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Characterization of a Bifacial Silicon Solar Cell Under Multispectral
Steady State Illumination Using Finite Element Method

Nzonzolo1, *, Desire Lilonga-Boyenga1, Camille N. Mabika1, and Gregoire Sissoko2

Abstract—In this paper, we present results of characterization of a bifacial silicon solar cell, under
multispectral steady state illumination, using finite element method (FEM). The illumination level
(n) and back surface recombination velocities (Sb) effects on solar cell electrical parameters have
been highlighted. After solving the continuity equation that describes the solar cell operation, the
excess minority carrier’s density and current-voltage characteristics are determined for various values
of illumination level and recombination velocities on the junction and the back surface of the solar
cell. The results obtained are in agreement with those given by analytical methods and prove that the
photovoltaic cells can be analyzed only by numerical methods, such as the FEM, characterized by their
robustness and flexibility in their applications in a context where those methods take more and more
importance in the development of Computer Aided Design (CAD) tools.

1. INTRODUCTION

The studies carried out until now on the characterization of photovoltaic cells have been based, for
majority of the cases, on the analytical methods [1–4] which, for certain transcendent equations for
example, present many limits.

To solve this kind of equations, one often draws on graphic methods. Nowadays, numerical
methods gain more and more importance. Several types of these methods have been implemented in
simulation software. The equations which govern the operation of the photovoltaic cells are differential
equations and can be solved numerically by taking account of the boundary conditions although they
are particularly opposite to those usually used.

The objective of this study is to characterize a photovoltaic cell by the finite element method.
Using this method, one-dimensional continuity equation will be solved, and the excess minority carrier’s
density versus the base depth will be determined for various values of the back surface recombination
velocity Sb, junction recombination velocity Sj, and illumination level n. The photocurrent density and
photo voltage will also be determined as well as the current-voltage characteristics of the photovoltaic
cell. Finally, the results obtained by the finite element method will be compared with those obtained
by the analytical approach.

2. THEORETICAL ANALYSIS

Let us consider a bifacial silicon solar cell, illuminated on its front surface then by its back surface as
represented in Figure 1.

One designates the depth of the base by H and any position in the base by x.
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Figure 1. Silicon bifacial solar cell.

We consider the one-dimensional case assumption where all parameters depend only on x.
The continuity equation which governs the solar cell operating is given by [5]:

∂2δ(x)
∂x2 − δ(x)

L2
= −g(x)

D
(1)

δ(x) is the excess minority carrier’s density in the base, L =
√

D · τ the diffusion length, D the diffusion
constant, τ the lifetime of electrons, and g(x) the generation rate of carriers.

This carrier’s density is subjugated to the following boundary conditions:

- at the junction

D · ∂δ (x)
∂x

∣∣∣∣
x=0

= Sj · δ (0) (2)

- at the back surface,

D
∂δ (x)

∂x

∣∣∣∣
x=H

= −Sb · δ (0) (3)

where Sj indicates the junction recombination velocity and Sb the back surface recombination
velocity.

To solve Equation (1), we propose here to use the finite element method.
Let: u(x) = δ(x), a = Sj

D , b = −Sb
D , c(x) = 1

L2 and f(x) = g(x)
D , the continuity Equation (1)

becomes:
−u′′(x) + c(x) · u(x) = f(x) (4)

with its boundary conditions:
{

u′ (0) = a · u (0)
u′ (H) = b · u (H) .

These boundary conditions are mixed or Fourier and Neumann type [6], i.e. they imply the function
u and its derivative u.

The carrier’s generation rate of the solar cell illuminated by its front surface and back surface can
be approached by the relation [5]:

g (x) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

3∑
1

n · ai · exp (−bix)

3∑
1

n · ai · exp (−bi (H − x))

(5)

The quantities ai and bi are the constants deduced from modeling of the generation rate considered for
the overall solar radiation [5]. n stands for the illumination level.

u is a single solution of Equation (4), whose functional can be written:

F (u) =
∫ [

1
2

(
∂u

∂x

)2

+
cu2

2
− f(x) · u(x)

]
dx − u(H)u′(H) + u(0)u′(0) (6)
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v being a test function, which leads to the variational form [6, 7] given by the following equation:
A(u, v) = L(v) (7)

where A and L are defined by:

A (u, v) =

H∫
0

u′(x) · v′(x)d(x) +

H∫
0

c(x) · u(x) · v(x)d(x) + a · u(0) · v(0) − b · u(H) · v(H) (8)

and

L(v) =

H∫
0

f(x) · v(x)d(x) (9)

To solve Equation (7), one subdivides the domain [0, H] in N finite elements, where N is a positive
integer, and h = H

N+1 is the step of discretization, i.e., the distance between two consecutive points, as
shown in Figure 2.

Figure 2. 1D discretization of the solar cell base depth.

Using the Galerkin method, one defines a space with finite dimensions which tends towards the
interval [0, H] when h tends towards zero.

According to the Lax-Milgram theorem, there exists a single solution uh for the discrete variational
problem.

uh is the approximate solution which tends towards u when h tends towards zero.
If {ωi(x)} is a base of trial functions suitably chosen, we can develop functions u and v on this

basis. Thus:

u =
N+1∑
i=1

Uiω
i(x) and v =

N+1∑
j=1

Vjω
j(x)

The approximation of functions u and v respectively in the base of functions ωi(x) and ωj(x) permits
the writing of Equation (7) in the form:

MU = L (10)

where A and L are matrices of elements:

Mi,j =

H∫
0

((
ωi

)′ (x) · (ωj
)′ (x) + c(x) · ωi(x)

(
ωj

)
(x)

)
dx + a · ωi(0)

(
ωj

)
(0) − b · ωi(H)

(
ωj

)
(H) (11)

U = (U1, U2, . . . Un) (12)

and

Li =

H∫
0

f(x) · ωi(x)dx (13)

In many one-dimensional problems, function ωi(x) has its support in [xi−1, xi+1] and can be expressed
as follows [7]:

ωi(x) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ω1

(
x − xi−1

h

)
for x ∈ [xi−1, xi]

ω0

(
xi+1 − x

h

)
for x ∈ [xi, xi+1]

0 on the other intervals

(14)
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The basic functions ω0 and ω1 are given by: ω0(x) = 1 − x and ω1(x) = x.
The solution of the continuity Equation (1) taking into account the boundary conditions is then

given by:
U = M−1 · L (15)

This solution gives the density of photogenerated carriers from which the photocurrent density J and
photo voltage V can be determined [5].

3. RESULTS AND DISCUSSION

The continuity equation is solved using a numeric code which we have conceived. In order to validate
our calculations, we plot the profile of excess minority carrier’s density versus base depth x. This profile
is compared with that obtained by the analytical method before examining the effects of Sj, Sb and n.

3.1. Excess Minority Carriers’ Density

3.1.1. Front Surface Illumination

When the solar cell is illuminated on its front surface, we obtain the profile of the carrier’s density
represented in Figure 3.

Figure 3. Minority carrier’s density; Sj = 105 cm/s: D = 26 cm2/s; L = 0.01 cm; Sb = 103 cm/s, front
surface illumination.

One notes a good agreement between these results and those given by analytical approach, when
the number of finite elements is equal or superior to 200.

For this value of N = 200, we represent, in Figure 4, the minority carriers’ density photogenerated
for various values of the junction recombination velocity Sj.

We notice the reduction level and the displacement of the maximum of the carriers’ density, due
to the widening of the space charge region, when the junction recombination velocity increases.

This result is in conformity to that given by [1].
We are also interested in the profile of the minority carriers’ density for various values of the back

surface recombination velocity Sb, represented in Figure 5.
As envisaged, this density decreases when the back surface recombination velocity Sb increases.
To highlight the effectiveness of the finite element method, we represent, in Figure 6, the minority

carriers’ density for various values of illumination level n.
As shown in this figure, our results agree with those obtained analytically.



Progress In Electromagnetics Research M, Vol. 53, 2017 135

Figure 4. Minority carriers density for various
junction recombination velocities Sj: D =
26 cm2/s; L = 0.01 cm; Sb = 103 cm/s, front
surface illumination.

Figure 5. Minority carriers density for various
junction recombination velocities Sb: D =
26 cm2/s; L = 0.01 cm; Sj = 103 cm/s, front
surface illumination.

Figure 6. Minority carriers density for various back surface recombination velocities Sb: D = 26 cm2/s;
L = 0.01 cm; Sj = 104 cm/s, front surface illumination.

3.1.2. Back Surface Illumination

For an illumination of the bifacial solar cell on the back surface, the profile of the minority carriers’
density photogenerated is compared with that obtained by the analytical method. This profile is shown
in Figure 7.

Contrary to the front surface illumination, the numerical solution is identical to analytical solution
when the number of finite elements N is superior or equal to 500.

To obtain these results, it was necessary to consider much more finite elements (N = 500), when
the solar cell is illuminated on its back surface, other than on its front surface. That can be explained
by the fact that when the second member g(x) of Equation (2) is not linear, the convergence of the
solution requires greater number of finite elements.

With N fixed at 500, we also show the minority carrier’s density photogenerated in Figure 8 and
in Figure 9 respectively for various values of Sb and n.
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Figure 7. Minority carrier’s density; D = 26 cm2/s; L = 0.01 cm; Sb = 103 cm/s, back surface
illumination.

Figure 8. Minority carriers density for various
back surface recombination velocities Sb: D =
26 cm2/s; L = 0.01 cm; Sj = 104 cm/s, back
surface illumination.

Figure 9. Minority carriers density for various
values of n: D = 26 cm2/s; L = 0.01 cm;
Sj = 105 cm/s, Sb = 103 cm/s, back surface
illumination.

It can be noted that the results of our simulations are identical to those obtained by the analytical
method [1].

3.1.3. Simultaneous Illumination

The simultaneous illumination occurs when the bifacial solar cell is illuminated on its two surfaces. In
the assumption that the junction recombination velocity and the back surface velocity are the same,
as well as the value of illumination level n, we shown, in Figure 10, the minority carriers’ density
photogenerated versus the base depth. This profile is compared with that obtained by the analytical
method.

For this simultaneous illumination of the solar cell, the perfect agreement between the numerical
solution and analytical solution is obtained when the number of finite elements N considered is superior
or equal to 800. Here, g(x) is the sum of both generation rates on front surface and back surface.



Progress In Electromagnetics Research M, Vol. 53, 2017 137

Figure 10. Minority carrier’s density; Sj =
104 cm/s: D = 26 cm2/s; L = 0.01 cm; Sb =
104 cm/s, simultaneous illumination.

Figure 11. Minority carrier’s density for various
values of n: D = 26 cm2/s; L = 0.01 cm; Sj =
4, 6× 103 cm/s; Sb = 5× 103 cm/s, simultaneous
illumination.

For this value of N = 800 and for various values of illumination level, the minority carriers’ density
is shown in Figure 11.

This minority carriers’ density determined using the finite element method presents a profile which
reflects exactly the solar cell working [1, 4].

These results are in conformity with those obtained by the analytical approach.

3.2. Photocurrent Density

In the aim of continuing the validation of our code, let us examine the behavior of photocurrent density
when the solar cell is illuminated on the front surface. The numerically determined photocurrent density
is compared with that obtained by the analytical method. These profiles are represented versus the
junction recombination velocity Sj, in Figure 12.

Figure 12. Photocurrent density versus Sj;
D = 26 cm2/s; L = 0.01 cm; Sb = 103 cm/s,
front surface illumination.

Figure 13. Photocurrent density versus Sj
for various values of illumination level n: D =
26 cm2/s; L = 0.01 cm; Sb = 103 cm/s, front
surface illumination.
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Figure 14. Photocurrent density versus Sj:
D = 26 cm2/s; L = 0.01 cm; Sb = 103 cm/s, back
surface illumination.

Figure 15. Photovoltage versus junction
recombination velocity Sj; D = 26 cm2/s; L =
0.01 cm; Sb = 103 cm/s, front illumination.

The perfect concordance between the numerical and analytical solutions is obtained when the
considered number of finite elements N is superior or equal to 1000. For this value of N and various
values of illumination level n, we show, in Figure 13, the photocurrent density. One notes that the
current density increases with the illumination level n, and the obtained profiles are identical to those
given by the analytical methods.

Figure 14 shows the photocurrent density versus junction recombination velocity, when the solar
cell is illuminated on its back surface.

As shown in this figure, for the illumination of solar cell on its back surface, the numerical solution
is close to the analytical solution when N is superior or equal to 1500.

3.3. Photovoltage

To validate our code of calculations, we are also interested in the photovoltage. Figure 15 shows the
photovoltage versus junction recombination velocity (Sj). The photovoltage is compared with the profile
of the analytical solution when the solar cell is illuminated on its front surface for N = 500.

One notes a perfect agreement between our results and analytical ones [8].

3.4. Current-Voltage Characteristics

For an illumination of a solar cell on its front surface, the current-voltage characteristic is shown in
Figure 16, for N = 1000 finite elements of base depth discretization.

The agreement of our results with those obtained using analytical method is observed. As for the
photocurrent density, we also show the current-voltage characteristic of the solar cell illuminated on its
back surface, which is represented in Figure 17 for N = 1500. In fact, this illumination needs more
finite elements.

The numerical results agree with the analytical ones when the number of finite elements is superior
or equal to 1500 [9].

Thus we can note that for the low values of the voltage, the photocurrent is constant and corresponds
to the short-circuit current. It decreases rapidly and cancels out when the open circuit voltage is reached.
Moreover, the short-circuit photocurrent density is important for the front surface illumination [10].
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Figure 16. Current-voltage characteristics;
D = 26 cm2/s; L = 0.01 cm; Sb = 103 cm/s,
front surface illumination.

Figure 17. Current-voltage characteristics:
D = 26 cm2/s; L = 0.01 cm; Sb = 103 cm/s, back
surface illumination.

4. CONCLUSION

In this study, we have used the finite element method to characterize a silicon bifacial solar cell by
solving one-dimensional continuity equation. The determination of the excess minority carrier’s density
according to the base depth, determination of the photocurrent density and the photovoltage according
to the junction recombination velocity, and the current-voltage characteristics of the solar cell enable
us to show the concordance between the results obtained in this study and those previously obtained
using the usual analytical methods. For the minority carrier’s density, the convergence is perfect for
N ≥ 200 when the solar cell is illuminated on the front surface, N ≥ 500 for the back surface and
N ≥ 800 for double illumination. For the photocurrent density, the agreement is good enough when
N ≥ 1000 for the front surface and N ≥ 1500 for the back surface. That is explained by the fact that
the less the solution is linear, the more the step of the discretization must be small, and therefore, the
higher number of finite elements is required.
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