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Subspace Pattern Recognition Method for Brain Stroke Detection

Yizhi Wu, Xieyun Xu*, and Ming-Da Zhu

Abstract—Brain stroke is a serious disease and one of the major causes of death. Stroke detection
based on the frequently studied microwave imaging method is computation-intensive and not always
reliable. This paper presents a stroke-detection scheme based on subspace classification technique.
Specifically, the stroke is detected and located by using the intersection of the positive antenna lines,
i.e. connecting the transmitter and receiver. The numerical results show that the proposed method can
detect and locate blood clots efficiently.

1. INTRODUCTION

Stroke is a serious disease and one of the major causes of death [1]. In the treatment of stroke, the ability
to pre-detect the presence and location of a bleeding stroke inside the skull is important. In the past
few decades, microwave detection method for medical application has been widely studied [2–4], thus
research and development of microwave detection of stroke is attracting more and more attention [5, 6].

The microwave imaging method [7] is intrinsically established on the simplified electromagnetic
model, which is not reliable for brain stroke detection. On the other hand, the imaging algorithm
in this category is always computation-intensive and time-consuming. Therefore, in recent years, the
stroke detection scheme based on pattern recognition shows good prospects for further study [8–11].
Watanabe and Pakvasa in [12] suggested the subspace pattern recognition method (SPRM) as a new
approach to classify and represent patterns given as elements of a vector space. Here, each class is
represented by a subspace spanned by a group of basis vectors — the orthogonal components obtained
by the principal component analysis. Improvements to the basic SPRM can be put under the following
categories: 1) methods based on weighted orthogonal projections and 2) methods based on the rotation
of subspaces.

In this paper, we propose a novel subspace classification technique, which involves two steps: 1)
constructing individual basis for each class, and 2) computing the inner product of the projected testing
vector. Under the Inner-product Subspace Classifier (ISC) [13] framework, a naive ISC is used as
the basic classification model, where the basis for each subspace is estimated using Singular Value
Decomposition (SVD) [14–16] from the training data. In addition, since data from both classes share
many common features, reduced-size subspaces for each class are formed and accomplished by removing
some of the close directions in the subspaces. By removing nearly common directions, this technique
enhances the class separability. In this paper, we use S21 and the intersection of two antennas (a
receiving antenna, a transmitting antenna) to get the fuzzy positioning.

This paper is organized as follows. Section 2 presents the stroke detection method based on subspace
pattern recognition. Section 3 shows the experimental and numerical results.
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2. STROKE DETECTION METHOD BASED ON SUBSPACE PATTERN
RECOGNITION

The algorithm is based on the assumption that the noise-free data vector belongs to a linear subspace
and the corresponding data to another linear subspace. Labeled training data are used to identify bases
for these subspaces. In addition, since data from both classes share many common features, reduced
size subspaces for each class are formed.

2.1. Measurement Data and Preprocessing

The original measurement data are a set of scattering matrix samples in fixed frequency. For fixed
frequency ω, each element in scattering matrix with i rows of j columns is homogenization. The
gain (sij(ω)) between receiving antenna i and transmit antenna j is symmetric matrix, which is
sij(ω) = sji(ω). For processing data conveniently, we use the data mapped in the range of 0 to 1.

cij = sij(ω)/max(abs(sij(ω))) (1)

We propose a classification problem of two types. The purpose of pattern recognition is to find the
interface of the two types. The general expression is

ti = W 0
c α + � (2)

where W 0
c is a matrix containing the basis vector which describes the space, and α represents the

corresponding basis weight vector for the specific sample t, expressed as follows
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� is the error between the model W 0
c and the measurement t. The following decision rules can be used

to solve the linear classification of two types.
Set

c = g(t) (4)

where c is binary, i.e., c ∈ {0, 1} can be defined as a positive space and a negative space.
Equation (4) defines a decision variable to classify the elements by positive space and negative

space.
All the training samples for one class are assembled into a matrix.

Tc = [t11, t
2
2, . . . , t

N
c ] (5)

where tc is the training samples and N the number of training samples. We get S21 signals as the
training samples tc by experiments with VNA [22].

2.2. Inner-Product Subspace Classification

By singular value decomposition (SVD), Tc is decomposed into three matrices,

Tc = UΣV ∗ (6)

where U is the left unitary matrix, V ∗ the right unitary matrix, and Σ a diagonal matrix containing
singular value of Tc in a descending order. (*) denotes the conjugate and transpose.

Singular values of Tc can be separated into two subspaces, the positive and negative subspaces.
Hence, U,Σ, V ∗ can be divided into two different subspaces by SVD as follows,

Tc =
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Uc U⊥
c

] [
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where c ∈ {0, 1}, and the subscripts ‘0’ and ‘1’ refer to two subspaces, respectively. SVD is applied
to Tc for the two subspaces c ∈ {0, 1}, respectively, and then we can get U0 and U1. If the training
samples are fixed, U0 and U1 are also unique.

Given basis U0, U1 and training data t, the discrimination rule is defined by

g(t) =
{

+1, δ(t) + ω0 > 0
−1, δ(t) + ω0 > 0

(8a)

where
δ(t) = ‖Us0U

∗
s0t‖2 − ‖Us1U

∗
s1t‖2 = t∗Us0U

∗
s0t − t∗Us1U

∗
s1t (8b)

In the above formula, U and V are both unitary matrices. So U∗
0 U0 = U∗

1 U1 = E. A nonzero value
of the decision offset ω0 in Eq. (8a) can be used to bias the detection toward class +1 if ω0 > 0 and
toward class −1 if ω0 <0.

Since the bases of the two classes are derived from samples of data which are noisy, the estimated
bases will be perturbed. Signal directions in the two signal subspaces which are nearly collinear will
particularly lead to a high variability of the outcome of the classifier. Hence, dimension in the two
signal spaces which are nearly collinear are removed.

2.3. A Complexity Reduced Approximation

This is accomplished by removing some of the directions in the subspaces that have the smallest angles
between them. The principle of detection in the algorithm is based on projecting the data sample
under test onto the two reduced subspaces and calculating the Euclidean distance of the projected data
sample. The principal angles θk between U0 and U1 are defined as:

cos(θk) = max
μ∈U0

max
υ∈U1

μT υ

Subject to:

||μ|| = ||υ|| = 1

μT μi = υT υi = 0, i = 1, . . . , k − 1 (9)

The SVD decomposition of the matrix product UT
0 U1 readily yields a solution to the principal angle

problem.

Figure 1. First prototype, in which the two antennas have been fixed.
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Algorithm

Note: in this algorithm, the intermediate basis is called Qi, i = 0, 1. The notation
Ui, i = 0, 1 is used to denote the final constructed basis for class i.

• Let the columns of T0 and T1 be vectors spanning subspace 0 and 1 respectively
and N0 ≥ N1 be the dimensions of T0 and T1 respectively;

• Compute the real(T ):

T0 = real(T0)
T1 = real(T1)

(10)

• Construct matrix H: H = QT
0 Q1

• Compute the SVD of H
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where θk is the principal angles and 1 ≥ cos(θ1) . . . ≥ cos(θk) ≥ 0 after removing bases
with the cos(θs) = 1 is given by

Us0 = [us+1, us+2, . . . , uN ]
Us1 = [us+1, us+2, . . . , uN ]

(12)

The rule can be interpreted as follows. The data vector x is projected onto the
subspaces spanned by the matrices Us0 and Us1, respectively. The label is selected
according to which of the projected vectors have the largest Euclidean length. The
largest distance determines which class is selected, i.e., if a stroke brain is detected or
not. A decision offset can be introduced to change the performance of the detector
and improve the probability of detection.

3. NUMERICAL RESULTS

We have made two consecutive explorative proofs of principle studies, with the two different prototypes.
While aiming for a microwave-based investigation as early upon onset of the stroke as possible, the
experiment environment factors of the study are ignored.

3.1. Experiment Study

The first study is performed by spectrum analyzer. The beaker is filled with a mixture of glycerin,
water, and sugar, as shown in Fig. 1. The cylinder is filled with water. The set with ‘water’ is indicated
to the case that the cylinder is placed in the beaker, while the case ‘no-water’ means that the cylinder
is removed from the beaker. Antennas are used to collect data from the water case and no-water case,
and then the algorithm is aimed at separating all 16 water case data from 16 samples with a ‘no-water’
case.

Due to the simple experiment equipment, the error of analysis is affected by the complex noisy
signals of our experiment environment and measurement of the experiment data. All of these factors
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might lead to a larger range of δ(t). The δ values of the water case range from 3 to 11, and those of
no-water case range from 0 to 3. Therefore, the value of ω0 is set to 3.

In Fig. 2, we summarize the main results from this study, which shows the averaged squared
subspace distance difference for each example based on subspace pattern recognition method. It is
shown in Fig. 2 that we can distinguish ‘water’ case from ‘no-water’ case easily with a proper δ set.

3.2. First Simulation Study

In this paper, we use FDTD [17–19] simulation for both the detection signal acquirement and reference
signal generation. In FDTD, we use Gaussian RF pulse with 2.5 GHz center frequency and 50% relative
bandwidth as the excitation.

As shown in [20], the brain model consists of 256 × 256 cubical elements with dimensions of
1mm × 1 mm respectively. The dielectric properties of different types of tissues including skin, skull,
fat, blood, dura, cerebral spinal fluid (CSF), grey and white matter can be found in [21] and initiated
in the brain model.

The first simulation study use 16 antennas surrounding the brain. The available data are grouped
into two classes. In each case, all measurements from examples with a bleeding stroke form one class.
The second class is formed by healthy subjects. We refer to these test cases as ‘stroke’ and ‘normal’.

The results from the detection is shown in Fig. 3 where the upper scatter is stroke case, and the
lower scatter is normal case. Fig. 3 indicates that eighteen out of 20 stroke cases are separated from
the normal case whereas two are not.
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Figure 2. Illustration of the distribution of
the decision variable, and the difference between
the squared subspaces distances evaluated for all
examples in subspace pattern recognition method.
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Figure 3. Illustration of the distribution of
the decision variable, and the difference between
the squared subspaces distances evaluated for all
examples in subspace pattern recognition method.

3.3. Second Simulation Study

In the second simulation study, 16 positons to locating the transmitting and receiving antenna pair are
evenly distributed around the brain, where the angle between the adjacent positons is 22.5◦. We get
the 20 group data for normal case by only changing the white matter of the dielectric constant, which is
shown in Fig. 4(a). Another 20 group data for stroke patients are obtained by sampling head simulation
diagram with FDTD. By above settings, we can get the effective value of the δ(x) groups and locate
the blood clot.

In order to obtain the training samples for the simulation environment, we alter the dielectric
constant value of the white matter by the same interval, and the changes of the dielectric constant are
in the range of 5%. Therefore, a part of the δ values might be nearly symmetric. We can clearly see in
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(a) (b) 

Figure 4. Head simulation diagram. (a) Simulation diagram without blood clot. (b) Simulation
diagram with blood which is on the line segment between the receiving and transmitting antennas.
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Figure 5. The averaged squared subspace distance of each training samples, the horizontal axis is the
number of samples. (a) (b) Are the results in the antenna pair at position 5 and 13 and in the antenna
pair at position 1 and 9 (where the blood clot is not). (c) (d) Are the results in the antenna pair at
position 2 and 10 and in the antenna pair at position 8 and 16 (where the blood clot is).
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Fig. 5 that the averaged squared subspace distance where the blood clot is on the line segment between
the receiving and transmitting antennas is larger than the one where the blood clot is not. So that we
can judge the presence of blood in Fig. 5 and can largely locate the blood clot in the intersection of the
antenna pair at positions 2 and 10, and positions 8 and 16. For instance, in Fig. 5(d), the δ values of
the stroke case range from 160 to 190, and those of the normal case range from −190 to −220. So we
set the value of ω0 to 0, which can perfectly classify the two cases.

4. CONCLUSION

This paper presents a microwave brain-diagnostic technique based on subspace pattern recognition and
the associated proof-of-principle experiments. The paper shows that the systems can differentiate stroke
patients from normal ones and detect the position of blood clots by the antenna-pair line. The system
is based on microware scattering models with antenna worn on head. Collected data are analyzed with
a pattern recognition algorithm based on training data simulation and tomography head model. The
numerical results show that the proposed method can detect and locate blood clots efficiently. The
simulation results show the effectiveness of the schema. Thus, potable even wearable microwave device
can be developed for the mobile medical application.
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