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Theoretical Modelling of Kelvin Helmholtz Instability Driven
by an Ion Beam in a Negative Ion Plasma

Kavita Rani1 and Suresh C. Sharma2, *

Abstract—An ion beam propagating through a magnetized plasma having positive ions K+ (Potassium
ions), electrons and negative ions SF−

6 (Sulphur hexafluoride ions) drives Kelvin Helmholtz Instability
(KHI) via Cerenkov interaction. For two modes, K+ and SF−

6 , the frequency and the growth rate of
the unstable wave increase with the relative density of negative ions. It is observed that the beam
has destabilizing effect on the growth rate of KHI in the presence of negative ions. However, at the
large concentration of the negative ions beam stabilizes the growth rate of KHI. An increase in mass of
negative ions also stabilizes the growth rate of KHI modes. It is also observed that increase in ion beam
velocities and densities play a significant role in changing the growth rate of KHI modes. Moreover, the
finite geometry effects tend to modify the dispersion properties and growth of KHI modes.

1. INTRODUCTION

The study of Kelvin Helmholtz instability has received great attention in various geophysical and
astrophysical situations such as Earth’s polar cusps [1], Earth’s Magnetosphere [2–5], Comet tails [6]
and Ion Loss on Mars [7] etc..

Kelvin Helmholtz instability (KHI) is low frequency perturbation that may arise due to relative
motion between the different layers of a conductive, magnetized and incompressible heterogeneous fluid
that feeds on the ambient flow energy. The instability may arise in the plasma streaming parallel to
the magnetic field whose velocity varies in the direction perpendicular to the magnetic field [8]. The
study of the KHI for magnetized compressible fluids showed that the KHI may occur if the relative
speed between two adjacent layers exceeds the root mean square Alfven speed between the layers [9].
The essential features of KHI were later on confirmed by experimental observations of Q-machine [10].
The Landau damping has a stabilizing effect on the Kelvin Helmholtz instability [11].

It was observed that the excitation of KHI in a magnetized plasma having positively charged dust
grains is easier than negatively charged dust grains due to reduction in the critical shear with increase in
the quantity Zε (where Z is the charge state and ε is the ratio between dust density and the ion density)
for the positive ions [12]. The presence of negative ions has a destabilizing effect on the KHI in a plasma
for ion acoustic and electrostatic ion cyclotron (EIC) waves [13]. An et al. [14] have investigated the
unstable nature of KHI in a plasma having negative ions and found that the wave amplitude grows as
the concentration of negative ions increases. However, relatively large negative ion concentration has
stabilizing effect on the K-H instability.The stabilizing effect of negatively charged dust grains on the
K-H instability in a magnetized Cesium plasma have also been studied [15].

Moreover, the study of negative ions in the plasma has found to be a source of motivation due
to their potential applications in surface plasma technologies [16] such as ion implantation, chemical
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vapour deposition (CVD), etching in ultra-large scale integration (ULSI) fabrications, macro and Nano
particles creations [17, 18].

The destabilizing effect of ion beam has been studied by Sharma and Srivastava [19] on the
excitation of ion cyclotron (IC) waves in a plasma cylinder with negative ions. Sharma and Gahlot [20]
have studied that an ion beam propagating through the magnetized plasma cylinder with negative
ions drives electrostatic ion acoustic waves to instability via Cerenkov interaction. The results of their
theory showed the increase in phase velocity and unstable mode frequency with negative ions and are in
compliance with the experimental observations of Song et al. [21] The dispersion properties of various
ion wave modes are modified in the presence of negative ions [22–24]. Various plasma instabilities have
been studied in the plasma having negative ions with and without beam. It has been observed earlier
in ion beam plasma systems that the beam plays an important role in growth of instabilities [25, 26].

In this paper, we develop a theoretical model on KHI driven by an ion beam in a negative ion
plasma as no work on the effect of ion beam on KHI in a magnetized plasma having negative ions has
been reported so far. We also study the effects of finite boundaries on the growth of KHI modes as it
is observed that finite geometry effects tend to reduce the growth of waves and instabilities [27]. We
choose SF−

6 negative ions as SF6 has a large electron capture cross section for low-energy electrons in
Q-machine plasmas [21]. In Section 2, we carry out the instability analysis for two modes (positive ion
K+ and negative ion SF−

6 ). The plasma and beam responses are obtained using fluid theory. We obtain
the mode frequencies and the growth rate for both the modes using first order perturbation theory.
Results and discussions are given in Section 3. Section 4 concludes the results obtained.

2. INSTABILITY ANALYSIS

Consider a fully ionized multi-component collisionless plasma consisting of electrons, positive ions K+

(Potassium ions) and negative ions SF−
6 (Sulphur hexafluoride ions) immersed in the magnetic field Bs.

The magnetic field is the positive z-direction and equilibrium densities of components j(= e,+,−) vary
along negative x-direction as n0j = n0je

−λx, where for different components, n0j(= constant) and λ is
the e-folding wave vector of the density gradient [15]. Equilibrium densities of electrons, positive ions
and negative ions are represented as n0e(= (1 − ε)np), n0+ = np and n0− = εnp, where ε(= nSF−

6

/
nK+)

is the relative density of negative ions and np is the plasma density. Their charges, masses and
temperatures are denoted by (−e,me, Te), (e,m+, T+) and (−e,m−, T−), respectively. The equilibrium
velocity vectors of each components are given by v0j = (0, v0yj , v0zj(x)) with v0yj(= constant). An ion
beam with velocity v0b ‖ ẑ, mass mb, density n0b � n0+ propagates through plasma along the magnetic
field.

Apply quasineutrality on the beam plasma system so that en0e − en0+ − enob + en0− ≈ 0 as we
have taken plasma density � beam density.

The motion of all the three plasma species (electrons, positive ions and negative ions) is described
by the momentum and continuity equations following the treatment of Sharma & Srivastava [19]
(cf. Eqs. (1)–(6)).

Now the equilibrium is perturbed by an electrostatic perturbation to the potential

φ1 = φ(r)e−i(ωt−⇀
k ·�r). (1)

The first order quantities are assumed to vary as e−i(ωt−kyy−kzz). The response of plasma electrons to
the perturbation may be derived from the momentum conservation equation, i.e.,

me
d−→ve

dt
= −e

−→
E − e

c
−→ve ×−→

Bs − ∇(neTe)
ne

. (2)

We obtain electron, positive ion and negative ions perturbed density from the mass conservation
equation as

n1e = n0e
eφ1

Te
. (3)
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+
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(
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⊥v2

t+(
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) +
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) . (4)

and n1− =
−n0−eφ1
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(
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⊥(
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) +

k2
z

Ω2−
− λkyωc−
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(
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(
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where vt+[= ( T+

m+
)1/2] and vt−[= ( T−

m− )1/2] are the thermal velocities of positive and negative ions,
ωc+(= eBs/m+c) and ωc−(= eBs/m−c) are the positive and negative ions cyclotron frequencies and
Ω+[= ω− kyv0y+ − kzv0z+] and Ω−[= ω− kyv0y− − kzv0z−] are the Doppler shifted wave frequencies for
positive and negative ions, respectively.

Following the analysis of Sharma and Srivastava [19], the ion beam density perturbation is given
by

n1b =
n0be(k2

y
+ k2

z)φ1

mb(ω − kzv0b)2
, (6)

where ky = k⊥ and (k2
y + k2

z) ≈ k2(= k2
⊥ + k2

z).

2.1. Infinite Boundary Effects

Using Eqs. (3)–(6) in the Poisson equation, ∇2φ1 = 4π(n1ee − n1+e − n1be + n1−e), we obtain,

1 − ω2
p+v2

te

ω2
pe

(
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z − k2
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+(
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2 (7)

where ωp+[= (4πn0+e2
/
m+)1/2], ωp−[= (4πn0+e2

/
m−)1/2], ωpb[= (4πn0be

2
/
mb)1/2], ωpe[= (4πn0ee

2

/me)1/2] and vte[= ( Te
me

)1/2] are the positive ion plasma frequency, negative ion plasma frequency, beam
plasma frequency, electron plasma frequency and electron thermal velocity, respectively.

Equation (7) can be simplified further as

1 − c2
+

(1 − ε)
A2(

Ω2
+ − v2

t+A2
) − εc2−

(1 − ε)
B2(

Ω2− − v2
t−B2
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ω2

pb(k
2
y

+ k2
z)v

2
te

ω2
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2 , (8)

where c+(= Te/m+)1/2, c−(= Te/m−)1/2 are the positive ion and negative ion sound speeds, respectively,

A2 =

(
k2

z − k2
yΩ2

+(
ω2

c+ − Ω2
+

) +
λkyωc+Ω+(
ω2

c+ − Ω2
+

) − kykzωc+(
ω2

c+ − Ω2
+

) ∂v0z+

∂x

)
. (9)

and B2 =

(
k2

z − k2
yΩ

2−(
ω2

c− − Ω2−
) − λkyωc−Ω−(

ω2
c− − Ω2−

) +
kykzωc−(
ω2

c− − Ω2−
) ∂v0z−

∂x

)
. (10)
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Equation (8) can be rewritten as

(
Ω2

+ − P 2
+A2

) (
Ω2
− − P 2

−B2
)− αA2B2 =

ω2
pb(k

2
y

+ k2
z)k

2v2
te

ω2
pe (ω − kzv0b)

2

(
Ω2

+ − v2
t+A2

) (
Ω2
− − v2

t−B2
)
, (11)

where P 2
+ = v2

t+ +
c2+

(1−ε) , P 2− = v2
t− +

εc2−
(1−ε) , and α =

εc2+c2−
(1−ε)2 .

Equation (11) is the dispersion relation of an ion beam driven KHI in a plasma having negative
ions. In the absence of beam, i.e., n

0b
→ 0 orωpb = 0, Eq. (11) reduces to(

Ω2
+ − P 2

+A2
) (

Ω2
− − P 2

−B2
)− αA2B2 = 0. (12)

Equation (12) is the dispersion relation of D’Angelo and Song [13] (cf. Eq. (26)). To study the interaction
of an ion beam with positive and negative ions, we evaluate Eq. (8) for two different modes (i.e., K+

and SF−
6 ion modes).

2.1.1. Beam Plasma Interaction with Positive Ions (K+)

In the limit ω ∼ ωc+ and positive ion Larmor radius is less than the perpendicular wavelength of the
positive ion mode, Eq. (8) can be rewritten as

1 − c2
+

(1 − ε)
A2(

Ω2
+ − v2

t+A2
) =

ω2
pb(k

2
y + k2

z)v
2
te

ω2
pe (ω − kzv0b)

2 . (13)

Equation (13) can be further rewritten as

(Ω2
+ − P 2

+A2) =
ω2

pb(k
2
y + k2

z)v2
te

ω2
pe(ω − kzv0b)2

(Ω2
+ − v2

t+A2). (14)

We are looking for solutions when the beam is in Cerenkov resonance with the positive ion KHI mode.
In the limit of long perpendicular wavelength, i.e., k2

yΩ
2
+ � ω2

c+, also, for low frequency approximations,
i.e., Ω2

+ � ω2
c+ and in the absence of beam, i.e., n0b → 0 or ωpb = 0. Hence Eq. (14) gives(

Ω2
+

λkyP
2
+

ωc+
Ω+ − k2

zP
2
+ +

kykzP
2
+

ωc+

∂v0z+

∂x

)
= 0, (15)

and ω ∼= kzv0b.
Equation (16) corresponds to the positive ion KHI mode and ω ≈ kzv0b corresponds to the beam

mode. Let us write Ω+ = Ωr+ + iΩi+ and assume that wave is either weakly damped or growing (i.e.,
|Ωi+| � Ωr+). In the presence of beam, Eq. (15) can be simplified as

ζ2
+ − Λ1β1

r
ζ+ − γ1

r
(γ1 − β1S1) = 0, (16)

where ζ+ = Ω+

ωc+
(here, ζ+ = ζr+ + iΓ+), Λ1 = λρ1, β1 = kyρ1, γ1 = kzρ1, S1 = 1

ωc+
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te
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).
Hence Eq. (16) gives the dispersion relation of Ion beam driven KHI for normalized positive ion

mode. In the absence of beam (i.e., ωpb → 0, r = 1), we can recover the dispersion relation of D’Angelo
& Song [12] (cf. Eq. (23)) in the limit ε → Zε. For Te 	 Ti, we can recover the dispersion relation of
D’Angelo [9] (cf. Eq. (15)). From Eq. (16) the maximized normalized growth rate Γ+(= Ωi+/ωc+) can
be found as

Γ+ =
[
1
4
β2

1

(
S2

1

r
− Λ2

1

r2

)]1/2

. (17)

In the absence of beam and for ε → Zε, Eq. (17) is similar to the growth rate of Luo et al. [15]
(cf. Eq. (2)).
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2.1.2. Beam Plasma Interaction with Negative Ions (SF−
6 )

In the limit ω ∼ ωc− and negative ion Larmor radius is less than the perpendicular wavelength of
negative ion mode, Eq. (8) can be rewritten as

1 − εc2−
(1 − ε)

B2(
Ω2− − v2

t−B2
) =

ω2
pb(k

2
y + k2

z)v
2
te

ω2
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Equation (18) can be further rewritten as

(
Ω2
− − P 2

−B2
)

=
ω2

pb

(
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y + k2
z

)
v2
te

ω2
pe (ω − kzv0b)

2

(
Ω2
− − v2

t−B2
)
. (19)

Again, we are looking for solutions when the beam is in Cerenkov resonance with the negative ion KHI
mode. In the absence of beam, i.e., ωpb = 0 as n0b → 0, following the same procedure as was done
earlier for positive ion mode, in the limit of long perpendicular wavelength, i.e., k2

yΩ2− � ω2
c− and for

low frequency approximations, i.e., Ω2− � ω2
c−, Eq. (19) gives(

Ω2
− +

λkyP
2−

ωc−
Ω− − k2

zP
2
− − kykzP

2−
ωc−

∂v0z−
∂x

)
= 0, (20)

and ω ∼= kzv0b.
Equation (20) corresponds to the negative ion KHI mode and ω ≈ kzv0b corresponds to the beam

mode. Let Ω− = Ωr− + iΩi−. Assuming that the wave is either weakly damped or growing (i.e.,
|Ωi−| � Ωr−). Then in the presence of beam, Eq. (20) can be simplified in the same manner as was
done for positive ion KHI mode as

ζ2
− +

Λ2β2

r
ζ− − γ2

r
(γ2 + β2S2) = 0, (21)

where ζ− = Ω−
ωc− (here, ζ− = ζr− + iΓ−), Λ2 = λρ2, β2 = kyρ2, γ2 = kzρ2, S2 = 1

ωc−
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te
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Equation (21) gives the dispersion relation of ion beam driven KHI for normalized negative ion

mode. From Eq. (21), the maximized normalized growth rate Γ−(= Ωi−/ωc−) can be found as

Γ− =
[
1
4
β2

2

(
S2

2

r
− Λ2

2

r2

)]1/2

. (22)

In the absence of beam and for ε → Zε, Eq. (22) reduces to the growth rate expression of
Luo et al. [15] (cf. Eq. (2)).

2.2. Finite Boundary Effects

Consider a plasma cylinder of radius a1 consisting of electrons, positive ions K+ (Potassium ions) and
negative ions SF−

6 (Sulphur hexafluoride ions) immersed in the magnetic field Bs acting along positive
z-direction and equilibrium densities of components j(= e,+,−) vary along negative x-direction as
n0j = n0je

−λx as for infinite boundaries. An ion beam with velocity v0b ‖ ẑ, mass mb, density n0b � n0+,
and radius rb propagates through plasma cylinder along the magnetic field. The other parameters are
same as infinite geometry of plasma waveguide. Poisson equation can be simplified as a second order
differential equation in φ1, which can be rewritten for axially symmetric case as

∂2φ1
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+

1
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Also, A2
1 =
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k2

z − k2
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+(
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) +
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In the absence of beam, i.e., ωpb = 0 as n0b → 0, the solution of Bessel equation Eq. (23) is given
by

φ1 = AJ0(pmr), (27)

where A is a constant, and the functions Jo(pmr) is called the zeroth-order Bessel functions of the first
kind. At r = a1, φ1 must vanish, hence, Jo(pma1) = 0, i.e., pm = xn

a1
(n = 1, 2, . . .), xn, are the zeros of

the Bessel function Jo(x).
If Jo(x) = 0 then x = 2.404 hence, pm = 2.404

a1
.

In the presence of the beam, the solution wave function φ1 can be expressed in a series of orthogonal
sets of wave functions:

φ1 =
∑

m
AmJo(pnr). (28)

Now substituting the value of Eq. (28) in Eq. (23), multiplying both sides of Eq. (23) by rJo(pnr) and
integrating over r from 0 to a1 (where a1 is the plasma radius), retaining the dominant mode (m = n)
only, we get

p2 − p2
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Using the value of p2 in Eq. (29) and simplifying, we obtain
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Equation (30) is same as Eq. (8) of Infinite boundary analysis. On further simplifying Eq. (30), we
get the similar dispersion relation as Eq. (11)
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where P 2
+ = v2

t+ + c2+
(1−ε) , and P 2− = v2

t− + εc2−
(1−ε) , now we study the two modes of KHI for finite boundary

effects in the same way as was done for infinite geometry effects.

2.2.1. Beam Plasma Interaction with Positive Ions (K+)

In the limit ω ∼ ωc+ and positive ion Larmor radius is less than the perpendicular wavelength of the
positive ion mode, Eq. (30) can be rewritten as
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Equation (32) can be further simplified in the absence of beam, i.e., n0b → 0 or ωpb = 0, in the
limit of long perpendicular wavelength, i.e., k2

yΩ2
+ � ω2

c+ and also, for low frequency approximations,
i.e.,Ω2
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c+, to obtain the solutions when the beam is in Cerenkov resonance with the positive ion
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and ω ∼= kzv0b.
Equation (33) corresponds to the positive ion KHI mode and ω ≈ kzv0b corresponds to the beam

mode. Following the same procedure as for infinite boundary, in the presence of beam, Eq. (32) can be
further simplified as

ζ2
+ − Λ′

1β
′
1

r1
ζ+ − γ′

1

r1

(
γ′

1 − β′
1S1

)
= 0, (34)

where ζ+ = Ω+

ωc+
(ζ+ = ζr+ + iΓ+), Λ′

1 = λρ′1, β′
1 = pmρ′1, γ′

1 = kzρ
′
1, S1 = 1

ωc+

∂v0z+

∂x , ρ
′2
1 =

ρ
′2
+

ω2
c+

(here,

ρ
′2
+ = P 2

+ − ω2
pb(p

2
m+k2

z)v2
t+v2

teI

ω2
pe(ω−kzv0b)2

) and r1 = (1 − ω2
pb(p

2
m+k2

z)v2
teI

ω2
pe(ω−kzv0b)2

).
Hence Eq. (34) gives the dispersion relation of ion beam driven KHI for normalized positive ion

mode. From Eq. (34) the maximized normalized growth rate Γ+(= Ωi+/ωc+) can be found as

Γ+ =

[
1
4
β

′2
1

(
S2

1

r1
− Λ

′2
1

r2
1

)]1/2

. (35)

2.2.2. Beam Plasma Interaction with Negative Ions (SF−
6 )

In the limit ω ∼ ωc− and negative ion Larmor radius is less than the perpendicular wavelength of
negative ion mode, Eq. (30) can be rewritten as

1 − εc2−
(1 − ε)

B2
1(

Ω2− − v2
t−B2

1

) =
ω2

pb

(
p2

m + k2
z

)
v2
teI

ω2
pe (ω − kzv0b)

2 . (36)

Equation (36) can be further simplified to obtain solutions when the beam is in Cerenkov resonance
with the negative ion KHI mode. In the limit of long perpendicular wavelength, i.e., k2

yΩ
2− � ω2

c− and
for low frequency approximations, i.e., Ω2− � ω2

c−, and in the absence of beam, i.e., ωpb = 0 as n0b → 0,
Eq. (36) gives (

Ω2
− +

λpmP 2−
ωc−

Ω− − k2
zP

2
− − pmkzP

2−
ωc−

∂v0z−
∂x

)
= 0, (37)

and ω ∼= kzv0b.
Equation (37) corresponds to the negative ion KHI mode and ω ≈ kzv0b corresponds to the beam

mode. Again following the same procedure as for infinite geometry, in the presence of beam, Eq. (37)
can be simplified as

ζ2
− +

Λ′
2β

′
2

r1
ζ− − γ′

2

r1

(
γ′

2 + β′
2S2

)
= 0, (38)

where ζ− = Ω−
ωc− (ζ− = ζr− + iΓ−), Λ′

2 = λρ′2, β′
2 = pmρ′2, γ′

2 = kzρ
′
2,

1
ωc−

∂v0z−
∂x = S2, r1 =

(1 − ω2
pb(p

2
m+k2

z)v2
teI

ω2
pe(ω−kzv0b)2

) and ρ
′2
2 = ρ

′2
−

ω2
c−

, (here, ρ
′2− = P 2− +

ω2
pb(p

2
m+k2

z)v2
t−v2

teI

ω2
pe(ω−kzv0b)2

). Hence Eq. (38) gives the

dispersion relation of an ion beam driven KHI for normalized negative ion mode. From Eq. (38), the
maximized normalized growth rate Γ−(= Ωi−/ωc−) can be found as

Γ− =

[
1
4
β

′2
2

(
S2

2

r1
− Λ

′2
2

r2
1

)]1/2

. (39)

The dispersion relations and the growth rate expressions obtained for finite boundaries of plasma
waveguide are same as for infinite boundaries under certain limit.
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3. RESULTS AND DISCUSSION

In the calculations, we have used plasma parameters for the experiments of An et al. [14] with
some modification for infinite and finite boundary analysis of KHI modes. Using Eqs. (15) & (33)
for the positive ions (K+), we plot in Figs. 1(a) & 1(b) the dispersion curves of KHI with positive
ion plasma for infinite and finite boundaries of plasma waveguide, respectively and using Eqs. (20)
& (37) for negative ions (SF−

6 ), the dispersion curves of KHI with negative ion plasma are plotted
in Figs. 2(a) & 2(b), for infinite and finite boundaries of plasma waveguide, respectively, for the
following parameters: plasma density np = 1.0 × 1011 cm−3, positive ion density n0+ = np, relative
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Figure 1. Dispersion curve between normalized real frequency of positive ion ζr+(= Ωr+/ωc+) of the
KHI for different values of the relative density of negative ions ε as a function of normalized wave vector
kz/ky for (a) infinite and kz/k⊥, for (b) finite plasma boundary. The parameters are given in the text.

0.12

0.1

0.08

0.06

0.04

0.02

0
0 0.05 0.1 0.15 0.2

k  /ky

0.09

0.07

0.05

0.06

0.04

0.02

0
0

k  /kz

ζ
r−
(=
Ω

r−
/ω

c−
)

0.08

0.03

0.01

(a) (b)
_|z

0.1

0.05 0.1 0.15 0.2

ζ
r−
(=
Ω

r−
/ω

c−
)

Figure 2. Dispersion curve between normalized real frequency of negative ion ζr−(= Ωr−/ωc−) of the
KHI for different values of relative density of negative ions ε as a function of normalized wave vector
kz/ky for (a) infinite and kz/k⊥, for (b) finite plasma boundary. The parameters are same as Fig. 1.
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Table 1. From Fig. 1 (ion beam + plasma with positive ions) we obtain the unstable wave frequencies
Ωr+ (rad/sec) from normalized wave frequencies ζr+(= Ωr+/ωc+), normalized wave vector kz/ky , axial
wave vectors kz (cm−1) and wavelength λz (cm) for different values of ε & for infinite geometry case
ky = 1.0 cm−1.

ε kz/ky kz (cm−1) λz (cm) Ωr+/ωc+ Ωr+ (rad/sec)
0.0 0.063378 0.063378 99.09 0.010078 9.897 × 103

0.2 0.071544 0.071544 87.86 0.010357 10.171 × 103

0.4 0.084618 0.084618 74.22 0.013432 13.190 × 103

0.6 0.111554 0.111554 56.30 0.017895 17.572 × 103

0.8 0.190716 0.190716 32.93 0.030739 30.186 × 103

0.95 0.667368 0.667368 9.41 0.106673 104.753 × 103

Table 2. From Fig. 2 (ion beam + plasma with positive ions) we obtain the unstable wave frequencies
Ωr+ (rad/sec) from normalized wave frequencies ζr+(= Ωr+/ωc+), normalized wave vector kz/k⊥, axial
wave vectors kz (cm−1) and wavelength λz (cm) for different values of ε for finite geometry case, where
k⊥ = pm = 2.404/a1 = 0.8 cm−1.

ε kz/k⊥ kz (cm−1) λz (cm) Ωr+/ωc+ Ωr+ (rad/sec)
0.0 0.064201 0.051361 122.38 0.008395 8.244 × 103

0.2 0.070755 0.056604 110.95 0.009237 9.071 × 103

0.4 0.083794 0.067035 93.77 0.010911 10.715 × 103

0.6 0.112377 0.089902 69.92 0.014472 14.212 × 103

0.8 0.190716 0.152573 41.16 0.024518 24.077 × 103

0.95 0.669015 0.535212 11.74 0.085240 83.706 × 103

density of negative ions ε(= nSF−
6

/nK+) = 0.0, 0.2, 0.4, 0.6, 0.8, 0.95, electron temperature Te 	 K+ ion
temperature T+ = 0.2 eV, SF−

6 ion temperature T− = 0.2Te, plasma radius a1 = 3 cm, beam radius
rb = 2.5 cm, guide magnetic field Bs 	 4 × 103 Gauss and ky ≈ 1.0 cm−1, kz ≈ 0 − 0.7 cm−1 and
λ ≈ 2 cm−1. For finite geometry of plasma waveguide, ky is given by the solution of Bessel function as
k⊥ = pm = 2.404

a1
= 0.84 cm−1, where a1 = radius of cylindrical plasma waveguide. Real part of wave

frequencies for positive and negative ion modes ζr+(= Ωr+/ωc+) and ζr−(= Ωr−/ωc−) have been plotted
as a function of normalized wave vector kz/ky (for infinite geometry) & kz/k⊥ (for finite geometry) for
different values of relative density of negative ions (cf. Figs. 1(a), 1(b), 2(a) & 2(b)) for both the positive
and negative ion modes, respectively for infinite and finite geometry of waveguide. We have also plotted
the beam mode for potassium ion beam energy Eb = 0.5 eV or v0b[= (2Eb

mb
)1/2] = 1.567 × 105 cm/s. The

frequencies and the corresponding wave numbers of the unstable waves are obtained by the point of
intersections between the beam mode and positive ion KHI mode, for infinite and finite geometry of
plasma waveguide and are given in Tables 1 & 2 and that for negative ion plasma KHI mode for infinite
and finite geometry of plasma waveguide are given in Tables 3 & 4.

From Tables 1–4, we can say that the unstable wave frequencies of the KHI for positive as well
as negative ion mode increase with the relative density of negative ions in the presence of beam. The
frequency of positive ions increases by a factor ∼ 0.33 when ε changes from 0.0 to 0.4 and increases
by a factor ∼ 1.28 when ε varies from 0.4 to 0.8 and by a factor ∼ 2.47 with increase of ε from 0.8
to 0.95 for infinite geometry of plasma while for finite geometry of waveguide the frequency of positive
ions increases by a factor ∼ 0.30 when ε changes from 0.0 to 0.4 and increases by a factor ∼ 1.25 when
ε varies from 0.4 to 0.8 and by a factor ∼ 2.47 with increase of ε from 0.8 to 0.95. The frequency of
negative ions is found to increase by a factor ∼ 3.26 when ε changes from 0.0 to 0.4 and increases by a
factor ∼ 3.76 when ε varies from 0.4 to 0.8 and by a factor ∼ 0.39 with increase of ε from 0.8 to 0.95
for infinite boundaries and for finite boundaries the frequency of negative ions is found to increase by a
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Table 3. From Fig. 3 (ion beam + plasma with negative ions) we obtain the unstable wave frequencies
Ωr− (rad/sec) from normalized wave frequencies ζr−(= Ωr−/ωc−), normalized wave vector kz/ky , axial
wave vectors kz (cm−1) and wavelength λz (cm) for different values of ε for infinite geometry case
ky = 1.0 cm−1.

ε kz/ky kz (cm−1) λz (cm) Ωr−/ωc− Ωr− (rad/sec)
0.0 0.006216 0.006216 1011.23 0.003935 1.039 × 103

0.2 0.014382 0.014382 437.04 0.008683 2.292 × 103

0.4 0.027902 0.027902 225.07 0.016779 4.430 × 103

0.6 0.054029 0.054029 116.34 0.032412 8.557 × 103

0.8 0.133775 0.133775 46.94 0.079877 21.088 × 103

0.95 0.187176 0.187176 33.55 0.111142 29.342 × 103

Table 4. From Fig. 4 (ion beam + plasma with negative ions) we obtain the unstable wave frequencies
Ωr− (rad/sec) from normalized wave frequencies ζr−(= Ωr−/ωc−), normalized wave vector kz/k⊥, axial
wave vectors kz (cm−1) and wavelength λz (cm) for different values of ε for finite geometry case,
k⊥ = pm = 0.8 cm−1.

ε kz/k⊥ kz (cm−1) λz (cm) Ωr−/ωc− Ωr− (rad/sec)
0.0 0.006451 0.005161 1216.82 0.003279 0.866 × 103

0.2 0.014618 0.011694 537.03 0.007004 1.849 × 103

0.4 0.027441 0.021953 286.33 0.013285 3.507 × 103

0.6 0.054255 0.043404 144.82 0.026080 6.885 × 103

0.8 0.133775 0.107020 58.68 0.064001 16.896 × 103

0.95 0.187176 0.149741 41.94 0.089359 23.591 × 103

factor ∼ 3.05 when ε changes from 0.0 to 0.4 and increases by a factor ∼ 3.82 when ε varies from 0.4 to
0.8 and by a factor ∼ 0.40 with increase of ε from 0.8 to 0.95. It can also be seen from the Tables 1–4
that the axial wave vector kz increases with increasing ε. This result is similar to the analytical result
of Chow and Rosenberg [28], where the wave is unstable because kz increases with the relative density
of negatively charged dust grains δ(= 1

1−Zε).
We plot Fig. 3(a) using Eqs. (16) & (34), for normalized real frequency of KHI for positive ions and

Fig. 3(b) using Eqs. (21) & (38), for normalized real frequency of KHI for negative ions as a function
of relative density of negative ions ε in the absence and presence of beam for the same parameters as
used for plotting Fig. 1 and Fig. 2, respectively, for infinite and finite geometry of plasma waveguide. It
is observed that the unstable modes frequencies increase with the relative density of negative ions for
both positive ion and negative ion modes under both infinite and finite boundaries of plasma waveguide.
It is also observed that the KHI unstable modes frequencies slightly increase in the presence of beam
at high concentration of negative ions. This result is in line with the experimental results obtained
for electrostatic Ion Cyclotron waves (EICW) [29] (cf. Fig. 3, page No. 1555) and Ion Acoustic waves
(IAW) [21] (cf. Fig. 1, page No. 285) in plasma with negative ions where the frequency of EICW and
phase velocity of IAW increases with relative concentration of negative ions. For finite boundaries of
plasma waveguide, the frequencies of KHI modes are lesser than for infinite boundary effects. These
results are in line with the results for finite geometry effects obtained by Prakash et al. [27].

Using Eqs. (17) & (35), we plot Fig. 4(a), the normalized growth rate Γ+(= Ωi+/ωc+) for positive ion
mode of KHI, and using Eqs. (22) & (39), we plot Fig. 4(b), the normalized growth rate Γ−(= Ωi−/ωc−)
for negative ion KHI mode showing infinite and finite boundary effects, as a function of relative density
of negative ions ε(= 0.0 − 1.0), respectively in the absence as well as in the presence of beam for the
same parameters used for plotting Fig. 3 and for beam density nb0 = 2.5 × 108 cm−3 and the shear
parameters S1 	 S2(= 0.7). It is observed that at a constant ε = 0.7 the growth rate of KHI for positive
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Figure 3. Normalized real frequency ζrj(= Ωrj/ωcj) of the KHI (where j(= + or −), for positive ion
and negative ion, respectively) for negative ions as a function of relative density of negative ions ε for
infinite plasma boundary [a1] — in the absence of beam [b1] — in the presence of beam, and for finite
plasma boundary, [a2] — in the absence of beam and [b2] — in the presence of beam for the parameters
same as Fig. 2. (a) For Positive ion, (b) for Negative ion.
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Figure 4. Normalized growth rate Γj(= Ωij/ωcj) of the KHI (where j(= + or −), for positive and
negative ions, respectively) as a function of the relative density of negative ions ε for infinite plasma
boundary [a1] — in the absence of beam, [b1] — in the presence of beam, and for finite plasma boundary
[a2] — in the absence of beam and [b2] — in the presence of beam for the same parameters as Fig. 3
and for beam density nb0 = 2.5 × 108 cm−3. (a) For Positive ions, (b) for Negative ions.

ions shoots up to 30% when the ion beam is switched on for infinite geometry of plasma waveguide. On
the other hand for cylindrical waveguide, the growth rate of KHI positive ion mode increases only up
to 14% in the presence of beam. For negative ions, at ε = 0.6 the growth rate of KHI increases up to
13% for infinite geometry in presence of beam while for finite geometry case increases only up to 8%
in the presence of beam. From Figs. 4 (a) & (b), we can say that the growth rate of the KHI for both
positive and negative ion modes increases with relative concentration of negative ions in the presence
of beam for infinite as well as for finite geometry. Moreover, our results show the stabilizing effect of
KHI for large concentration of negative ions. The results are in line with the experimental observations
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of An et al. [14] (cf. Figs. 4 & 5 on page No. 50). It is also observed that the effect of beam on the
destabilization of the KHI is prominent at large shear parameter and for large value of ε. This result is
in line with the theoretical predictions of D’Angelo and Song [13] (cf. Figs. 1–5 on page No. 44–45), i.e.,
the growth rate of KHI is larger for large concentration of negative ions and for large shear parameters.

We also plot in Figs. 5 & 6 the normalized growth rate of KHI for the positive and negative ions,
respectively, in presence of beam as a function of relative density of negative ions ε for different relative
masses of negative ions (m−/m+) using the same parameters as that used for plotting Fig. 4, for infinite
and finite geometries. From Figs. 5 & 6, it is observed that the KHI mode is stabilized for both the
ion modes with increasing the relative mass of negative ions for infinite geometry of waveguide. These
results are similar to the theoretical results of D’Angelo and Song [13] (cf. Fig. 6 on page No. 45). It is
observed that the finite geometry effects further lowers the growth rate of positive ion while for negative
ion growth rate of KHI shows an increase with relative mass of negative ions up to small values of ε
and then decreases for large values of ε.
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Figure 5. Normalized growth rate Ωi+/ωc− of the ion beam driven KHI for positive ions as
a function of the relative density of negative ions ε for different relative masses of negative ions
m−/m+(= 1.0, 2.5, 3.74), [1] — for infinite boundary and [2] — for finite boundary of plasma waveguide.
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a function of the relative density of negative ions ε for different relative masses of negative ions
m−/m+(= 1.0, 3.74, 8.0), [1] — for infinite boundary and [2] — for finite boundary of plasma waveguide
for the same parameters as Fig. 4.
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To investigate the effect of ion beam energies and densities on the growth rate of KHI in the
presence of negative ions in the plasma, we plot the growth rate of KHI for both positive and negative
ion modes as a function of relative density of negative ions in Figs. 7(a) & (b), respectively, for different
values of beam velocities v0b[= (2Eb/mb)1/2] = 1.57× 105, 3.57× 105 and 7.0× 105 cm/s, and Figs. 8(a)
& (b), respectively, for different values of beam densities n0b(= 2.5 × 107, 2.5 × 108, 7.5 × 108) cm−3.
Other parameters are the same as Fig. 4. It is found that the growth rate of KHI decreases at high
beam energies or velocities while an increase of ion beam density boosts the growth rate of KHI modes.
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Figure 7. Normalized growth rate Γj(= Ωij/ωcj) of the ion beam driven KHI (where j(= + or −),
for positive and negative ions, respectively) as a function of the relative density of negative ions ε for
different ion beam velocities v0b(= 1.57 × 105, 3.57 × 105, 7.0 × 105) cm/s, [1] — for infinite boundary
and [2] — for finite boundary of plasma waveguide, for the same parameters as Fig. 4, for (a) Positive
ions, (b) Negative ions.
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Figure 8. Normalized growth rate Γj(= Ωij/ωcj) of the ion beam driven KHI (where j(= + or −),
for positive and negative ions, respectively) as a function of the relative density of negative ions ε for
different ion beam densities, n0b(= 2.5× 107, 2.5× 108, 7.5× 108) cm−3, [1] — for infinite boundary and
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(b) Negative ions.
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4. CONCLUSIONS

The Kelvin Helmholtz instability (KHI) in a magnetized plasma having positive and negative ions is
driven by an ion beam via a Cerenkov interaction.

The effect of beam on the growth of KHI is more prominently seen at high concentration of ε Our
results are in line with the theoretical predictions of D’Angelo and Song [13] (cf. Figs. 1–5). It is also
observed that KHI mode in presence of negative ions is destabilized up to ε ≤ 0.7 and beyond this limit
it is stabilized. This result is in line with the experimental observations of An et al. [14] (cf. Figs. 4
& 5 on page No. 50). Our results show stabilization of KHI mode up to ε ≤ 0.6 in the presence of
negative ions and the ion beam. The results also show that the KHI mode is stabilized in presence of
heavier negative ions in the potassium plasma which is similar to the result obtained by D’Angelo and
Song [13] (cf. Fig. 6 on page No. 45). A comparison of finite and infinite geometry effects describe that
the frequency and growth rate of KHI is reduced for cylindrical plasma waveguide, it may be due to
reduction in beam plasma interaction region [27]. The results showing increase in frequency and growth
rate of Low frequency KHI modes are in line with the experimental observations of electrostatic ion
Cyclotron waves [29] and Ion Acoustic waves [21] in negative ion plasma. An increase in beam energy
reduces the growth rate of KHI while increase of beam density enhances the growth rate of the KHI
modes. Our theoretical model of KHI driven by an ion beam in negative ion plasma may be validated
via laboratory and space plasma experiments in near future.

In addition, our results of KHI, in general, may be useful for understanding the instabilities in the
negative ion plasma in the material processing [30–32] (as the velocity shear instability and negative ions
in plasma plays an important role in surface technologies) beam plasma system [33] (as ion beam tends to
excite the instabilities in plasma) various fluids phenomena [34] such as Magneto hydrodynamic flows and
the properties of Earth’s ionosphere [2–7, 35] such as solar wind, ion loss on Mars and energy transport
in space etc. However, the results need to be verified for above applications via experiments/simulations
for definite evidences as we have basically emphasized on the laboratory plasma.
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