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Investigation of the Existence of Thermal Insulations in Wall
Systems of Building Envelopes Using UWB Technique

Saleh A. Alshehri*

Abstract—Hybrid pattern recognition is used to predict the types of insulation materials used inside
wall systems of building envelopes. The hybrid pattern recognition features vector is built using the
characteristics of UWB signals. UWB signals can penetrate objects, resulting in scattered signals based
on the object’s dielectric properties. The object’s dielectric properties and structure have a signature
within the scattered signals. This paper demonstrates that proper hybrid pattern recognition can be
used to experimentally detect the existence and the type of insulation material inside wall systems with
a high success rate.

1. INTRODUCTION

Commercial and residential buildings usually consume most of the energy. In the USA, it can reach up
to 48% of the total energy use [1]. Energy consumption of the building sector is high, and although the
situation differs from country to country, buildings are responsible for about 30–40% of the total energy
demand [2]. In Europe, however, buildings are responsible for 40–50% of energy use, and the largest
share of energy in buildings is used for heating [3]. The design of building enclosures with the intent
of achieving energy savings can necessarily help reduce building operating loads and, thus, the demand
for energy over time [4–13]. Thermal insulations are major contributors and obviously are a practical
and logical first step towards achieving energy efficiency especially in envelope-load dominated buildings
located in sites with harsh climatic conditions [4–13]. This can evidently be achieved by increasing the
thermal resistance (R-value) of the building envelope.

One of the requirements of Saudi’s electricity power service provider is to check whether the roofing
and wall systems in building envelopes have adequate thermal insulation materials before allowing them
to use electrical services. The challenge is that, after constructing the building, it is not appropriate
to break parts of the roofing and wall systems to investigate whether the building envelope has an
adequate level of thermal insulation that complies with the requirements of Saudi’s building code.
The overall thermal resistance (R-value) of a wall system can be measured using the guarded hot box
(GHB) in accordance to the standard test method ASTM C-1363 [14]. It is obvious that this test
method cannot be used to measure the R-value of a wall system in constructed buildings. Madding
introduced a technique that can be used to measure the R-value of a wall in constructed buildings using
infrared thermography [15]. This technique, however, requires not only subjecting the wall systems to
temperature differences (ΔT ) but also the measured R-value was found to be significantly dependant
on both its value and ΔT . As such, Madding technique cannot be used to measure the R-value of
a newly-constructed building (i.e., without having the electrical service that is needed to create ΔT
across the test sample). In this paper, a technique is introduced to investigate the existence and type
of thermal insulation in a wall system.
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Identifying the type of material inside an object, such as wall systems in building envelopes, can
be achieved by seeing through the object using the imaging applications. In addition, seeing through
an object is a technique that can be beneficial to many other applications. Military, security, rescue,
and building maintenance are among these applications [16]. The idea is that the applied signal has the
ability to penetrate walls or objects. For example, high-frequency signals tend to be reflected by solid
objects, whereas low-frequency signals pass through objects with a few reflections. In both cases, there is
no adequate information that can be extracted from the reflected or passed signals that can indicate the
nature of materials inside an object. Seeing through a wall is largely based on recording received signals
reflected from moving objects located behind that wall with or without known characteristics [16–
22]. Localizing objects behind a wall can be done by various processing methods performed on the
received response signals. Ultra-wideband (UWB) signal technology was the main method used [16–22].
Previously, there were some attempts to use Wi-Fi technology [23]. Some studies were conducted to
detect what was inside the walls [16–22]. However, the focus of those studies was on transit events, such
as moisture concentration [24].

UWB imaging operates in the frequency range of 3.1 GHz to 10.6 GHz [25]. UWB imaging depends
on the difference between the dielectric properties of two layers of different materials. The higher
this difference is, the more scattered singles are produced. The main properties of UWB signals
are their extremely short impulse and maximum output power density, which should be less than
−41.3 dBm/MHz. In addition, the bandwidth should be greater than either 500 MHz or 25% of
(1/2)[(f1 + f2)/(f1 + f2)] GHz, where f1 and f2 are the lower and upper limits of the frequency
bandwidth, respectively. The main advantages of UWB signals in the proposed application are: (a)
they have excellent penetration properties, and (b) they have the ability to work well in multipath
channels [25]. Usually, the transmitted signal is a Gaussian signal as shown in Fig. 1, while one reflected
signal is similar to the signal in Fig. 2.

Figure 1. Modulated Gaussian pulse.

As the dielectric properties of the insulation materials that are currently used in building envelopes
vary from one to another, the UWB signal can contribute in such applications so as to identify the
type of the insulation materials. In this study, a hybrid pattern recognition (HybridPR) method is
developed using UWB signal reflection to see inside a wall system in order to determine whether a
thermal insulation material exists in such wall systems. The obtained results will help Saudi’s electricity
power service provider in determining whether new buildings fulfill the requirements as described in the
Saudi building code in order to approve providing electrical services to that building. The next section
presents the main method, including sample collection procedure. The obtained results are presented
in Section 3.

2. METHODOLOGY

Time Domain is a company that manufactures commercial UWB transceiver. It is used in this
research [26]. This device transmits signals with a center frequency of 4.7 GHz and bandwidth of
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Figure 2. (a) Received scattered signals from insulation and non-insulation walls, (b) insulation
material and (c) non-insulation material.

2.5 GHz. It can be configured to work in both mono-static and bio-static configurations.
There are many PR methods that can be used for classification [27]. Artificial neural network

or simply neural network (NN), support vector machine (SVM), radial basis function (RBF), decision
tree (DT) and classification discriminant (CD), which is a Gaussian based discriminator, are chosen to
be investigated. The choices of these techniques are based on their popularity and simplicity of their
implementations [27].

The first and probably the most important step in such PR is finding a proper feature vector. For
the proposed application, when signal reflections are investigated, there are some features that can be
recognized. Fig. 2 shows clear differences between signals when being reflected from walls with and
without insulation. It has been decided to use three main groups of features. As shown in Fig. 2, the
reflected signals can be divided into three groups. The first group (G1) has raw UWB reflected signals
amplitude for the distance from 65 to 110 cm of the signal transceiver. This distance range guarantees
that the insulation material will be reached. The second group (G2) contains some main statistics
of the UWB reflected signals, which include maximum, minimum, mean, and standard deviation [28],
whereas, the third group (G3) contains statistics of the UWB signal envelopes. The statistics of these
envelopes include mean, median and std. Table 1 shows these feature vectors. Each group represents
complete and separate feature training data samples. Some other signal processing was tried, but the
results were not satisfactory. For example, FFT (Fast Fourier Transform) and DCT (Discrete Cosine
Transform) were applied to the first group (G1) to reduce the feature vector size. Almost the same
result was obtained.

Table 1. Feature vector data for two samples.

G1: Raw signal G2: Raw signal statistics ×104 G3: Envelope statistics ×104

Amplitudes Max Min Mean Std Mean Std Max
Insulation Fig. 3(a) 8.17 −11.08 −0.19 4.56 5.19 2.98 0.103

No insulation Fig. 3(b) 7.98 −10.27 −0.017 3.38 2.95 3.21 0.103

2.1. Data Collection

The data were collected from 25 houses in Jubail Industrial City in Saudi Arabia. Each house contains
several rooms containing multiple walls that may have different insulation materials. In addition, some
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Figure 3. Amplitude and envelope of received signal from walls with (a) insulation materials and (b)
no insulation materials.

of these houses do not have thermal insulation. From these houses, 115 different signals were collected.
Different types of bricks with and without insulation were used in the building envelopes of these houses.
These bricks are red, white, cement with white foam (polystyrene) and, finally, just cement brick without
insulation. Dielectric properties of these materials are shown in Table 2 [29–31]. The different types of
bricks are shown in Table 3.

Table 2. Dielectric properties for materials used in building walls [29–31].

Type Dielectric constant (permittivity)
White Brick 3.7–6.0
Red Brick 5.92

White foam (polystyrene) 2.25
Cement Brick 3.7–4.5

Air 1

The UWB Time-Domain transceiver was placed 80 cm away from each wall with a 120 cm height
from the ground, as shown in Fig. 4. For each wall, five different signal readings were collected and
averaged for better signal to noise cancelation. For each signal transmission, the target, which is the
wall material, was recorded.

As the transmitted UWB signals pass through layers with different materials having various
dielectric constants, different scattered signals are generated as shown in Fig. 5. These scattered signals
are received by the UWB transceiver and recorded as samples of raw signals.

2.2. Hybrid Pattern Recognition

Once the raw signal together with target labels are collected, the feature extraction is performed.
Material types and number of collected signals are shown in Table 3. The three different groups of
features were constructed. Five different PR models were constructed. The focus was on building
appropriate hybrid model rather than individual PR models. For this reason, simple PR models were
used. They are NN, SVM, RBF, CD and DT, which were chosen for their simplicity. In all of these
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Table 3. Types of insulation materials and the number of collected samples.

Type Photo No. of collected samples

White Brick 

 

32 

Red Brick 

 

24 

Brick with Foam 
(polystyrene) 

 

24 

Brick without Insulation 

 

35 

120 cm

80 cm

Figure 4. Experiment setup for collecting the data samples.



104 Alshehri

   

Layer1 Layer2 Layer3

Incident

UWB signal

Scattered signal 

Scattered signal

Figure 5. Scattered UWB signals from different wall layers.
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Figure 6. The three NNs topologies.

pattern recognition methods, the learning was supervised learning which is based on the following
concept. Consider the mapping:

y = w1x1 + w2x2 + . . . + wMxM =
M∑

j=1

wjxj

W = [w1, w2, . . . , wM ] is the weight vector

Let the training data be {(X = [xn
1 . . . xn

M ], tn)}N
n=1; n is a label; tn are the target, defining

error = 1/2
∑N

n=1{(yn − tn)}2. The goal is to find the best W to minimize E [32].
The NNs were back-propagation feed-forward structures with 20, 4 and 3 input nodes for G1, G2,

and G3, respectively, each with one hidden layer containing 3 nodes and tangent transfer function.
Fig. 6 shows the topologies of the three neural networks while Table 4 shows the main parameters.

As shown in Tables 3 and 4, the sample data size was 115, and the feature vector sizes were 20, 4
and 3 for NN1, NN2 and NN3, respectively. The data were divided into 3 sets for training, validating
and testing. Simple SVM with radial base functions as the kernel functions and sigma values of 1 was
used. The RBF parameters are 0.02 as mean square error, 0.91 as spread of radial basis functions,
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Table 4. The three NNs main parameters.

NN parameters NN1 NN2 NN3

No of input nodes 20 4 3

No of Hidden Layers 1 1 1

No of Nodes in Hidden Layer 3 3 3

No of output nodes 1 1 1

Transfer function tansig tansig tansig

Training algorithm trainlm trainlm trainlm

Learning rate 0.3 0.3 0.3

Momentum control 0.65 0.65 0.65

Maximum No. of epochs 250 250 250

Minimum performance gradient 1e-5 1e-5 1e-5

Training set size 75% of total samples 75% of total samples 75% of total samples

Validating set size 15% of total samples 15% of total samples 15% of total samples

Testing set size 15% of total samples 15% of total samples 15% of total samples

Table 5. SVM and RBF main parameters.

SVM parameters Value RBF parameters Value
Kernel function rbf Mean square error 0.02

Sigma (standard deviation) 1 RBF spread 0.91
Maximum No. of neurons 70

Training set size 100% Training set size 100%
Validating set size 0 Validating set size 0
Testing set size 0 Testing set size 0

and 70 as the maximum number of neurons. Table 5 shows the main parameters for both SVM and
RBF. CD is built using a simple Gaussian discriminant analysis model. DT is a linear classification tree
built on the training data. Cross validation is used for the neural networks methods. Even through no
cross validation was used for SVM, RBF, CD and DT models, the testing set was used to examine the
performance and the generalization of these models.

Cross-validating was used only for NNs. For all other methods, testing was performed without cross-
validating. To implement training, validating and testing, MATLAB built-in functions were used [33].
Tables 6 and 7 show how the training and testing processes were conducted. The constructed training
and target data are referred as ‘Train pattern’ and ‘Train target ’, respectively. Fig. 7 shows the training,
validating and testing for group 1 NN and construction of group 2 decision tree.

2.3. Detection Procedure

All feature groups are used to build all PR models as in the following steps:
1. G1 samples are used to build NN1, SVM1, RBF1, CD1, and DT1.
2. G2 samples are used to build NN2, SVM2, RBF2, CD2, and DT2.
3. G3 samples are used to build NN3, SVM3, RBF3, CD3, and DT3.
4. The final prediction of PR methods on G1 is based on the majority results of these methods.
5. Similar results are obtained for G2 and G3.
6. The final prediction of the NN model on G1,G2, and G3 is based on majority rule of this NN on

these groups.
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Table 6. Steps for NN training and testing processes.

NN MATLAB code
NN structure (3 nodes in Hidden Layer) net = feedforwardnet(3,‘trainlm’);

Learning rate net.trainParam.lr = 0.3;
Momentum net.trainParam.mc = 0.65;

Validating fails net.trainParam.max fail = 100;
Training set size net.divideParam.trainRatio = 0.75;

Validating set size net.divideParam.valRatio = 0.15;
Testing set size net.divideParam.testRatio = 0.15;
NN initialize net = init(net);

NN training, validating and testing [net,tr]=train(net,Train pattern,Train target’);

Table 7. Steps for SVM, RBF, CD and TD training and testing processes.

Process MATLAB code

SVM training
svmStruct = svmtrain(Train pattern,Train target,

‘ShowPlot’,false,‘kernel function’,‘rbf’,‘rbf sigma’,1,‘BoxConstraint’, 1);
SVM testing res SVM = svmclassify(svmStruct,Test pattern,‘ShowPlot’,false);
RBF training netRB = newrb(Train pattern,Train target’,0.02,0.91,70,1);
RBF testing res RBF = sim(netRB,Test pattern’);
CD training linclass = ClassificationDiscriminant.fit(Train pattern’,Train target);
CD testing res CD = predict(linclass,Test pattern);
DT training Dtree = classregtree(Train pattern’,Train target,‘method’,‘classification’);
DT testing res DT = eval(Dtree, Test pattern);

x3< -2.6505 x3>=

1 x3< 0.3289 x3>=

x1< -0.1320 x1>=

x3< -0.4908 x3>= -0.4908

x1< -0.3595 x1>= -0.3595

x3< 0.3065 x3>= 0.3065 -1

-1

1

-11

-1

-2.6505

0.3289

-0.1320

(a) (b)

Figure 7. Examples of PR training and testing using MATLAB. (a) NN1, (b) decision tree 2 (DT2)
where ‘1’ means insulation exists and ‘−1’ otherwise.
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7. Similar results are obtained for SVM, RBF, CD, and DT.
8. A total of 15 predictions are generated. The overall result is based on the majority rule.

There are two main result categories. The first result category is based on data sample groups,
while the second result category is based on PR methods. The majority rule (voting rule) is applied
to these two categories to obtain the final prediction result. For example, two or more of the outputs
of NN1, NN2, and NN3 dominate the result of the first category. In addition, three or more of NN1,
SVM1, RBF1, CD1, and DT1 dominate the result of the other category. Other models follow the same
pattern for both categories. The training result is shown in Fig. 8. From the 115 samples, 12 samples
were arbitrarily chosen as the testing samples. The test samples include all possible types of targets
(insulation materials).

The training and testing performance accuracy result was obtained using Eq. (1)

Accuracy =
total number of correct detections

total number of samples
(1)

It can be noticed that PR methods perform well on G1. NN generally performs well on all
groups. DT for G2 and G3, however, shows the lowest performance. In spite of these notes, the
overall performance result is satisfactory.

Figure 8. Training performance result.

2.4. Enhanced Method

One enhancement can be done by performing a result analysis on these PRs and sample groups. It
was found that some of these PRs and sample groups resulted in high performance accuracy. Based
on the training results shown in Fig. 8, weighted output with confidence percentage is calculated and
presented together with the majority rule output result. The weighted result is calculated using Eq. (2).

ConfPerformance =

∑
i∈GS ,j∈PatModelsB∗TPij∑

i∈GS ,j∈PatModelsTPij

(2)

where Gs: are the training groups samples, B: 1 if model i produces 1 for group j, 0 otherwise, TP: the
training performance result, PatModels: are NN, SVM, RBF, CD and DT.

3. RESULTS

The work was conducted using MATLAB. The GUI was built for better presentation. Screen shots are
shown in Figs. 9(a) and (b) for two of the test samples. Additionally, the offline prediction performance
of the system for each model on each data group varies, as shown in Table 8. As shown in Table 8 and
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(a) (b)

Figure 9. GUI sowing prediction result of (a) wall with no insulation material and (b) wall with
insulation material.

Table 8. Testing performance result.

G1 G2 G3 All groups
NN 100 91.7 100 100

SVM 100 58.3 75.0 75.0
RBF 100 83.3 83.3 83.3
CD 100 58.3 75.0 83.3
DT 100 41.7 41.7 41.7

HybridPR 100 83.3 91.7 100

Fig. 8, good results were obtained using G1. For G2 and G3, there are some low performance results
(e.g., see the case for DT). However, when the HybridPR method was used, the results reached 95% on
training samples and full correct prediction of existence and type of insulation on the testing samples.
This was based on testing the system using 10% of the collected samples, which was set aside for this
purpose. The performance of each PR on G1 is up to 100%. However, it cannot be fully generalized,
as the size of the training samples is not large enough.

4. CONCLUSION

Prediction of the type of wall materials was investigated using PR methods. A HybridPR was
constructed using these methods and showed better performance than each individual presented method.
The training samples were collected from 25 houses. The features were obtained based on UWB scattered
signal envelope characteristics, raw signals, and signal statistics. The HybridPR reached nearly 100%
correct predictions of the existence and types of insulation materials, respectively. The training and
testing sample sizes can be enlarged for better confidence in the results.
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