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Electromagnetic Levitation of Nonmagnetic Disc

Dariusz Spa�lek*

Abstract—The paper presents analytical solution of nonmagnetic and conductive disc levitation
problem. The alternating magnetic field exerts eddy currents in conductive disc and levitation force,
subsequently. The electromagnetic field and eddy currents distributions are determined. The force
acting upon nonmagnetic disc (Lorentz, Maxwell, coenergy methods) and power losses (Joule volume
integral, Poynting surface integral methods) are evaluated. For example, levitation force and power
losses versus field frequency are figured out. Additionally, an optimization task for power losses at
constant disc volume is solved.

1. INTRODUCTION

In many engineering applications, solutions of Maxwell equations are required over a wide parameters
range. The nature of the analytical solution provides a set of general information about influence of
admissible parameters on integral quantities. Often, the solution is obtained for wide range of frequency,
conductivity and other parameters. Moreover, with respect to the taken assumptions it can be treated
as an accurate solution of given problem. In practice, the analytical solution can be used for two
main purposes. Firstly, analytical solution is a benchmark test for numerical procedures. Secondly,
the analytical solution constitutes a start point for numerical methods that solve nonlinear problems.
Moreover, analytical solution could minimize the computational effort by designing hybrid solutions of
both analytical and numerical procedures.

The objective of this paper is to present analytical solution and state some conclusions for
nonmagnetic disc levitation in alternating magnetic field. The present paper is structured as follows:
analysis of excitation in axial field, superposition with radial field, levitation force evaluation by three
methods (Lorentz, Maxwell, coenergy), checking power balance and giving examples of the proposed
approach.

The novelty of the solution presented is taking into account both axial and radial magnetic fields
inductions.

2. ELECTROMAGNETIC LEVITATION

Electromagnetic levitation is a phenomenon that may lead to raising an object in gravitational field by
exerting electromagnetic force [1, 3, 4]. Electromagnetic levitation systems have received wide attention
recently because of their practical importance in many engineering systems such as high-speed trains,
frictionless bearings, vibration isolation of sensitive actuators, levitation of molten metal in induction
furnaces [2, 4, 6–9].

Particularly, the levitation could be caused by:

- Inhomogeneity force component and/or hysteresis phenomenon (magnetic levitation),
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- Lorentz force acting upon currents induced in an conductive object (electromagnetic levitation).

- Poynting component (electromagnetic field momentum component) that is out of technical interests
due to significantly high field frequency needed.

Magnetic levitation caused by inhomogeneity force component appears on outer surface of
ferromagnetic objects where the reluctivity changes [10–15]. Magnetic levitation can also be caused
by magnets (permanent, electromagnets) especially in maglev techniques. However, the nonmagnetic
objects may levitate mostly in alternating magnetic field as a result of electromagnetic induction in
conductive nonmagnetic object (e.g., disc). The levitation force is a result of the induced eddy currents
in magnetic field. In order to obtain levitation force of needed value, the magnetic field has to be designed
in a certain way. There are necessary axial and radial fields for causing the levitation. It should be
pointed out that the eddy currents in conductive object lead to power losses, and consecutively, the
object (feedstock, droplet) may be molten without any pot.

3. MAGNETIC FIELD EXCITATION

Electromagnetic levitation may appear while Lorentz forces could lift an object in the presence of
gravitation field. Lorentz forces act on currents induced in conductive object, e.g., cylinder (disc) in
magnetic field. For nonmagnetic object

μ = μ0, (1)

only Lorentz force can lift them in gravitation field. Due to assumption that there are forces induced by
magnetic hysteresis, permanent magnets, magnetic anisotropy and reluctivity change [1, 3, 11, 12, 16–
18]. The electromagnetic levitation is immanently connected with the presence of power losses. The
power losses can melt the levitating object as well without putting them into any pot.

Let us consider a cylinder (disc, plate) in which symmetry axis z is vertical, i.e., parallel to
gravitational field lines — Fig. 1. The axial magnetic field B0 is induced by certain coils, and this
design is another problem [4, 6, 8].

The magnetic field is harmonic at frequency f . The complex notation for force calculation is
applied. For axial field (Bφ = 0, Bρ = 0, derivatives vanish with respect to the angle ∂/∂ϕ = 0, Fig.

Figure 1. Cylinder (disc) in axial magnetic field.
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1), the following can be written

Bρ =
∂Az

ρ∂ϕ
− ∂Aϕ

∂z
= −∂Aϕ

∂z
= 0, (2)

Bϕ =
∂Aρ

∂z
− ∂Az

∂ρ
= −∂Az

∂ρ
= 0, (3)

Bz =
∂(ρAϕ)

ρ∂ρ
− ∂Aρ

ρ∂ϕ
=

∂(ρAϕ)

ρ∂ρ
. (4)

Thus the magnetic flux density can be described by only one component of magnetic vector potential
Aφ

�B =
�iz
ρ

∂(ρAϕ)

∂ρ
, (5)

and it follows (
curl �B

)
ϕ

= −�iϕ ∂(ρBz)

∂ρ
= −�iϕ ∂

∂ρ

(
∂(ρAϕ)

ρ∂ρ

)
. (6)

Eq. (6) and Ampère-Maxwell law for isotropic, homogeneous, stationary and linear disc lead to the
second order differential equation

∂2Aϕ

∂ρ2
+

∂Aϕ

ρ∂ρ
− 1

ρ2
Aϕ = −μ(Jϕ + sDϕ), (7)

where Jφ denotes the conduction current, sDφ the displacement current, s = j2πf , and f the frequency
of field. For magnetic potential vector tangential component, Bessel equation takes the form

∂2Aϕ

∂ρ2
+

∂Aϕ

ρ∂ρ
−

(
Γ2 +

1

ρ2

)
Aϕ = 0, (8)

with the solution [5, 19–21] as follows

Aϕ(ρ) = aI1(Γρ) + bK1(Γρ), (9)

where I1( ), K1( ) are the Bessel functions of the third order [5], a, b the constants, and Γ =
√

sμγ + s2με.
Constant b must be set to b = 0 because function K1( ) and its derivative have got singularity for ρ = 0.
Magnetic flux density for conductive region is given by the following relation

�B = −�iρ∂Aϕ

∂z
+
�iz
ρ

∂(ρAϕ)

∂ρ
= a

�iz
ρ

∂(ρI1(Γρ))

∂ρ
=�izaΓI0(Γρ), (10)

where one of the equalities for derivative of Bessel function I0( ) is applied [5].
For nonconductive region ρ > R is satisfied(

curl �B
)
ϕ

= −�iϕ∂(ρBz)

∂ρ
= −�iϕ ∂

∂ρ

(
∂(ρAϕ)

ρ∂ρ

)
= 0, (11)

thus tangential component Aφ of magnetic potential vector is given by the relation

Aϕ =
1

2
cρ +

d

ρ
, (12)

where c and d are integration constants. The solution in Eq. (12) can be validated by putting them
directly into Eq. (11). For nonconductive region ρ > R magnetic flux density is as follows

�B = −�iρ∂Aϕ

∂z
+
�iz
ρ

∂(ρAϕ)

∂ρ
=�izc. (13)

Constant c is equal to magnetic flux density axial component c = B0 forced along axis z. Constants
a, d are evaluated by two continuity conditions for: radial components of magnetic flux density and
tangential components of magnetic field strength at the boundary of disc for ρ = R, hence resulting in

a = B0/(ΓI0(ΓR)), (14)

d = R(aI1(ΓR) − 0.5B0R). (15)
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Axial magnetic field does not lead to levitation. The axial field induces current I2 and exerts only
Lorentz force Fρ oriented radially (Fig. 2). Moreover, the inhomogeneity force does not appear due to
the lack of change of reluctivity at the bottom and top bases of cylinder (disc).

In order to cause disc levitation, a field with radial component is needed, i.e., passing through side
surface of disc (cylinder) as shown in Fig. 3. Both magnetic fields axial and radial component can exert
Lorentz force (levitation force). Let us assume the presence of a second magnetic field, denoted by index
2, with components as follows

B2ρ = Cρ/2, B2ϕ = 0, B2z = −Cz, (16)

where z = 0 for the centre of disc (Fig. 3). It should be emphasized that the field distribution in Eq. (16)
is valid in the disc volume and nearby only.

Figure 2. Lorentz force �Fρ exerted by axial
magnetic field (magnetic flux density change

Δ �B exerts current I2 that subsequently leads

to Lorentz force; �Bind magnetic flux density
exerted by current I2).

Figure 3. Second magnetic field given by Eq. (16)
— the cross-section sketch (h disc height).

Exerting magnetic field with both axial and radial components, i.e., design of the coils shape, is a
technical problem which sometimes is difficult to solve [4, 6, 8]. The main idea of constructing such an
excitation system is depicted in Fig. 4. The designed number and shapes of the coils do not depend
only on electromagnetic field requirements, e.g., the supply circuit and mechanical problems significantly
influence the coils design, too.

The second magnetic field (with radial component) given by Eq. (16) has got the divergence equal
to zero. The curl of the second magnetic field is equal to zero, i.e., the radial field is irrotational. It
is easy to check this by calculating the curl of field in Eq. (16) taking into account Eq. (1). As a
consequence of the assumption in Eq. (16) — according to the Faraday law after integrating over ρ —
the electric field strength longitudinal component is as follows

E2ϕ =
s

2
Czρ +

D

ρ
. (17)

Constant D = 0 because the electric field is limited for ρ < R. Furthermore, constant C describes
modulus and phase of the radial field with index 2. If both fields, axial and radial, are excited by the
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Figure 4. Main idea of excitation system construction for levitation system [4, 6, 8].

same coils, the phases of both fields are equal. Constant C value is depended on the number of coils
and current in excitation coils (Fig. 4). The radial magnetic field also causes additional eddy currents
in conductive disc. Namely, according to Eqs. (1) and (16) the radial magnetic field strength rotation
equals zero. Hence, the Ampère-Maxwell law in the form of

curl �H2 = �J2 + γ �E2 + sε �E2, (18)

determines the additional eddy currents density �J2 as given below

�J2 = −(γ + sε) �E2. (19)

This current density �J2 is much less than the currents density induced by axial magnetic field, and
as a consequence, their power losses are significantly less than the power losses caused by axial field.

Finally, the total magnetic and electric fields are the sum of the two fields resulting from axial and
radial excitations, respectively.

4. LEVITATION FORCE AND POWER BALANCE FOR NONMAGNETIC DISC

Force acting on nonmagnetic disc of height h, radius R and magnetic permeability μ = μ0 is calculated
by means of:

a) Maxwell tensor,

b) coenergy function, and

c) Lorentz force density.

It should be underlined that the inhomogeneity component does not appear because the disc is
nonmagnetic.

a) Maxwell tensor for cylindrical co-ordinate system z axis component

�σz = −Hz
�B +�izeμ. (20)

leads to the total force acting on disc by integrating them over closed surface including the
disc [Appendix, 1, 18]. The density of total force is equal to

fz = − div(�σz), (21)

thus the volume integral thereof is as follows

FMz =

∫
V

fzdV = −
∫
V

div(�σz)dV = −
∫
S

�σzd�S. (22)
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The surface integral

FMz =

∫
S

(
Hz

�B −�izeμ

)
· d�S, (23)

is the sum of integrals over two bases areas and side area, and it is given below for complex vectors

FMz =
πR

μ0

z0+h∫
z0

Re{B∗
zBρ}dz +

π

2μ0

R∫
0

(
|Bz|2

∣∣∣
z0+h

− |Bz|2
∣∣∣
z0

)
ρdρ, (24)

where z0 = −h/2 is axial coordinate of lower base of the disc.
b) The total force can also be calculated by partial derivative of magnetic coenergy function WC

with respect to z [1, 14, 15, 17, 20, 22]

FCz =
∂WC

∂z

∣∣∣∣
�J=const

=

∫
V

�J
∂ �A

∂z
dV . (25)

The complex vectors can be applied in equations

FCz = π

z0+h∫
z0

R∫
0

Re

{
(γEϕ + J2ϕ)

dA∗
2ϕ

dz

}
ρdρdz. (26)

c) The physical reason of exerting the levitation force constitutes the Lorentz force, hence for
complex vectors

FLz =

∫
V

Re
{(

�J × �B∗
)
z

}
dV , (27)

which can be developed in the form of two integrals

FLz = −π

z0+h∫
z0

R∫
0

Re
{

(γEϕ + J2ϕ)B∗
ρ

}
ρdρdz. (28)

The three methods: Maxwell tensor, coenergy and Lorentz force density rigorously lead to the same
value

FMz = FCz = FLz , (29)

if the displacement current density module |sDφ| can be neglected in comparison with the conduction
current density module |Jφ|

|sDϕ| � |Jϕ| . (30)

In such a case, the so-called Poynting force component [Appendix, 17–19, 22]

�fP =
∂
(
�D × �B

)
∂t

, (31)

vanishes fPz → 0. Additionally, for checking the previous calculations the Poynting force component is
calculated by means of complex vectors

FPz = −2π

z0+h∫
z0

R∫
0

Re
{

Re(s)εEϕB
∗
ρ

}
ρdρdz, (32)

and always remains equal to zero for considered fields frequencies.
The calculations of forces bring the conclusions that maximal levitation force FMz = FLz is oriented

vertically upwards (i.e., towards z axis in Fig. 1) for real C and C · B0 > 0. T is condition resulting
from Eqs. (14)–(16).

Moreover, for checking the accuracy of the analytical solutions proposed, power balance is
controlled. Electromagnetic field power balance components [1, 15, 20] by means of complex vectors
are as follows:
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- power losses

Pγ = π

z0+h∫
z0

R∫
0

[
Eϕ

(
γE∗

ϕ + J∗
2ϕ

)]
ρdρdz, (33)

- change in time of magnetic energy

Eμ =
π

2μ

z0+h∫
z0

R∫
0

{
|Bρ|2 + |Bz|2

}
ρdρdz, (34)

which satisfies the balance equation [1, 3, 10, 11, 18, 19]

SP = Pγ + 2sEμ, (35)

where s = j2πf .
Poynting vector surface integral SP over the outer areas of the disc (the normal is oriented inside)

equals

SP = π

R∫
0

{(
EϕH

∗
ρ

)∣∣
z0+h

− (
EϕH

∗
ρ

)∣∣
z0

}
ρdρ− πR

z0+h∫
z0

Re {EϕH
∗
z} dz. (36)

The power losses are an important quantity, which determines temperature rise of levitating disc
and enable the evaluateion of approximate time of reaching the melting point for the disc (i.e., to become
a liquid).

All the above presented analytical solutions can be treated as benchmark tasks for numerical
methods [1, 18, 21, 23].

5. EXAMPLES

For example, for nonmagnetic disc as follows: height h = 2 mm, radius R = 5 mm, conductivity
γ = 35 · 106 S ·m−1 at the fields frequency f = 0.1 MHz, axial magnetic flux density B0 = 0.7 T,
constant for radial field C = 0.7 T·m−1 (phases of both fields are the same) the levitation force is
positive: FMz = FLz = FCz = 29 mN. Power losses are equal to Pγ = 1007 kW, which confirms the
real part of Poynting vector surface integral SP = (1007 + j1036) VA. Magnetic field energy is equal to
Eμ = 0.82 mJ.

While disc is levitating, it is heated thoroughly, and its temperature rises rapidly. For aluminum disc
density d = 2.7 103 kg/m3, specific heat cw = 900 J/(kg ·K) and time Δt = 1 ms, the rise of temperature
approximately equals ΔT = 2.6 K and enables melt of the aluminum disc (tmeltingAl = 660◦C) in a few
minutes. The average power volume density in disc area is equal to about 6.4 109 W ·m−3.

In Fig. 5, levitation force (calculated by means of Lorentz and Maxwell methods) vs. field frequency
is presented. It should be pointed out that the levitation force reaches a certain maximal value (about
11 mN in Fig. 5). Hence, it results in that only cylinder (disc) of limited mass can levitate in a given
excitation field.

Fig. 5 shows that the levitation force increases with the frequency and converges monotonically to
maximal (limit) value

FL max = π
B0C

2μ0
R2h, (37)

for |ΓR| � 1 as it results directly from integral in Eq. (28) taking into account Eqs. (12), (16) and
approximation

Iν(z) ≈ exp(z)√
2πz

, (38)

which is valid for arguments with great modulus |z| for any ν.
In Fig. 6 there are presented power losses evaluated by two methods: Joule-Lenz volume integral

and Poynting vector surface integral. Additionally, Fig. 7 presents the ratio in Eq. (39) of power losses to
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Figure 5. Levitation force calculated by methods: Maxwell (points) and Lorentz (line) for nonmagnetic
disc (h = 2 mm, R = 3 mm, γ = 56 · 106 S ·m−1, fmax = 0.5 MHz, B0 = 0.7 T, C = 0.7 T ·m−1) vs.
frequency.

Figure 6. Power losses calculated by methods: Joule-Lenz (line) and Poynting (points) for nonmagnetic
disc (h = 2 mm, R = 3 mm, γ = 56 · 106 S ·m−1, maximal frequency fmax = 0.5 MHz, B0 = 0.7 T,
C = 0.7 T ·m−1) vs. frequency.

square root of field frequency vs. frequency. It is shown in Fig. 7 that the power losses are approximately
proportional to frequency square root near upper limit of considered frequency interval, i.e.,

Pγ√
f
≈ const. (39)

The limit property in Eq. (39) results from the approximation in Eq. (38). Assuming that power
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losses determine mainly axially exerted field in Eq. (9) with constant in Eq. (12),

Pγ ≈ γ |s|2 μ2

μ2
0

2πB2
0h

|Γ|2 I0(ΓR)I∗0(ΓR)

R∫
0

exp(2αρ)

2π |Γ| ρ ρdρ, (40)

where Γ = α + jα =
√
πfμγ(1 + j), and finally

Pγ ≈ πγω2μ
2

μ2
0

B2
0Rh

α |Γ|2 (1 − exp(−2αR)) ≈ π
B2

0

μ2
0

α

γ
Rh, (41)

Figure 7. Ratio of power losses to square root of frequency for nonmagnetic disc (h = 2 mm, R = 3 mm,
γ = 56 · 106 S ·m−1, maximal frequency fmax = 0.5 MHz, B0 = 0.7 T, C = 0.7 T ·m−1) vs. frequency.

Figure 8. Optimization of nonmagnetic disc shape at the volume condition V = const (V =
56.5 · 10−9 m3 = const, γ = 56 · 106 S ·m−1, f = 0.1 MHz, B0 = 0.7 T, C = 0.7 T ·m−1) vs. disc
radius R.
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that proves and generalizes the limit property in Eq. (39).
Based on the presented analytical solution of the levitation task, it is easy to find the optimal shape

of the disc with respect to power losses. Let’s assume that the disc volume V = πR2h is constant, thus
the power losses vs. disc radius R can be presented as shown in Fig. 8. Hence, the radius (and the
height) of the disc for the maximal power losses value can be found at given volume of the disc.

6. CONCLUSIONS

Nonmagnetic disc is presented. Excitation by magnetic field is assumed with axial (vertical) and radial
(horizontal) components. Maxwell’s equations are solved in cylindrical co-ordinate system by separation
of variables method.

The levitation force and power losses are evaluated. The electromagnetic field power balance is
checked. The efficient solutions are obtained over a large frequency interval and different parameters,
which is not easy to reach by numerical methods.

The solutions enable the reduction of computational cost, e.g., at high field frequencies. The limit
values of force and power losses are calculated.

There is evaluated maximal levitation force (Lorentz component) — Eq. (37). Limit property for
power losses is proved — Eq. (41).

Despite apparent simplicity of the solutions, some tests are provided in order to validate analysis
of levitation force and power losses. Firstly, three methods for levitation force calculations are applied:
Maxwell, coenergy and Lorentz (Fig. 5, Eq. (29)). All three methods yield the same force value, and
there appears no distinction. Secondly, the power losses are calculated by both Joule-Lenz volume
integral and surface integral of Poynting vector (Fig. 6, Eq. (35)).

The analyses have brought the following conclusion:

- the analytical solutions obtained from levitation process give opportunities to approach of both
levitation and melting processes by robust and rapid toll;

- the industrial problems of melting metals can be predicted by the developed model for wide range
of frequency, conductivity, diameter and other parameters of molten objects;

- analytical solutions shown can be treated as a benchmark tasks for numerical methods;

- nowadays, the rapid model of levitation phenomenon may also be involved in algorithms for 3D
analyses.

APPENDIX A. ELECTROMAGNETIC FORCE DENSITY AND ITS COMPONENTS

However, the rearranging of Maxwell equations seems not interesting, and it should be presented
formally. Electromagnetic field force volume density in curvilinear orthogonal co-ordinate system (u, v,
w) can be presented with the help of Maxwell equation

curl �H = �J +
∂ �D

∂t
, (A1)

and Lorentz force density in the form of

�fL = ρ �E + �J × �B, (A2)

where �J is the forced current density which satisfies, ρ the charge density, �E the electric field strength,

and �B the magnetic flux density. Two components of Lorentz force

�fL = �Ediv �D +
(

curl �H − �̇D
)
× �B, (A3)

can be rearranged in the form of

�fL = curl �H × �B + �Hdiv �B −
∂
(
�D × �B

)
∂t

+ �D × curl �E + �Ediv �D, (A4)
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Figure A1. Definition of term ΔIu for particular locus.

where term �Hdiv �B = 0 is added for mathematical symmetry.
Let us present constitutive relation in the general form of

Hu = νuwBw − ΔIu, (A5)

where reluctivities νuw can be asymmetrical, and ΔIu uth component of magnetization vector describes
either permanent magnets or hysteresis phenomena (Fig. A1).

The first and second components of the right-hand side of Eq. (A2) can be written as follows

curl �H × �B + �Hdiv �B =�iudiv|u|(�σμu) − �Δμ − �Nμ − �Qμ − �Mμ, (A6)

Lu is Lame coefficient for uth coordinate, no summation due to u

divu ( · ) = L−1
|u| div (Lu ( · )) , (A7)

�σμu = −Hu
�B +�iueμ = −Hu

�B +�iu

(
1

2
�H �B

)
, (A8)

�Nμ =
1

2
BuBwgrad(νuw), (A9)

inhomogenous force component

�Qμ =
1

2
grad(BuΔIu) −Bugrad(ΔIu), (A10)

hysteresis force component,
�Mμ =

1

2
(νvu − νuv)Bvgrad(Bu), (A11)

anisotropy component, and an auxiliary vector in the form of

�Δμ =
1

2
BvHv

�iu
∂ ln(L2

v/ |L|)
Lu∂xu

, (A12)

for orthogonal curvilinear coordinate system (L = LuLvLw denotes multiplication of Lame coefficients).
The fourth and fifth components on the right-hand side of Eq. (A4) can be rearranged in the same

manner as the first and second in Eq. (A2)

curlẼ × �D + �Ediv �D =�iudiv|u|(�σεu) − �Δε − �Nε − �Qε − �Mε, (A13)

where the constitutive relation (electric permittivities εuw can be asymmetrical) is defined as follows

Du = εuwEw − ΔPu, (A14)

where ΔPu is uth component of electric polarization vector, and

�σεu = −Eu
�D +�iueε = −Eu

�D +�iu

(
1

2
�E �D

)
. (A15)
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�Nε = −1

2
EuEwgrad(εuw), (A16)

�Qε =
1

2
grad(ΔPuEu) − Eugrad (ΔPu) , (A17)

�Mε = −1

2
(εvu − εuv)Evgrad(Eu), (A18)

and an auxiliary vector

�Δε =
1

2
DvEv

�iu
∂ ln(L2

v/ |L|)
Lu∂xu

. (A19)

Hence, Eq. (A4) takes the form of

�fL = −
∂
(
�D × �B

)
∂t

−�iudiv|u| (�σu) − �Δ − �N − �Q− �M, (A20)

where the components for electric and magnetic field are summarized subsequently

�σu = −Eu
�D −Hu

�B +�iue = −Eu
�D −Hu

�B +�iu

(
1

2
�E �D +

1

2
�H �B

)
, (A21)

�N = �Nε + �Nμ = −1

2
EuEwgrad(εuw) +

1

2
BuBwgrad(νuw), (A22)

�Q = �Qε + �Qμ, (A23)

�Δ =

(
1

2
DvEv +

1

2
BvHv

)
�iu

∂ ln
(
L2
v/ |L|

)
Lu∂xu

, (A24)

�M =
1

2
(νvu − νuv)Bvgrad(Bu) − 1

2
(εvu − εuv)Evgrad(Eu) (A25)

and Poynting force density is denoted in the form of [1, 2, 9, 15, 16, 20].

�fP =
∂
(
�D × �B

)
∂t

. (A26)

The total force density is given as follows

�f = �fL + �fP + �N + �Q + �M. (A27)

According to Eq. (A20), total force can be written by Maxwell stress tensor in the following form

�f = −�iudiv|u| (�σu) − �Δ. (A28)

Conclusion: If the following can be omitted:

a) Poynting force �fP = 0 (field at low frequency),

b) Inhomogeneous force �N = 0 (region is homogeneous with respect to εvu and νvu),

c) Hysteresis component �Q = 0 (no hysteresis phenomenon, no permanent magnets), and most
important for the new extended necessary and sufficient condition:

d) Anisotropy component �M = 0 for region with symmetrical matrices (u �= v)

εvu �= εuv, νvu �= νuv. (A29)

the Lorentz force equals the total electromagnetic field force.
However, the rearranging of equations seems not interesting, and it should be presented rigorously.
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