′ ,Γtb,0,0

aa′ with Eq. (17), replacing Sta,0
ij

with Sta,0,0
ij or Stb,0,0

ij , to obtain θ3 with Eq. (22), replacing Γta,0
aa′ ,Γtb,0

aa′ with Γta,0,0
aa′ ,Γtb,0,0

aa′ .

(iii) Load port 4 with two shorted waveguides of lengths ta and tb and ports 3, 5 with 2 short loads.
Measure the two S-matrices, S0,ta,0 and S0,tb,0, evaluate Γ0,ta,0

aa′ ,Γ0,tb,0
aa′ with Eq. (17), replacing Sta,0

ij

with S0,ta,0
ij or S0,tb,0

ij , to obtain θ4 with Eq. (22), replacing Γta,0
aa′ ,Γtb,0

aa′ with Γ0,ta,0
aa′ ,Γ0,tb,0

aa′ .

(iv) Load port 5 with two shorted waveguides of lengths ta and tb and ports 3, 4 with 2 short loads.
Measure the two S-matrices, S0,0,ta and S0,0,tb , evaluate Γ0,0,ta

aa′ ,Γ0,0,tb
aa′ with Eq. (17), replacing Sta,0

ij

with S0,0,ta
ij or S0,0,tb

ij , to obtain θ5 with Eq. (22), replacing Γta,0
aa′ ,Γtb,0

aa′ with Γ0,0,ta
aa′ ,Γ0,0,tb

aa′ .

(v) Evaluate the susceptances connected to node 2 of the circuit, with equations similar to Eqs. (31)–
(33)

y12 =
1
2

(
yp +

1 − Γ0,0,ta
aa′

1 + Γ0,0,ta
aa′

− 1 − Γ0,0,ta
bb′

1 + Γ0,0,ta
bb′

)
y23 =

1
2

(
yp −

1 − Γta,0,0
aa′

1 + Γta,0,0
aa′

+
1 − Γta,0,0

bb′

1 + Γta,0,0
bb′

)
(41)
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y24 =
1
2

(
1 − Γta,0,0

aa′

1 + Γta,0,0
aa′

− 1 − Γta,0,0
bb′

1 + Γta,0,0
bb′

− 1 − Γ0,ta,0
aa′

1 + Γ0,ta,0
aa′

+
1 − Γ0,ta,0

bb′

1 + Γ0,ta,0
bb′

)
(42)

y25 =
1
2

(
1 − Γ0,ta,0

aa′

1 + Γ0,ta,0
aa′

− 1 − Γ0,ta,0
bb′

1 + Γ0,ta,0
bb′

− 1 − Γ0,0,ta
aa′

1 + Γ0,0,ta
aa′

+
1 − Γ0,0,ta

bb′

1 + Γ0,0,ta
bb′

)
(43)

(vi) Define 3 equations on the remaining six susceptances y13, y14, y15, y34, y35, y45, similar to (34), (35):

y34 + y35 + y13 =
1
2

(
1 − Γta,0,0

aa′

1 + Γta,0,0
aa′

− 1 − Γta,0,0
bb′

1 + Γta,0,0
bb′

− yp

)
− ysw

input(ta, θ3) (44)

y45 + y13 + y14 =
1
2

(
1 − Γ0,ta,0

aa′

1 + Γ0,ta,0
aa′

− 1 − Γ0,ta,0
bb′

1 + Γ0,ta,0
bb′

− yp

)
− ysw

input(ta, θ4) (45)

y13 + y14 + y15 =
1
2

(
1 − Γ0,0,ta

aa′

1 + Γ0,0,ta
aa′

− 1 − Γ0,0,ta
bb′

1 + Γ0,0,ta
bb′

− yp

)
− ysw

input(ta, θ5) (46)

(vii) Load ports 3, 4 with a combination of loads chosen between cases (f)–(j) of Table 3 and port 5 with
a short load. Measure the S-matrix, Sta,tb,0 for example, and add numerically two lines of length
−θ1 and −θ2 to ports 1 and 2 to evaluate Sker. The 5-port circuit is reduced to the 4-port circuit
of Fig. 4(a) where node 5 becomes node 1, and the admittances between nodes 1 and 2, 1 and 3, 1
and 4 are y12 + y25, y13 + y35 and y45 + y14, respectively. Write the linear equation corresponding
to Eq. (40), with the help of Eqs. (36)–(39):

−i1 = v13(y13 + y35) − v1(y12 + y25) + v14

[
(y14 + y45) + ysw

input(tb, θ4)
]

(47)

(viii) Load ports 3, 5 with a combination of loads chosen between cases (f)–(j) of Table 3 and port 4 with
a short load. Measure the S-matrix, Sta,0,tb for example, and add numerically two lines of length
−θ1 and −θ2 to ports 1 and 2 to evaluate Sker. The 5-port circuit is reduced to the 4-port circuit
of Fig. 4(a) where node 5 becomes node 4, and the admittances between nodes 2 and 4, 3 and 4, 1
and 4 are y24 + y25, y34 + y35 and y15 + y14, respectively. Write the linear equation corresponding
to Eq. (40), with the help of Eqs. (36)–(39):

−i1 = v13y13 − v1y12 + v14

[
(y14 + y15) + ysw

input(tb, θ5)
]

(48)

(ix) Load ports 4, 5 with a combination of loads chosen between cases (f)–(j) of Table 3 and port 3 with
a short load. Measure the S-matrix, S0,ta,tb for example, and add numerically two lines of length
−θ1 and −θ2 to ports 1 and 2 to evaluate Sker. The 5-port circuit is reduced to the 4-port circuit
of Fig. 4(a) where nodes 4 and 5 become nodes 3, and 4 and the admittances between nodes 2 and
3, 1 and 3, 3 and 4, 2 and 4 are y24 + y23, y14 + y13, y35 + y45 and y25, respectively. Write the linear
equation corresponding to Eq. (40), with the help of Eqs. (36)–(39):

−i1 = v13(y13 + y14) − v1y12 + v14

[
y14 + ysw

input(tb, θ5)
]

(49)

(x) Equations (44)–(49) form a linear system on the remaining six susceptances.

The extension to N -port device is discussed in Appendix A.

3. RESULTS

3.1. Measurement Uncertainty

The two proposed methods could contain low reconstruction errors due to various problems, as the VNA
intrinsic measurement uncertainty, uncertainty about the value of the matched load, actual lengths of
the λ

8 (or 3λ
8 ) shift waveguides and the connection between the flanges of the DUT and the loads

connected to ports 3, 4, . . . , N . These uncertainties could cause some errors in the reconstruction of
the DUT S-matrix, and a discussion about their effects is fundamental to understand the limits of the
proposed approaches. Hence, the 4-port WR-90 waveguide device shown in Fig. 5(b), a Tee magic with
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(a) (b) (c)

Figure 5. (a) E-plane T-junction; (b) Tee magic with 90◦ bend at port 2; (c) 5-port device obtained
connecting a Tee magic and a T-junction. A 90◦ bend is connected to port 2 of (b) and (c) to avoid
excessive bending of the coaxial cable connecting this port to VNA, through a coax-waveguide adapter.

90◦ bend at port 2, which will be analyzed in the next section, has been numerically simulated to obtain
its 4-port S-matrix. Then, the 2-port VNA measurements have been numerically obtained connecting
ports 3 and 4 of the numerical 4-port S-matrix to short, λ

8 (or 3λ
8 ) shift waveguides, and matched loads,

as discussed in the previous section. The possible measurement errors have been simulated as follows.

• To simulate the VNA intrinsic measurement uncertainty, the 2-port simulated measurements have
been changed, adding a random error to the third, fourth or fifth decimal digit of each scattering
parameter. Hence, Smeasured

ij = Sexact
ij + δm10−3ejδφ , where Sexact

ij is the exact numerical scattering
coefficient of the analyzed structure shown in Fig. 5(b), simulated with CST, and δm and δφ are
random integers varying in the ranges −9÷ 9 and 0÷ 2π, respectively. In doing so, a random error
is added to the third decimal digit of each scattering parameter. To simulate the same error in the
fourth or fifth decimal digit, 10−3 is replaced by 10−4 or 10−5.

• To simulate the uncertainty of the value of the matched load, the corresponding 2-port simulated
measurements have been obtained by loading port 3 or 4 with a numerical load with reflectivity
equal to −30 dB, −40 dB or −50 dB, over the whole band of interest.

• To simulate the uncertainty due to the connections between the flanges of the loads and the DUT,
the corresponding 2-port simulated measurements have been obtained by inserting a numerical load
with reflectivity equal to −40 dB or −50 dB between the loads and the DUT.

• To simulate the uncertainty of the length of the λ
8 , 3λ

8 shift waveguides, an error equal to the
mechanical precision has been taken into account. For example, if the mechanical precision
is δl = 0.03 mm (the same of our FLANN calibration kit), the corresponding 2-port simulated
measurements have been obtained by loading port 3 or 4 with λ

8 or 3λ
8 shift waveguides of actual

lengths equal to ta = 4.835 ± 0.03 mm and tb = 14.458 ± 0.03 mm, respectively.

Once the 2-port simulated measurements have been evaluated, they are used to reconstruct the
4-port S-matrix with the two approaches discussed in the previous section. The effects of the above
uncertainties are analyzed in Fig. 6 where the difference between exact and reconstructed scattering
coefficients with the S-direct approach, ΔSij = |Sexact

ij − Ss
ij|, is shown for the case of the VNA

uncertainty set at the third decimal digit. The main effect is recognizable on S24 (red curve of Fig. 6(b))
which should be less than −80 dB for the numerical Tee magic simulated with CST: the VNA uncertainty
produces a maximum error of about 0.06 at 9.2 GHz on S24, which is about −24 dB at this frequency.
The other scattering coefficients, which are greater than zero, have an acceptable reconstruction error,
as shown in the same figure. The reconstruction errors decrease if the VNA uncertainty is set to the
fourth or the fifth decimal digit, as shown in the first three lines of Table 4, where: (a) ΔSmax

24 is the
maximum difference between the reconstructed and the exact value of S24; (b) Smax

24 is the maximum
value of the reconstructed value; (c) ΔSmax

ij is the maximum difference between the reconstructed and
the exact values of the other scattering coefficients, over the whole band. The best results are obtained
with the VNA uncertainty set to the fifth decimal digit. For our Agilent 8510C network analyzer, the
uncertainty can be assumed equal to the fourth decimal digit if the IF filter of the VNA is set to 1K,
and this can be deduced comparing the values of measured S12 and S21 of a reciprocal device. In fact,
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(a) (b)

Figure 6. ΔSij = |Sexact
ij − Ss

ij| of the Tee magic shown in Fig. 5(b): Sexact
ij and Ss

ij are the scattering
coefficients of the exact numerical 4-port S-matrix and of the reconstructed 4-port S-matrix with the
S-direct approach, respectively. The curves refer to the VNA uncertainty at the third decimal digit.

Table 4. Analysis of measurement uncertainty for the structure shown in Fig. 5(b).

ΔSmax
24 Smax

24 (dB) ΔSmax
ij

Uncertainty S approach EC approach S approach EC approach S approach EC approach
VNA

10−3 0.062 0.014 −24.2 −36.8 0.038 0.014
10−4 0.027 0.0012 −31.2 −58.4 0.015 0.0014
10−5 0.009 0.0002 −41.2 −73.7 0.001 0.0002

Matched Load
−30 dB 0.013 0.028 −37.5 −31.1 0.035 0.041
−40 dB 0.004 0.008 −47.6 −41.4 0.009 0.013
−50 dB 0.0012 0.003 −58 −51.7 0.003 0.004

Flange
−40 dB 0.005 0.007 −47.6 −43.4 0.013 0.015
−50 dB 0.0013 0.004 −57.7 −53.7 0.004 0.005

λ
8 shifted waveguide length

−0.03mm 0.00006 0.0014 −140 −57.2 0.0046 0.0036
0.03mm 0.00006 0.0014 −140 −57.2 0.0045 0.0036

3λ
8 shifted waveguide length

−0.03mm 0.00002 0.0020 −150 −54.3 0.0045 0.0026
0.03mm 0.00002 0.0019 −150 −54.5 0.0046 0.0026

S12 and S21 differ in the third decimal digit if the IF filter is not set and in the fourth decimal digit if it
is set to almost 1K. Greater values of the IF filters produce a negligible improvement of the precision
with a remarkable increase of the measurement time. Hence, with this choice, we can expect a value of
the reconstructed S24 in the range −30 ÷−40 dB.

The second uncertainty is due to the actual value of the matched load, as discussed above. The
errors of the reconstructed value of the scattering parameters are reported in Table 4 in the lines
relative to matched load, in the hypothesis of a matched load with values −30 dB, −40 dB or −50 dB
over the whole band of interest: this uncertainty is less important than the previous one for the S-direct
approach. Similar considerations apply to the uncertainty due to the connections between the flanges
of the ports and the DUT (Table 4, lines relative to flanges).
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Finally, the uncertainty on the mechanical precision (±0.03 mm) of the length of the shifted
waveguides is shown in Table 4 in the lines relative to λ

8 and 3λ
8 shifted waveguide length. It is evident

that this uncertainty can be considered irrelevant, for the S-direct approach.
The same simulations have been performed for the EC-approach, and the results are summarized

in Table 4 in the columns relative to the EC-approach. For the EC-approach, the effect of the VNA
uncertainty is less than the S-direct approach, while the effects of the matched load (if used, choosing
cases (h)–(j) of Table 3) and of the flanges connection are greater than the S-direct approach. The
effects of the lines’ lengths are more pronounced than the S approach but always very low. From the
previous discussion, we can consider to neglect the uncertainty due to the actual lengths of the shifted
waveguide for both approaches, while the other uncertainties play different roles. In fact, the matched
load and flanges uncertainties seem to afflict the S-matrix reconstruction more in the EC-approach
than in the S-approach, while the opposite applies to the VNA uncertainty.

The analysis of the measurement uncertainty relative to the 5-port device shown in Fig. 5(c) is
very similar and is not shown for brevity.

3.2. Experimental Results

The two proposed approaches have been applied to evaluate the S-matrices of 3-port, 4-port and 5-port
WR-90 waveguide devices, shown in Fig. 5: an E-plane T-junction, a Tee magic and a Tee magic joined
to a T-junction to obtain a 5-port device. A 90◦ bend is added to port 2 of Figs. 5(b) and 5(c), the
second measurement port, to avoid an excessive bending of the coaxial cable connecting VNA to the
coaxial-waveguide adapter. The loads in the FLANN calibration kit for WR-90 waveguide (Bronze
series, serial number 27) have been used to load ports 3, 4 and 5. The shorted waveguides are obtained
closing the λ

8 or the 3λ
8 shift waveguide (lengths ta = 4.835 mm and tb = 14.458 mm, respectively) with

a short (contained in the calibration kit).
The amplitude and phase of the reconstructed Sij for the T-junction of Fig. 5(a) are shown in

Fig. 7. For each amplitude of Sij , two curves are shown in Fig. 7(a), the first (superscript s) referring to
the S-direct approach and the second (superscript ec) to the EC-approach: the agreement is good. The
agreement for the phases Φij = arg(Sij) of scattering coefficients is very good, as shown in Fig. 5(b),
where the phase difference between the two approaches, ΔΦij = Φs

ij − Φec
ij , is reported.

The obtained results have been compared also with the experimental S-matrix of the T-junction,
obtained closing one port at a time on a matched load and measuring the scattering coefficients occurring
between the other two ports. Obviously, the experimental S-matrix suffers from some errors, as discussed

(a) (b)

Figure 7. (a) Reconstruction of |Sij| of the E-plane T-junction, shown in Fig. 5(a). Two curves are
shown for each scattering parameter, the first (superscript s) referring to the S-direct approach and
the second (superscript ec) to the EC-approach. (b) Phase difference between the two approaches,
ΔΦij = Φs

ij − Φec
ij .
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Table 5. Comparison between reconstructed |Sij| and experimental values for the structures shown in
Fig. 5 (worst case).

Maximum deviation
in whole band (dB)

Benchmark
(experimental results) Exceptions

E-plane T-junction, Fig. 5(a)
|Sexp

ij |dB − |Ss
ij|dB 0.28 S33 none

|Sexp
ij |dB − |Sec

ij |dB 0.25 S33 none
Tee-magic, Fig. 5(b)

|Sexp
ij |dB − |Ss

ij|dB 0.34 S44 S24, see Fig. 8(b)
|Sexp

ij |dB − |Sec
ij |dB −0.32 S11 S24, see Fig. 8(b)

Tee-magic&T-junction, Fig. 5(c)
|Sexp

ij |dB − |Ss
ij|dB 0.43 S45 S12,S25, see Fig. 9(b)

|Sexp
ij |dB − |Sec

ij |dB −0.49 S11 S12,S25, see Fig. 9(b)

(a) (b)

(c) (d)

Figure 8. (a) and (b): reconstruction of |Sij| for the Tee magic with 90◦ bend at port 2, shown in
Fig. 5(b). Two curves are shown for each scattering parameter, the first (superscript s) referring to
the S-direct approach and the second (superscript ec) to the EC-approach. Experimental values of S24

are shown in (b). (c) Phase difference between the two approaches, ΔΦij = Φs
ij − Φec

ij , for all scattering
parameters except S24. (d) Φs

24 and Φec
24.
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(a) (b) (c)

(d) (e) (f)

Figure 9. (a)–(c): reconstruction of |Sij| of the 5-port device, shown in Fig. 5(c). Two curves are shown
for each scattering parameter, the first (superscript s) referring to the S-direct approach (Subsection
2.1) and the second (superscript ec) to the EC-approach (Subsection 2.2). Experimental values of S12

and S25 are shown in (c). (d)–(e): phase difference between the two approaches, ΔΦij = Φs
ij − Φec

ij , for
all scattering parameters except for S12 and S25. (f): Φs

12,Φ
ec
12,Φ

s
25, and Φec

25.

in the Introduction, due to the three disconnections and reconnections of the device. The reconstructed
values of Sij with the two proposed approaches have been compared with the experimental values, used
as benchmark. This comparison is summarized in Table 5, where the worst case for all Sij is reported:
for the T-junction, the greater difference between the experimental (superscript exp) and reconstructed
values, expressed in dB, |Sexp

ij |dB − |Ss,ec
ij |dB, is less than 0.28 dB for |S33| in the worst case.

The amplitude and phase of the reconstructed Sij for the 4-port Tee magic of Fig. 5(b) are shown in
Fig. 8. The reconstructed values of |S24| are shown in Fig. 8(b), together with the experimental results,
obtained with the same procedure used for the experimental results of the T-junction. The curves
relative to |S24| are less than −40 dB, a very low value, and the reconstructed and experimental values
show different behaviors. This effect is probably due to VNA, matched load and flanges uncertainties,
which could interact with the reconstruction of very low values, as discussed in the previous subsection.
The two approaches may give better results if precision dowels are used to connect the flanges of the
FLANN coaxial-waveguide adapter (where dowels are present) and the flanges of the device under test
(where dowels are not present). The values of |Sij| reconstructed with the two proposed approaches,
except |S24| (col. 4), have been compared with the experimental values, used as benchmark, as shown
in the rows of Table 5 relative to the Tee-magic: the greater difference between the reconstructed and
experimental values is less than ±0.35 dB for S44 (S-approach) or S11 (EC-approach) in the worst case.

For each phase of Sij, except S24, the difference between the phases reconstructed with the two
approaches is shown in Fig. 8(c): the phase differences are very low, showing that the two proposed
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approaches work quite well for the scattering coefficients with not negligible values. The reconstructed
phase of S24 is shown in Fig. 8(d), and it is evident that there are different behaviors for the two
approaches, due to the very low value of |S24|.

The main problem in applying the S-direct approach to reconstruct N -port S-matrix is that this
approach is expensive because of the cost of N -2 well calibrated and tested matched loads. On the
contrary, the EC-approach could solve this problem, because N -2 shorts, not matched waveguides, are
needed, and a low cost solution can be proposed, because a waveguide short can be simply realized in
any mechanical laboratory starting from an aluminum substrate (or brass, bronze, . . .) of some mm
height. This was done in our laboratory, and one waveguide short was realized. Joining the waveguide
calibration kit and this new waveguide short, the EC-approach can be applied to measure 5-port
waveguide device. For the S-direct approach, a third calibrated matched waveguide must be used.

The results relative to the 5-port device of Fig. 5(c) are shown in Fig. 9: even in this case, the
reconstruction of |Sij| with the two proposed approaches gives very similar results (Fig. 9(a)–9(b)).
Small differences appear for |S12| and |S25| that have very low values, as shown in Fig. 9(c), where the
experimental values are reported as benchmarks. It should be noted that the value of S12 is exact in the
S-direct approach because it is directly measured when ports 3, 4 and 5 are connected to three matched
loads. Hence, S12 obtained with the EC-approach contains reconstruction errors, due to its low value,
and probably, the use of precision dowels at the 5 ports of the device could increase the precision of S12

reconstruction. It should be noted that with the S-direct approach, |S12| ≈ |S25|, while with the EC
approach these scattering coefficients show a similar behavior but with different values. The comparison
of the reconstructed values of |Sij | with the experimental values, except for |S12| and |S25|, is shown in
the last two rows of Table 5, and the error is less than ± 0.5 dB, in the worst cases (|S45| and |S11|),
showing good agreement again.

4. CONCLUSIONS

Two different approaches (S-direct and Equivalent Circuit) have been proposed and discussed to
reconstruct the S-matrix of N -port waveguide device, using a set of measurements performed always at
the same 2-ports, loading the other N -2 ports with different loads. In doing so, the DUT must not be
moved, reducing the number of movement cables. Moreover, hardware switching matrices, required in
other approaches, are not used. The loads to be connected to the DUT are in a FLANN calibration kit
for WR-90 waveguides and consist in two calibrated matched waveguides, two shorts and two calibrated
different shifts (λ

8 and 3λ
8 at center frequency of the X band). The first S-direct approach requires N -2

calibrated matched waveguides while the second EC-approach requires N -2 shorts, which can be easily
realized in a mechanical laboratory, with very low cost and good precision. The results show very good
agreement for both the approaches. Only the scattering parameters with very low value contain errors
in their evaluation. These errors could be lowered if precision dowels are used to connect the flanges of
the coaxial-waveguide adapter to the flanges of the device under test.

APPENDIX A.

The EC-approach can be extended to N -port device, characterized by N(N+1)/2 scattering parameters,
defining an equivalent circuit based on a kernel obtained from a N -side polygon [25], with admittances
between nodes, and connecting the sides relative to ports 1 and 2 to transmission lines of lengths θ1

and θ2 and the other N -2 sides to series impedances −jZ0k tan θk followed by transmission lines of
length θk, k = 3, 4, . . . , N . The procedure to evaluate the electrical parameters of the equivalent circuits
is similar to that previously discussed: firstly, the electrical lengths θ1, θ2, . . . , θN are evaluated, then
the N -1 susceptances connected to node 2 are obtained, and finally, a linear system on the remaining
admittances is solved. The steps are as follows:

(i) Load ports 3, 4, 5, . . . , N with N -2 short loads and measure the S-matrix at ports 1 and 2 to obtain
θ1, θ2 and yp with Eq. (12), being yp = y12 +

∑N
i=3 y2i.

(ii) Load ports 3, 4, . . . , N with N -3 short loads, except port k that is loaded with two shorted
waveguides of lengths ta and tb or with a shorted waveguides of length ta and a matched load.
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Measure the corresponding two S-matrices at ports 1 and 2 to obtain θk with Eq. (22) or (24) and
repeat for k = 3, 4, . . . , N . Moreover

y12 =
yp + y

(N)
aa′ (ta) − y

(N)

bb′ (ta)
2

y23 =
yp + y

(3)

bb′ (ta) − y
(3)
aa′ (ta)

2
(A1)

y2i =
y

(i-1)
aa′ (ta) − y

(i-1)

bb′ (ta) − y
(i)
aa′(ta) + y

(i)

bb′(ta)
2

(A2)

with 4 ≤ i ≤ N . y
(i)
aa′(ta) and y

(i)

bb′(ta) are the admittances seen from section aa′ or bb′ when port i
is connected to a shorted waveguides of length ta and the other ports to a short (see Eqs. (16), (18)
or (41)–(43)). In doing so, N electrical lengths and N − 1 susceptances in Eqs. (A1)–(A2) can be
evaluated. N -2 linear equations, corresponding to Eqs. (34)–(35) or (44)–(46), can also be written,
with 3 ≤ i ≤ N :

i∑
m=3

N∑
j=i+1

ymj +
i∑

j=3

y1j =
y

(i)
aa′(ta) − y

(i)

bb′(ta) − yp

2
− ysw

input(ta, θi) (A3)

(iii) Load ports 3, 4, 5, . . . , N with N -4 short loads, except ports i and j (j > i) that are loaded with
two shorted waveguides of lengths ta and tb or with a shorted waveguides of length ta and a
matched load (cases (f)–(j) of Table 3). Measure the S-matrix Si,j

cross at ports 1 and 2, evaluate the
corresponding kernel matrix Si,j

ker of the 2-port circuit, similar to that shown in Fig. 4(a), and write
the corresponding Equation (40) at node 1:

−i1 = v13

⎛
⎝ i∑

m=3

y1m +
i∑

m=3

N∑
n=j+1

ymn

⎞
⎠+ v14

⎡
⎣ j∑

m=i+1

y1m +
j∑

m=i+1

N∑
n=j+1

ymn + ysw
input(tb, θj)

⎤
⎦

−v1

⎛
⎝y12 +

N∑
m=j+1

y2m

⎞
⎠ (A4)

v1, v13, i1 and v14 are voltages and currents similar to Eqs. (36)–(39), obtained with Si,j
ker. If a

matched load is connected to port j, ymw
input(θj) replaces ysw

input(tb, θj) in Eq. (A4).
Repeat for 3 ≤ i ≤ N and i + 1 ≤ j ≤ N .

The N -2 equation (A3) and (N2 − 5N + 6)/2 equation (A4) form a linear system in the remaining
admittances that can be easily solved. Once the N(N + 1)/2 electrical parameters of the equivalent
circuit have been evaluated, the Z-matrix of the circuit kernel can be obtained with KVL. The kernel S-
matrix is obtained with S = (ζ +I)−1(ζ−I), ζ being the normalized Z-matrix, and the overall S-matrix
is derived shifting the ports of the kernel S-matrix for an amount equal to θk for k = 1, 2, . . . , N .
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