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Enhancing the Resolution of Hyperlens by the Compensation
of Losses without Gain Media

Xu Zhang, Wyatt Adams, Mehdi Sadatgol, and Durdu Ö. Güney*

Abstract—We present a method to improve the resolution of available hyperlenses in the literature.
In this method, we combine the operation of hyperlens with the recently proposed plasmon injection
scheme for loss compensation in metamaterials. Image of an object, which is otherwise not resolvable by
the hyperlens alone, was reconstructed up to the minimum feature size of one seventh of the free-space
wavelength.

1. INTRODUCTION

Due to the direct control and manipulation of electromagnetic properties, metamaterials provide
previously unthought-of approaches for high resolution imaging [1–9], high efficiency photovoltaics [10],
and novel optical materials [11–14], among others. In 1873, Abbe discovered that when an object
feature is smaller than half of the wavelength of the light, it cannot be resolved by conventional
optics because of diffraction [15]. Metamaterials provide the possibility to overcome the diffraction
limit. Perfect lenses [1, 2], superlenses [3, 4], and hyperlenses [5–9] have been theoretically proposed
and fabricated. Among them, hyperlenses have emerged as one of the most interesting and promising
lenses due to their ability to propagate a sub-diffraction-limited image into the far-field. Hyperlenses
are made of hyperbolic metamaterials [16, 17] which convert ordinary evanescent waves (corresponding
to subwavelength features) into propagating waves that can be imaged by a conventional lens in the
far-field.

Unfortunately, the high absorptive losses [18] in the constitutive components limit the hyperlens
resolution. The smallest feature which can be resolved so far experimentally is around λ0/3 [9, 19], where
λ0 is the free-space wavelength. Recently, a loss compensation scheme called plasmon injection (Π)
scheme was proposed. The Π scheme relies on the coherent superposition of externally injected surface
plasmon polaritons with the local eigenmodes of a metamaterial to provide full loss compensation [20–
22]. This technique does not need traditional optical-gain providing medium [23, 24], hence eliminates
its associated complexities, and is more importantly equivalent to applying a simple spatial filter for
imaging [22].

In this paper, we use the design of one experimentally realized cylindrical hyperlens as an example
to demonstrate the applicability of this technique to hyperlensing for higher resolution imaging.

The hyperlens that we study here is from [19]. To begin the procedure, the simulation result from
[19] is replicated using the commercial finite element solver COMSOL Multiphysics. Fig. 1 shows the
simulated magnetic field distribution. The hyperlens consists of 8 pairs of concentric Ag/Al2O3 layers,
with the surrounding material being quartz. The thickness of the Ag and Al2O3 layers is 35 nm. At
λ0 = 365 nm working wavelength, the permittivities of Ag, Al2O3 and quartz are εm = −2.4012+0.2488i,
εd = 3.217, and εqtz = 2.174, respectively. The hyperlens is illuminated by a transverse-magnetic(TM)
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Figure 1. Replicated hyperlens magnetic field (A/m) distribution simulation result corresponding to
Fig. 2(b) from [19]. Two 50 nm wide openings in a 50 nm thick Cr layer are considered as the object.
The center to center separation of the openings is 150 nm. The working wavelength is 365 nm.

polarized plane wave (i.e., magnetic field is along the axis of the cylindrical hyperlens) using a port
backed by perfectly matched layers (PML) to absorb outgoing waves. The result is in agreement with
Fig. 2(b) from [19].

After verifying the simulation result, the imaging process can begin as described here. First, the
raw image is obtained by the hyperlens. Due to absorptive loss in the hyperlens, the high spatial
frequency components of the object are attenuated on the image plane. Then, a filter is applied to
compensate this attenuation. After this post processing, a high resolution image will be obtained. The
compensation filter applied here is the inverse of the hyperlens transfer function, which is calculated by
simulation. Interestingly, this corresponds to recently proposed Π scheme loss compensation technique
for imaging [22]. In the Π scheme, the total incident field in the object plane is a coherent superposition
of the main object to be imaged and some auxiliary object. The auxiliary object coherently excites the
underlying modes of the system, resulting in a compensation of the attenuation in the main object. This
scheme is equivalent to applying a filter in the Fourier domain to amplify the high spatial frequency
components. Although inverse filtering is well-known for propagating modes in the field of image
processing, application to evanescent modes and intimate relation with loss compensation distinguish
the work presented here from traditional inverse filtering. Similar inverse filtering approach to countering
losses in Ag superlens and negative index flat lenses has been recently considered in [22, 25, 26].

2. RESULTS AND DISCUSSIONS

Before showing the procedure for calculation of the hyperlens transfer function, the object plane and
image plane should be defined. Consider that the object plane is defined at the inner face of the
hyperlens. Due to the conservation of angular momentum [5], the tangential component kθ and,
according to the dispersion relation given by

k2
r

/
εθ−k2

θ

/ |εr|= (ω/c)2 (1)

in cylindrical coordinates, the radial component kr of the wave vector decreases as a wave propagates
through the hyperlens. For different spatial frequency components, the phase is restored at different
positions. Unlike the case of a negative index flat lens [25], the hyperlens needs both amplitude and
phase compensation. Fig. 2 shows the geometry for the transfer function calculation using COMSOL.
To avoid spherical aberration of the image, a curved image plane is designed. There is no unique image
plane, so the location of the image plane d can be arbitrarily chosen. Due to the cylindrical symmetry,
a two-dimensional (2D) model is sufficient to efficiently and accurately simulate this hyperlens with
one-dimensional imaging capability [19]. However, the present loss compensation technique can also be
applied to spherical hyperlenses for 2D imaging [8], where in that case a three-dimensional model is
necessary to correctly simulate the system.

The transfer function is defined as the division of the magnetic field at the image plane and object
plane. We select d = 860 nm to show the process of calculating the transfer function, though we note
that the transfer function varies with d. The object plane radius (i.e., inner radius of the hyperlens)
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Figure 2. Geometry for the COMSOL transfer function calculation. The resulting magnetic field
image is recorded at a radial distance d from the object plane. Perfectly matched layers are added at
the boundary to absorb the outgoing waves without reflecting them back to the interior.

is rop = 240 nm and the image plane radius rip = 1100 nm. Cylindrical waves with different spatial
frequencies kθ were defined at the object plane. The amplitude and phase information of the resulting
magnetic field was measured at the image plane. It should be pointed out that for kθ at the object plane,
the corresponding spatial frequency is changed to k′

θ at the image plane. The relationship between kθ

and k′
θ is given by,

kθrop=k′
θrip=m (2)

where m is the angular momentum mode number of the cylindrical wave [5]. Therefore, the transfer
function is only a function of m, that is T (m), and the corresponding compensation filter function F (m)
is defined as the inverse of the transfer function,

F (m) =T (m)−1 (3)

Figure 3 shows the transfer function and corresponding compensation filter for amplitude and phase.
Since m is an integer, the transfer function is a discrete function of m.

(a) (b)

Figure 3. Calculated (a) amplitude and (b) phase of the hyperlens transfer function (blue) plotted
with the corresponding compensation filter (green).

Consider an object defined by the magnetic field distribution Ho(θ) at the object plane (see Fig. 2).
Since the incident field is TM polarized, we can write the field in the scalar form.The discrete Fourier
transform of the object function is written as

H̃o(m) =
N∑

n=1

Ho (θn) ·e− 2πj(m−1)(n−1)
N (4)
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where N is the number of spatial samples, n the current sample, and the angular momentum mode
number of the cylindrical waves m ∈ [1, N ]. A fast Fourier transform algorithm is used here to calculate
the discrete Fourier transform. The raw image obtained through the hyperlens at the image plane is
defined as Hi(θ). The discrete Fourier transform of the image function is given by

H̃i(m) =
N∑

n=1

Hi (θn) ·e− 2πj(m−1)(n−1)
N (5)

The above two Fourier transforms in Eqs. (4) and (5) are related to the transfer function by

H̃i(m) =H̃o(m)T (m) (6)

Due to the losses in the imaging process, the high spatial frequency components of the object (i.e.,
corresponding to large m values) are decayed faster (see Fig. 3). As a result, these spatial frequency
components become too weak to contribute to the image resolution. Therefore, the compensation filter
in Eq. (3) is applied to H̃i (m) to amplify those frequency components, so that they also contribute to
the image resolution. Then, the compensated image in the spatial frequency domain is expressed as

H̃c (m)=H̃i (m)T (m)−1 (7)

Using Eqs. (6) and (7), we obtain

H̃c(m) =H̃o(m)T (m)T (m)−1=H̃o(m) (8)

Thus, in the ideal case the compensated image will recover all the information of the object. Taking
the inverse Fourier transform of the compensated image spectrum in Eq. (8) will lead to the perfectly
reconstructed image

Hc(θn) =
1
N

N∑

m=1

H̃c (m) ·e 2πj(m−1)(n−1)
N (9)

where n∈ [1,N ]. However, in reality the reconstruction of the object is not perfect since not all the spatial
frequencies can be detected perfectly (i.e., there is maximum cutoff for the detectable spatial frequency
as will be explained below). Nevertheless, we show below that the compensated image reconstructed
from the raw image using even an imperfect compensation filter can well represent the original object.

To demonstrate the imaging procedure, a magnetic field with four Gaussian features is defined at
the object plane as an example. Note that this procedure can be performed with any arbitrary features
at the object plane. The field is defined so that the smallest separation between two peaks is 50 nm.
To begin, the raw image is obtained through the hyperlens at the image plane. Then in the spatial
frequency domain, the Fourier transform of the raw image is multiplied by the compensation filter.
The amplitude and phase compensation results are shown in Figs. 4(a) and (b), respectively. After
transformation back to the spatial domain, the compensated image is obtained in Fig. 5. The image
is magnified because of the hyperlens dispersion and geometry. Therefore, in order to clearly show the
result, θ is used as the horizontal axis in Fig. 5. It is clearly seen that the sub-diffraction-limited features
of the object can be reconstructed with a resolution of λ0/7 after applying the loss compensation filter,
while the raw image obtained by the hyperlens alone cannot be resolved.

We should note that at high spatial frequencies, the filter will also amplify the simulation noise,
which will influence the compensated image. Therefore, we truncate the filter at m = 36, where the
noise floor is reached, to avoid a strong influence of noise amplification. The resultant truncated object,
which maintains the major sub-diffraction-limited features of the original object, is also shown in Fig. 5.
The loss compensation filter almost perfectly reconstructs the truncated object.

In general, the present compensation method can be applied to any part of the electromagnetic
spectrum. Here, using the permittivity data in [27] and [28] for Ag and Al2O3, respectively, we found that
the structure in Fig. 2 maintains hyperbolic dispersion over a wavelength range from 328 nm (915 THz)
to 372 nm (806 THz). When the compensation method is applied to this entire wavelength range,
according to our simulations the obtained resolutions are λ0/4.4 at 328 nm and λ0/8.5 at 372 nm with
the resolution enhancement factors of 4.4 and 1.6, respectively. It is important to note that at 328 nm in
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particular, the resolution of the hyperlens without the loss compensation method is only λ0 (i.e., twice
worse than the diffraction limit). This shows that the effective operating bandwidth of the hyperlens is
also increased by the present compensation method. On the other hand, the effective spatial frequency
range, which ultimately determines the image resolution achievable by this compensation method at a
given wavelength, is limited by the noise floor.

To illustrate the equivalence of the above spatial filtering process with the Π scheme [22], we
simulate directly the coherent superposition of an auxiliary object and the original object as an input
to the hyperlens and find the resultant image instead of simulating the original object alone and
then performing the spatial filtering (see Fig. 6). The superposed total input is calculated from the
compensated image spectrum in Fig. 4 using the transfer function in Fig. 3. The auxiliary object (not
shown) is the difference between the total input and the original object due to the linearity of the
system. It is clearly seen in Fig. 6 that the image obtained through the direct simulation of the total
input strongly agrees with the image obtained through the spatial filtering. This suggests that the Π
scheme in which a part of the total input (i.e., auxiliary object) physically compensates the losses in the
hyperlens to leave the original object intact is equivalent to applying mathematically a compensating
spatial filter to the raw image.

(a) (b)

Figure 4. (a) Amplitude and (b) phase Fourier spectra for the original object, raw image, and
compensated image, respectively.

Figure 5. Magnetic field intensity for the
original object, truncated object, raw image, and
compensated image. The compensated image is
clearly resolved beyond the diffraction limit.

Figure 6. Comparison of the images obtained
by spatial filtering (green light solid line) and
the Π scheme (black solid line) using a coherent
superposition of an auxiliary object and the
original object as the total input (blue, dash-
dotted line) for the hyperlens.
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Finally, one can anticipate the same or even better resolution by using a thinner hyperlens in
conjunction with the loss compensation procedure compared to using a thicker hyperlens alone. At
a constant frequency, due to the conservation of momentum, the maximum kθ is larger for a thinner
hyperlens. This means that evanescent fields appear earlier since kr needs to be smaller for propagating
modes. Therefore, a narrower range of evanescent modes in Fig. 4(a) are converted to propagating modes
using a thinner hyperlens. As a result, a thicker hyperlens will have a better resolution. However, by
combining the thinner hyperlens with the loss compensation technique presented here, higher resolution
achievable through thicker lens alone can be restored at the expense of some magnification. So far,
the fabricated hyperlenses in the literature are mainly metal-dielectric layered structures. By making
the hyperlens thinner, the number of layers is reduced, consequently reducing the difficulty and cost of
fabrication.

3. CONCLUSIONS

In conclusion, using one fabricated hyperlens as an example, this paper demonstrates that the plasmon
injection scheme for loss compensation in metamaterials can be applied to enhance the hyperlens
resolution. To achieve this, the hyperlens transfer function has been numerically calculated. Then in
the spatial frequency domain, the raw image spectrum has been multiplied by the inverse of the transfer
function. Using this simple post processing, a resolution of λ0/7 is achieved, while the image of the
objects obtained by the hyperlens alone cannot be resolved. We should emphasize that the compensation
filter used here is a mathematical post-processing tool to revert the deteriorating effect of the losses
in the underlying imaging system and emulates the physical phenomenon in the Π scheme [22] (see
Fig. 6). The physical implementation of neither the compensation filter nor the Π scheme is necessary
to compensate the losses.

In order to avoid spherical aberration, cylindrical waves and a curved image plane are defined.
However, in real application, the source would likely be plane wave and the image plane would be
defined by a microscope objective. Additionally, it is more convenient to process intensity information
than the complex field requiring both phase and amplitude information, although the latter is still
possible [29, 30]. In the future work, the above points should be studied to make this loss compensation
technique more practical.
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