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Electromagnetic Waves Radiation by a Vibrators System
with Variable Surface Impedance

Sergey L. Berdnik, Victor A. Katrich, Mikhail V. Nesterenko*, and Yuriy M. Penkin

Abstract—The problem of electromagnetic waves radiation by a vibrators system with variable
distributed surface impedance along their axes located in free space is solved by the generalized method
of induced electromotive forces (EMF). The distinctive peculiarity of this method is the use of the
functional distributions, obtained as a result of the analytical solution of the integral equation for
the current by the asymptotic averaging method before, as the basic approximations for the currents
along the impedance vibrators. The multi-parameter characteristics of three-element and multi-element
antennas with variable impedance vibrators are calculated.

1. INTRODUCTION

Systems of perfectly conducting vibrators are widely used both as antennas with directional axial
radiation and as a multi-element antenna array in the meter and decimeter wave bands [1–10].
An additional parameter, which allows forming a required amplitude-phase distribution of vibrators
currents, and thus, modifying and optimizing the electromagnetic characteristics of the system as a
whole, can be distributed surface impedance (both constant and variable along the vibrator length) [11–
16]. The length of impedance vibrators can be both shorter or longer than that of a perfectly conducting
vibrator. This is particularly important when there exist restrictions on radiator dimensions. Here we
present a mathematical model of the impedance vibrator systems in the free space, characterized by
the surface impedances and by its distribution functions along the vibrators length.

2. FORMULATION OF THE PROBLEM AND SOLUTION OF INTEGRAL
EQUATIONS FOR THE CURRENTS

Consider a system consisting of N parallel impedance vibrators in the free space. Let 2Ln and rn be the
length and radius of the n-th vibrator, respectively. The vibrators centers in the Cartesian coordinate
system are zn, xn, yn. The projection of electric fields E0sn(sn) of extraneous sources on the n-th
vibrator axis (n = 1, 2, . . . , N) can be decomposed into two parts relative to the geometric center of the
vibrator: a symmetric Es

0sn
(sn) and anti-symmetric Ea

0sn
(sn) marked by the superscripts s and a. The

variable sn is the local coordinate along the axis of the n-th vibrator. A system of integral equations
relative to vibrators currents Jn(sn) can be written as follows [11]

N∑
n=1

(
d2

ds2
m

+k2

) Ln∫
−Ln

Jn(s′n)Gsm(sm, s′n) ds′n = −iω[E0sm(sm) + zim(sm)Jm(sm)], m = 1, 2, . . . , N, (1)

Received 16 September 2016, Accepted 18 October 2016, Scheduled 3 November 2016
* Corresponding author: Mikhail V. Nesterenko (mikhail.v.nesterenko@gmail.com).
The authors are with the Department of Radiophysics, Biomedical Electronics and Computer Systems, V. N. Karazin Kharkiv
National University, 4, Svobody Sq., Kharkiv 61022, Ukraine.



158 Berdnik et al.

where zim(sm) = rim + ixim(sm) is the internal complex impedance per unit length [Ohm/m] of the
m-th vibrator, which may be variable along the vibrator length; k = 2π/λ, λ is the wavelength in free
space; ω is the circular frequency.

Since the fields of extraneous source are presented by two components, each vibrator current consists
of two terms, symmetric and antisymmetric, i.e., Jn(sn) = Js

n(sn) + Ja
n(sn). Let us now present the

vibrator currents as a product of the unknown complex amplitudes and predefined scalar function
f s,a

nq (sn)(q = 0, 1, . . . , Q) as

Js,a
n (s) =

Q∑
q=0

Js,a
nq f s,a

nq (sn), f s,a
nq (±Ln) = 0. (2)

Then the system of Equation (1) can be written as

N∑
n=1

Q∑
q=0

(
d2

ds2
m

+ k2

) Ln∫
−Ln

[
Js

nqf
s
nq(s

′
n)

+Ja
nqf

a
nq(s

′
n)

]
Gsm(sm, s′n)ds′n−iωzim(sm)

Q∑
p=0

[
Js

mqf
s
mq(sm)+Ja

mqf
a
mq(sm)

]

= −iω[Es
0sm

(sm) + Ea
0sm

(sm)]. (3)

Let us multiply, following the generalized method of induced EMF [11, 13], the left- and right-hand sides
of Equation (3) by f s

mp(sm) and fa
mp(sm) (p = 0, 1, . . . , Q) and integrate results over the length of the

vibrators. Thus, we arrive at the system of linear algebraic equations for the current amplitudes Js
nq

and Ja
nq ⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

N∑
n=1

Q∑
q=0

[
Js

nq

(
Zss

mn,pq + δmnZ̃ss
m,pq

)
+ Ja

nq

(
Zsa

mn,pq + δmnZ̃sa
m,pq

)]
= − iω

2k
Es

0 mp,

N∑
n=1

Q∑
q=0

[
Js

nq

(
Zas

mn,pq + δmnZ̃as
m,pq

)
+ Ja

nq

(
Zaa

mn,pq + δmnZ̃aa
m,pq

)]
= − iω

2k
Ea

0 mp,

(4)

where

Z

⎧⎪⎨
⎪⎩

ss
aa
sa
as

⎫⎪⎬
⎪⎭

mn,pq =
1
2k

Lm∫
−Lm

f

⎧⎪⎨
⎪⎩

s
a
s
a

⎫⎪⎬
⎪⎭

mp (sm)

⎡
⎢⎢⎢⎢⎢⎣

(
d2

ds2
m

+ k2

) Ln∫
−Ln

f

⎧⎪⎨
⎪⎩

s
a
a
s

⎫⎪⎬
⎪⎭

nq (s′n)Gsm(sm, s′n)ds′n

⎤
⎥⎥⎥⎥⎥⎦

dsm,

Z̃

⎧⎪⎨
⎪⎩

ss
aa
sa
as

⎫⎪⎬
⎪⎭

m,pq = − iω

2k

Lm∫
−Lm

f

⎧⎪⎨
⎪⎩

s
a
s
a

⎫⎪⎬
⎪⎭

mp (sm)f

⎧⎪⎨
⎪⎩

s
a
a
s

⎫⎪⎬
⎪⎭

mq (sm)zim(sm)dsm,

Es,a
0 mp =

Lm∫
−Lm

f s,a
mpE

s,a
0sm

(sm)dsm, δmn =
{

1 if m = n,

0 if m �= n .

As an example, let us consider the Yagi-Uda antenna [2–10] (Fig. 1).
Let the vibrators be arranged so that their central points are on the z-axis of the Cartesian

coordinate system, and the longitudinal axes of the vibrators are oriented parallel to the x-axis. Let
us enumerate the vibrators n = 1, 2, . . . , N by their position on the z-axis, so that n = 1 and n = 2
correspond to the active vibrator and reflector, respectively, and the remaining vibrators are directors.
The active vibrator (n = 1) is excited at its center (s1 = 0) by δ-generator of harmonic oscillations
with voltage amplitude V0. Thus, the projection of the electric field of extraneous sources on the
longitudinal axis of the active vibrator has only symmetric component E0s1(s1) = Es

0s1
(s1) = V0δ(s1)

and the fields E0sn(sn) = 0 for n = 2, 3, . . . , N . Let us approximate the current distribution on
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Figure 1. The configuration of Yagi-Uda antenna.

the active vibrator by functions f s
10(s1) = sin k̃(L1 − |s1|) and f s

11(s1) = cos k̃s1 − cos k̃L1, while the
currents on the passive vibrators by functions f s

n1(sn) = cos k̃sn − cos k̃Ln (n = 2, 3, . . . , N). Here

k̃ = k − i2πzav
in

Z0Ω , zav
in = 1

2Ln

Ln∫
−Ln

zin(sn)dsn is the mean internal impedance along the vibrator length [11],

Z0 = 120π Ohm and Ω = 2 ln(2Ln/rn). The current distribution functions were obtained as solutions of
the integral equation for the current on a solitary impedance vibrator by the averaging method [11, 12].
The impedance distribution along the vibrators can be represented by zin(sn) = zav

in φn(sn), where the
distribution functions φn(sn) are normalized so that mean values over the vibrator length were equal
to unit. In general case, the normalized surface impedance of the vibrator Z̄Sn = 2πrnzin/Z0 can be
complex so that Z̄Sn = R̄Sn + iX̄Sn. If X̄Sn > 0 the impedance is of inductive type and X̄Sn = krnCLn,
and if X̄Sn < 0, the impedance is of capacitive type and X̄Sn = −CCn/(krn) where the constants
CLn and CCn are defined by the vibrator dimensions and physical parameters of the vibrator material.
Formulas defining specific realizations of the vibrator surface impedance are given in Appendix A.

The radiation pattern of Yagi-Uda antenna (Fig. 1) can be written as follows

F (θ, ϕ) =
1

Fm
sin (arccos (sin θ cos ϕ))

N∑
n=1

⎡
⎣eikzn cos θ

Ln∫
−Ln

Jn(sn)eiksn sin θ cos ϕdsn

⎤
⎦,

where 1/Fm is the normalizing factor. The radiation patterns in 	E- and 	H-vector’s planes may be
defined as FE = F (θ, ϕ = 0◦) and FH = F (θ, ϕ = 90◦), respectively.

3. NUMERICAL RESULTS

It is known that the characteristics of the Yagi-Uda antenna can be varied by adjusting the lengths of
vibrators and distances between them. To obtain axial radiation of the Yagi-Uda antenna composed of
perfectly conducting vibrators, the directors should be slightly shorter and the reflector should be longer
than the active vibrator (Fig. 2(a)). Recent studies have shown that the reactance of the vibrators in
the Yagi-Uda array required to obtain the necessary input parameters and radiation characteristics can
also be achieved by variable the magnitude and distribution function of the surface impedance of the
fixed length vibrator. The electrical length of the impedance vibrators can be both shorter and longer
than that of the perfectly conducting vibrator.

The inductive surface impedance reduces the vibrator resonant length; therefore, the Yagi-Uda
antenna with impedance vibrators can be used, when the weight and size parameters are significant.
The capacitive impedance and, hence, longer vibrators can increase the antenna input resistance. Let
us consider several functions defining distribution of the vibrator surface impedance, namely: constant
distribution function (CDF), and decreasing (DDF) and increasing (IDF) distribution functions. All
these function have equal mean and are symmetrical relative to the vibrator center. The inductive
impedance with DDF and the capacitive impedance with IDF increase the vibrator resonant length
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(a) (b) (c)

Figure 2. Three-element Yagi-Uda antenna array: (a) perfectly conducting vibrators (2L1 = 0.44λ0,
2L2 = 0.5λ0, 2L3 = 0.38λ0); (b) inductive impedance vibrators (2Ln = 0.35λ0); (c) capacitive
impedance vibrators (2Ln = 0.65λ0).
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Figure 3. The distribution functions of the surface impedance of vibrators in Yagi-Uda arrays: (a) the
inductive impedance; (b) the capacitive impedance (reflector, director, active vibrator).

relative to the impedance with CDF, while the inductive impedance with IDF and the capacitive
impedance with DDF decrease the resonant length. That is, the DDF increases impedance while the IDF
decreases it. This effect can be used during the design of antenna arrays. Let’s illustrate this possibility
by numerical calculations of electrodynamic characteristics for a three-element Yagi-Uda antenna array
with the equal-length vibrators and the variable inductive impedance Z̄Sn(sn) = iX̄av

Snφn(sn) (Fig. 2(b))
and capacitive impedance Z̄Sn(sn) = −iX̄av

Snφn(sn) (Fig. 2(c)). Since the normalized surface impedances
X̄av

Sn of all vibrators in the array are equal, phases of currents in the radiators to ensure the axial radiation
can be obtained by selection of the surface impedance distribution functions. The geometric parameters
of array elements and impedances X̄av

Sn should be selected so as to match the antenna input impedance
at operating wavelength λ0 and the feeder line characteristic impedance and to provide a low voltage
standing-wave ratio (VSWR) in the feeder line of the active vibrator.

Consider the exponentially decreasing and exponentially increasing distribution functions φn(sn) =
α exp[−β|sn|/Ln] and φn(sn) = α exp[−β(|sn|/Ln−1)], where α = β/[1−exp(−β)] is the normalization
factor, and β is the arbitrary dimensionless constant. The functions φn(sn) for the three antennas shown
in Fig. 2 are plotted in Fig. 3.

The plots of VSWR in feeder lines with wave resistance W = 50 Ohm (curves 1, 4), W = 25 Ohm
(curve 2), and W = 75 Ohm (curve 3) and directivity D versus the wavelength are shown in Fig. 4
for the three-element Yagi-Uda arrays (Fig. 2) with the impedance distribution presented in the Fig. 3
(Cav

Ln = 1.448, Cav
Cn = 5.466 × 10−3, rn = 0.01λ0, z2 = −0.25λ0, z3 = 0.2λ0).

As can be seen from the plots in Fig. 4(a), the antenna array with impedance vibrators and the
feed line can be better matched than the antenna with perfectly conducting vibrators. Fig. 5 shows
similar plots for seven-element arrays with perfectly conducting vibrators (2L1 = 0.45λ0, 2L2 = 0.5λ0,
2L3−7 = 0.4λ0, W = 50 Ohm), with impedance vibrators (variable impedance of inductive type:
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Figure 4. VSWR and D versus the wavelength for the three-element Yagi-Uda antenna: curves 1,
4 — perfectly conducting vibrators, curve 4 was obtained by the method of moments with piecewise
constant basis vibrators; curve 2 — vibrators with variable impedance of inductive type; curve 3 —
vibrators with variable capacitive impedance.
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Figure 5. VSWR and D versus the wavelength for the seven-element Yagi-Uda antenna: curve 1 —
perfectly conducting vibrators, curve 2 — vibrators with variable impedance of inductive type; curve 3
— vibrators with variable capacitive impedance.
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Figure 6. The radiation patterns of the (a) three-element and (b) seven-element Yagi-Uda antennas:
curves 1 — perfectly conducting vibrators, curves 2 — vibrators with variable impedance of inductive
type; curves 3 — vibrators with variable capacitive impedance.

2Ln = 0.35λ0, Cav
Ln = 1.464, β = 1.7 for the reflector and directors, W = 25 Ohm), and with impedance

vibrators (variable impedance of capacitive type: 2Ln = 0.65λ0, Cav
Cn = 5.341 × 10−3, β = 1.7 for the

reflector and β = 4.5 for the directors, W = 75 Ohm). The other parameters are as follows: rn = 0.01λ0,
z2 = −0.25λ0, z3 = 0.2λ0, and the distances between the directors are 0.2λ0.
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As can be seen from the plots in Fig. 4(a) and Fig. 5(a), the array with the impedance vibrators is
better matched with feed line than perfectly conducting vibrators. The inductive impedance decreases
and capacitive impedance increases the array operating band defined using VSWR (for example, at the
level VSWR = 2) and the directivity D as compared with the case Z̄Sn = 0.

The radiation patterns of the Yagi-Uda antennas at λ = λ0 are shown in Fig. 6.

4. CONCLUSION

The problem solution presented in the paper can be used as a basis for multi-parameter optimization
of electrodynamic characteristics of radiating multi-element structures built on vibrators with variable
distributed surface impedance. The distinctive peculiarity of the method, proposed by the authors, is
the use of the approximating functions, resulting from the integral equation solution for the current by
the asymptotic averaging method, in the current distribution along the impedance vibrator. The ground
of rightness and correctness of such an approach is represented in the format of comparative analysis
with the calculated results by the method of moments. One would note that the new conception
of the generalized method of induced EMF, keeping all known advantages of numerical-analytical
methods in comparison with direct numerical methods, extends to the cases of the vibrator with the
impedance, variable along its length, and the impedance vibrators systems rather simply. Thus the
proposed generalized method of induced EMF allows to widen the boundaries of numerical-analytical
investigations of practically significant problems of the impedance vibrators application sufficiently.

APPENDIX A. SURFACE IMPEDANCE OF VIBRATORS

Formulas determining the distributed surface impedance of electrically thin vibrators (material
parameters are: permittivity ε, permeability μ, and conductivity σ) have the following form

No The vibrator design Vibrator model Impedance

1 Solid metal cylinder. The radius 

satisfy inequality  r >> Δ ,   Δ  is 

skin layer thickness. 

 
0

1

120πσΔS

i
Z

+
=

2 Metallized dielectric cylinder. Metal 

layer thickness is h   << Δ  .
 

3 Metal-dielectric cylinder. 1L  is the 

thickness of a metal discs, 2L  is 

the thickness of a dielectric disks. 

 

4 Magnetodielectric  metalized 

cylinder. ir  is the radius of internal 
conducting cylinder. 

  

5 Metal cylinder coated with 

magnetodielectric layer, which 
thickness is ir − r , or corrugated 

cylinder (           )<< λ, where 1L  is 

crests thickness where , 2L  

is the notch width where . 

   

   

 

 
 

6 Metal monofilar helix. r  is helix 

radius 1kr << ,  ψ  is winding angle.
 

 
 

 

0 0

0
R

SZ = 1
120πσh   + ikr(ε − 1)/2R

2i
krε+SZ = −

2L

2L1L

1

i
SZ = 

120πσh   − i/krμ ln(r/r )R

+ 2L1L

SZ   = 0

SZ   = 0/

SZ   = ii/krμ ln(r/r )

SZ   (s)= SZ  φ(s) 

SZ   = (i/2)kr ctg  ψ2
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Formulas for surface impedances of vibrators are derived in the frame of the impedance concept [11]
and valid for thin cylinders |(k√εμr)2 ln(k

√
εμri)| � 1 both for finite and infinite cylinders, located in

the hollow electrodynamic volume. If vibrators are in a material medium with parameters ε1 and μ1,
all above formulas must contain the factor

√
μ1/ε1.
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