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An Axisymmetric Cylindrical Resonating Cavity with Hole

Babak Makkinejad*

Abstract—The problem of the shift and broadening of the normal modes of electromagnetic oscillations
in a cylindrical cavity resonator with axisymmetric interior and ideally conducting walls with a circular
hole at the base is solved. It is shown that the existence of the hole perturbs the normal frequencies,
and this perturbation is calculated. The method of solution is based on the Rayleigh-Schrödinger
perturbation theory. It is found that the frequency shift depends on the value of the perturbed electric
field at the hole. This field is calculated using the quasistatic approximation, which involves the
solution of a mixed boundary value problem for the potential. An expression for the frequency shift
and broadening is obtained.

1. INTRODUCTION

I consider the problem of an axisymmetric cylindrical cavity resonator of radius a that is coupled to the
outside via a circular aperture of radius b at its cap. The material outside the cylinder is considered
to be the same as the material inside; i.e., an axisymmetric lossless dielectric. I take the hole’s axis
and the axis of dielectric symmetry to be the same as the z-axis and to coincide with the axis of the
cylindrical cavity. The problem that I wish to solve is the calculation of the shift and broadening of the
normal mode frequencies due to the existence of the hole.

The interest in this problem is due to the experiments of Strayer et al. [1–3], Iny and Barmatz
[4, 5], and Dick and Santiago [6, 7] on superconductor-coated microwave cavity resonators with sapphire
interiors. The aim of these experimental researches has been the development of stable microwave
frequency standards with very high quality factor. In these researches the experimental setup was more
complex than is treated in this paper but they typically consisted of cylindrical cavity resonators that,
depending on the experiments, were placed one inside the other, or were coupled to each other, or
were used singly. For example, in [1] measurements were performed with a Pb-on-sapphire cavity that
was placed inside a Pb-on-copper cavity and also with a Pb-on-sapphire cavity that was mounted in a
bare copper cavity. To interpret the results of these experiments one has to understand the underlying
boundary-value problems. This paper presents a solution to one of the simplest boundary value problems
that arises in one of the simplest building blocks of these experiments.

A different but related area of research has been the computation of the effects of the sample
insertion holes in the well-known field of dielectric measurements by means of cavity perturbation
method. This area has been treated by many investigators including Estin and Bussey [8], Meyer
[9], Thomassen [10], Li and Boisiso [11], and Gauthier et al. [12]. These authors generally consider
cylindrical cavities with 2 insertion tubes with homogeneous isotropic interiors. Gautheir considers
layered inhomogeneous but isotropic (within each layer) samples that are lossy. All these authors
assume that the fields inside the cavity are perturbed due to presence of the insertion tubes, and they
fully treat each insertion hole as a coupling between the unperturbed resonating cavity fields and a
waveguide. Estin and Bussey and Meyer assume that the field inside the tubes is well approximated
by the first evanescent TM mode. Li and Boisiso allow a large number of modes in the tubes. Estin
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and Bussey and Li and Bisiso use adiabatic invariance theorem to compute the magnitude of the shift
in the lowest mode frequencies. I am, on the other hand, considering a single excitation aperture and
with a lossless anisotropic interior. I further differ with these authors in that I model the hole’s effect
on the cavity modes by computing the quasic-static fields at the hole and then obtaining the frequency
shift from a perturbative expansion of the cavity fields directly.

The outline of this paper is as follows: In Section 1, I write the basic equations for an axisymmetric
medium and the appropriate boundary conditions. In Section 2, I construct the general solution of the
axisymmetric wave equation inside the cylinder and give the equations for the normal mode frequencies.
The existence of the hole perturbs the normal modes. The effect of this coupling is discussed in Section 3
where I shall draw heavily on the results of [16] to derive a formula for the shift and broadening of the
axisymmetric cylindrical cavity field frequencies due to this hole. And in section Section 4, I discuss the
results of numerical calculation of this shift in comparison to the results of other workers in this field.

2. NORMAL MODES OF THE CYLINDRICAL CAVITY

I consider the normal modes of electromagnetic oscillations inside a cylinder of radius a and height d
without the hole. I take the origin of the the rectangular coordinate system to coincide with the center
of the base circle. The basic equations are the macroscopic Maxwell equations, and I shall write them
in Gaussian units. For fields varying harmonically in time [ �E(�r, t) = �E(�r)e−iωt] they are:

�∇× �E(�r)− i
ω

c
�B(�r) = 0,

�∇× �B(�r) + i
ω

c
�D(�r) = 0,

(1)

where �B is the magnetic field, �E the electric field, and �D the electric displacement field. These equations
are completed when the dielectric relation between �E and �D field is specified; i.e.,

�D =←→ε · �E (2)

The dielectric tensor appearing in the dielectric relation (2) is assumed to be of the form:

←→ε =

(
εxx 0 0
0 εxx 0
0 0 εzz

)
. (3)

This may, in general, be a complex function of frequency, ω. Since I am interested in a transparent
media, I take the dielectric tensor to be real and independent of ω for the frequencies of interest. It is
convenient to express the dielectric relation in the axisymmetric case as:

�E =←→ε −1 · �D = (�D + γ̃ẑ · �D ẑ)/ε̃, (4)

where
ε̃ = εxx, γ̃ =

εxx − εzz

εzz
. (5)

Inside the dielectric, �D must satisfy the equation obtained by eliminating �B from Equation (1) and
invoking Equation (4), i.e.,

�∇× �∇× (�D + γ̃ẑ · �D ẑ)− q2
0
�D = 0 (6)

where q2
0 = ε̃(ω

c )2. I shall call Equation (6) the axisymmetric wave equation.
In this paper, I consider the cavity walls to be ideal conductors. The boundary conditions at the

surface of the cavity will then follow from the Maxwell Equation (1) by standard arguments [13]. At
the surface the tangential component of �E must vanish to avoid having infinite surface currents. For
the same reason, the normal component of �B must vanish at the surface. Thus:

n̂× �E|surface = 0 or n̂ · �B|surface = 0, (7)

where n̂ is a unit normal at the surface.
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Introducing the usual separation of the fields into components parallel to and transverse to the z-
axis: �D = �D|| + �D⊥, etc. where �D|| = ẑ · �D, I can solve the axisymmetric wave equation (Equation (6))
with the boundary conditions in Equation (7) in a straightforward fashion in cylindrical coordinates
[13]. The results are the usual TM and TE modes but with modifications due to the presence of the
anisotropic dielectric. The TM modes are given by:

�D|| = Jm(qρ) exp(ikz) exp(imφ) ẑ,

�D⊥ =
ik

q
exp(ikz)

{
J ′

m(qρ)ρ̂ + im
Jm(qρ)

qρ
φ̂

}
exp(imφ),

�B⊥ = i
ω

cq
exp(ikz) ẑ ×

{
J ′

m(qρ)ρ̂ + im
Jm(qρ)

qρ
φ̂

}
exp(imφ),

(8)

where q2 = q2
0−k2

1+γ̃ and k = pπ/d, p = 0, 1, 2, . . ., Jm(qρ) is the cylindrical Bessel function [14], and ρ,
φ, z are the cylindrical coordinates. For the TM modes the magnetic field has no z component but the
electric displacement vector has components both parallel and transverse to the z-axis. Thus the electric
displacement field will change as γ̃ is varied, and the corresponding TM normal mode frequencies will
be dependent on γ̃.

The boundary condition require that Jm(qa) = 0. The resonance frequencies are given by
√

ε̃(
ω

c
) =

√
p2π2

d2
+

(1 + γ̃)x2
mn

a2
p = 0, 1, 2, , . . . , m = 0, 1, 2, . . . , n = 1, 2, . . . , (9)

where xmn = qa is the n-th root of Jm(x). The TM resonant frequencies are dependent on γ̃ and vary as
γ̃ is varied. This is because the electric field has a component along the z-axis and, therefore, is affected
by the existence of the dielectric anisotropy along that axis. For TM modes there exists normal mode
frequencies (for p = 0) that go to zero as γ̃ → −1. In the TM case there are no frequencies that are
independent of γ̃. Moreover, at the limit of γ̃ = −1, the modes coalesce into points that are distances
π apart. (I have considered this limit because for γ̃ ≤ −1 some of the TM normal mode frequencies
become imaginary; i.e., the interior of the cavity behaves as a metal for these wave numbers.) The TM
fields may be labeled as TMmnp

The TE modes are given by:
�B‖ = −iJm(qρ) exp(ikz) exp(imφ) ẑ,

�D⊥ =
(
−ω

c
q
)( ε̃

1 + γ̃

)
exp(ikz)ẑ ×

{
J ′

m(qρ)ρ̂ + im
Jm(qρ)

qρ
φ̂

}
exp(imφ),

�B⊥ =
k

q

(
ε̃

1 + γ̃

)
exp(ikz)

{
J ′

m(qρ)ρ̂ + im
Jm(qρ)

qρ
φ̂

}
exp(imφ),

(10)

where q2 = q2
0 − k2 and k = pπ/d, p = 1, 2, . . .. The TE modes are those for which the electric

displacement field lies in the xy-plane, and therefore it will not change as γ̃ is varied. For these modes
the electric displacement field experiences an effective dielectric constant ε̃. In this respect, it is as
though this field is in an isotropic cavity. The electric field lines would be closed curves lying parallel
to the xy-plane. As a consequence, the normal mode frequencies will be constants.

For the TE modes, the boundary condition require that J ′
m(qa) = 0 and the resonant frequencies

are given by
√

ε̃
(ω

c

)
=

√
p2π2

d2
+

x′2mn

a2
p = 1, 2, , . . . , m = 0, 1, 2, . . . , n = 1, 2, . . . , (11)

where x′mn = qa are the roots of J ′
m(x). Note that p = 0 does not appear in this equation since that

corresponds to no fields inside the cavity. I write TEmnp for a mode with azimuth number m, number
of radial nodes n + 1, and number of axial nodes p + 1.

The cavity fields satisfy the usual orthogonality conditions of Sturm-Liouville boundary value
problems. In [16], Appendix B, I demonstrated the orthogonality in normal mode frequency ω for
a cavity of arbitrary shape. There I also showed that the normalization constant is:

Nmp 2
ω =

∫
d�r(�Emp

ω )∗ · �Dmp
ω =

∫
d�r( �Bmp

ω )∗ · �Bmp
ω . (12)
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The orthogonality in m is a consequence of the orthogonality in exp(imφ). The orthogonality in p
is a consequence of the orthogonality properties of the trigonometric functions. The orthogonality in n
follows from the orthogonality properties of Bessel functions [15]. Inserting the expressions (8) and (9)
for the TM and TE magnetic fields in Equation (11) I get:

Nmp 2
ω =

πda2ω2

2q2c2
J2

m+1 (qa)

⎧⎨⎩
1 where TM (Jm (qa) = 0)(
ε̃

1 + γ̃

)2

where TE (J ′
m (qa) = 0)

⎫⎬⎭ . (13)

I note here that the TM and TE fields doubly degenerate for m = ±|m| and that Nmp 2
ω = N−mp 2

ω .

3. EFFECT OF THE HOLE

In order to excite these frequencies, a hole must be made in the surface of the cavity to allow for
the coupling with external fields. The existence of this hole perturbs the normal modes and will split
the m = ±|m| modes. In [16], an analogous problem for an axisymmetric spherical cavity resonator
was solved. The method of solution was based on the Rayleigh-Schrödinger perturbation theory. It
was found that the frequency shift depended on the value of only the perturbed electric field at the
hole. The field was calculated using the quasistatic approximation, which involved the solution of a
mixed-boundary-value problem for the potential.

The hole’s radius b is considered small in comparison with the dimensions of the cavity, a and d;
see Figure 1. The material outside the cylinder is considered to be the same as the material inside; i.e.,
an axisymmetric lossless dielectric. I take the hole’s axis and the axis of dielectric symmetry to be the
same as the z-axis. Naively, one would expect that since the radius of the hole is assumed to be much
smaller than that of cavity’s dimensions, the effect of the coupling may be treated perturbatively. This
assumption is always satisfied when the hole’s diameter is much smaller than the resonant wavelength
in the dielectric or when the following inequality is satisfied:√

π2p2
b2

d2
+ (1 + γ̃)x2

mn

b2

a2

2π
√

ε̃
� 1 with p = 1, 2, . . . , m = 0, 1, 2, . . . , n = 1, 2, . . . (14)

Figure 1. The geometry of the problem with the cylinder of radius a, height d, and excitation hole of
radius b.
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Clearly, for very thin cavities for which d2

b2
� 1 and with large values of parameter p, or large values

of the roots of the Bessel function xmn and parameter γ̃, (or a combination thereof) this inequality could
be violated and perturbation theory will fail.

Since the hole is small, the fields may be considered to be approximately constant over the hole.
I shall use an adaptation of degenerate perturbation theory to the perturbation of the boundary
conditions. My treatment is similar to the one given by Goubau [17] and is different than the Galerkin
method employed in [11]. The starting point of Goubau is to treat the effect of small apertures in wave
guides and resonating cavities by writing the physical quantities of interest as a series expansion of small
corrections to their unperturbed quantities. In case of the correction terms, no assumptions are made
on the nature of these functions beyond continuity, differentiability, smoothness and so on. In fact,
the expansion terms do not even have to satisfy Maxwell’s equations. Additionally, within the limit of
applicability of the perturbation theory, this treatment is exact. Li and Bosisio, (in [11]) on the other
hand, approximate the perturbed fields by a linear combination of the lowest modes of the cavity. This
is a trial solution with unknown coefficients with a set of complete functions (in the sense of function
spaces) as the basis vectors. Next, they use the orthogonality properties of these basis functions and the
boundary conditions to derive an infinite set of linear algebraic equations for the expansion coefficients.
They then solve these equations numerically.

I begin by noting that within the cavity both the perturbed and unperturbed fields satisfy the
Maxwell Equation (1). The boundary conditions satisfied by the unperturbed fields are: n̂× �E|surface = 0,
n̂ · �B|surface = 0 where n̂ is a unit normal to the surface. The perturbed fields, on the other hand, satisfy
the boundary conditions in Equation (15) everywhere on the surface of the cavity except in the hole; in
the hole, the electric field, �E, and the magnetic field, �B, must be continuous. Note that the unperturbed
fields vanish outside the cavity. In the subsequent development, the subscript 0 denotes the unperturbed
quantities.

The unperturbed cavity modes are labeled by m, p, ω. There is no degeneracy for m = 0. The
perturbed quantities are assumed to have the form:

ω = ω0 +
∑
n

ω(n).

�D = am
�Dmp

0 + a−m
�D−mp

0 +
∑
n

�D(n)

�E = am
�Emp

0 + a−m
�E−mp

0 +
∑
n

�E(n)

�B = am
�Bmp

0 + a−m
�B−mp

0 +
∑

n

�B(n),

(15)

where the coefficients am and a−m are as yet unknown.

In [16] I used the above expansions to derive the following consistency condition relating the
perturbed and unperturbed fields.∫

hole

�Bm′p∗
0 · n̂× �E(1)ds = 2i

ω(1)Nmp
ω0

2

c
× (amδmm′ + a−mδ−mm′). (16)

(An important condition for the validity of the derivation above has been the fact that I have taken
the dielectric tensor to be real.) This is a pair of equations that connects the inhomogeneous terms,
am

�Emp
0 , etc., with the frequency ω(1) and with the solutions at the boundary. To proceed further I need

to calculate the electric field perturbation �E(1) in the neighborhood of the hole.
Consider an ideally conducting screen in the xy-plane, with a hole of radius b centered at the

origin. The unperturbed electric field �E0 is uniform and constant below the hole and vanishes above
the hole. The problem is then to determine the electric field in the hole; with the boundary conditions
that in the hole it is to be continuous and on the screen its tangential component must vanish. In
addition, I require that this solution asymptotically vanish above the screen; and below the screen, to
asymptotically approach the unperturbed cavity fields. The analogous problem of the diffraction of
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electromagnetic waves by a perfectly absorbing plane screen was treated in detail by Stokes [18] in 1849
and by Lorenz [19] in 1860. An approximate treatment for a perfectly conducting screen was given by
Lord Rayleigh [20]. In 1944, Bethe [21] gave a detailed analysis of the diffraction of the electromagnetic
radiation by a circular hole small compared with the wavelength. The most accurate treatment of this
problem, with extensive criticism of previous work in this area, was given by Bouwkamp [22].

I am aided by the assumption that the hole is small compared to the wavelength, that is b� c/ω.
This allows me to use the quasistatic approximation [23, 24]. In applying the quasistatic approximation,
I am assuming that at the vicinity of the hole, all effects due to the finite velocity of propagation of
electromagnetic waves may be neglected. This means that I am neglecting the displacement current in
the Ampére’s Law. Nevertheless, the approximation is still valid for radiating systems since the fields
at short distances from the hole, the near fields, are always the quasistatic fields. In [16] I solved this
problem and showed that the electric field in the hole is given by:

�E(1)(�ρ, 0) =
(

E0

π

)(√
εzz

εxx

�ρ√
b2 − ρ2

+
π

2
ẑ

)
. (17)

I am now in the position to calculate the shift and broadening of the normal mode frequencies due
to the presence of the hole. I go back to the consistency condition, Equation (16). I consider the case
in which hole is at the top of the cylinder. My solution consists of several stages; First I replace the
incident field in Equation (16) with Equation (17). I then apply Stoke’s theorem to the integration over
the surface of the hole. I follow that by an application of Ampére’s Law to the result and, at the same
time, apply the assumption that the unperturbed fields are uniform over the surface of the hole and
thus may be removed as integrands. I arrive at:

ω0b
3

3

√
εzz

εxx
Dm′p′∗

0 (amEmp
0 + a−mE−mp

0 ) = ω(1)Nmp
ω0

2(amδmm′ + a−mδ−mm′). (18)

In Equation (18), I first let m′ = m, and then I put m′ = −m. The result is a pair of coupled,
linear, and homogeneous algebraic equations for the coefficients am and a−m. For non-trivial solutions
to exist the determinant must vanish. The vanishing of the determinant leads to two solutions for ω(1):

ω(1) = 0, ω(1) =
ω0b

3

3Nmp
ω0

2

√
εzz

εxx
[Dmp∗

0 Emp
0 + D−mp∗

0 E−mp
0 ]. (19)

The frequency perturbation, ω(1) is complex. The shift in the normal mode is given by the real
part of expression (19), and the decay rate is computed from its imaginary part.

Next, I apply these results to the calculation of the shift and broadening of the TM modes of the
cylindrical resonator. I approximate the fields at the hole by evaluating them at ρ = b, z = d, and for
arbitrary φ. I get:

Δωmnp =
2c(b/a)3

3π
√

εzz

x2
mn√

π2a2p2 + (1 + γ̃)d2x2
mn

J2
m(xmnb/a)
J2

m+1 (x)
, (20)

which is completely real. This indicates that, to the first order in perturbation theory, there are no
losses associated with the existence of this hole. This is the main result of this paper.

4. NUMERICAL RESULTS

I have evaluated Δω for the lowest m = 0, n = 1, p = 0 TM mode of the cavity, i.e., TM010. I obtain:

Δω010 =
2c(b/a)3

3πd
√

εzz

x01√
(1 + γ̃)

J2
0 (x01b/a)
J2

1 (x01)
. (21)

I have compared the result in Equation (21) above with the resonant frequency pulling derived
in [11], Equations (8) and (9). Due to differences between the physical setup and the mathematical
methods employed, an exact comparison of the results is not possible. However, one may note that
these expressions are in general qualitative agreement with Equation (21); they display a dependence
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on the ratio of Bessel functions of orders zero and one, the cube of ratio of hole radius to the cylinder
radius, and are inversely proportional to the height of the cylinder.

I have used Maple Software to compute the formula (21) with d = 2a, b = 0.1a, and a = 2.5 cm. I
have chosen the usual values of the dielectric constant for sapphire [25]; εxx = 8.6, εzz = 10.55. With
these choices of the parameters, the TM010 frequency is ν0 = 1.3772 GHz, and the corresponding shift
in frequency is Δν = 6. 217 4 × 10−4 GHz.

I have plotted the frequency shift as the dimensions of the cavity and the amount of dielectric
anisotropy are varied for the lowest x01 mode in units of

√
εzza. In Figure 2, I have plotted the

variation of the frequency shift as a function of the ratio of the hole radius to the cylinder radius and
the parameter γ̃. As γ̃ is increased from a value of −1, indicating a metallic interior, the amount of the
shift decreases. But as the ratio of the hole radius to cavity radius increases, the frequency shift increases
until it reaches a maximum. After that, further increase in the b/a ratio will cause the frequency shift
to decrease. The appearance of this maximum is not due to the failure of the perturbation theory, but it
is a consequence of the Bessel functions in the frequency shift formula. After that maximum is reached,
further increase in the ratio b/a tends to decrease the frequency shift until a value of b/a = 1 is reached,
and the frequency shift becomes zero. However, much earlier than that, I expect that the perturbation
theory and this whole approach to fail since the physical situation would then correspond to a rather
large hole in a resonating cavity, and the entire program needs to be revisited.

Figure 2. Δω vs. b/a and γ̃ with d = 2a, x01 ≡ 2.40482 in units of
√

εzza.

In Figure 3, I have plotted the same quantities but with a cavity height that is 10 times as large
as the one in Figure 2. In this figure, and in Figure 4, where I have plotted the frequency shift against
the dimensions of the cavity and the hole for a fixed value of the dielectric constant, I observe the same
overall behavior as Figure 2. That is, the amount of frequency shift decreases as the dimensions of the
cavity are increased (hole’s size being kept fixed). This is to be expected since the shift in frequency is
an indication of the ratio of energy loss through the hole to the total electromagnetic energy stored in
the cavity. So as the size of the cavity is increased compared to the size of hole, proportionally less and
less of the energy is lost. I note here that the peak in the frequency shift is observed in Figures 3 and
Figure 4, just as in Figure 2.

There are a number of directions that this work can be extended. The simplest extension will be
to include off-diagonal terms in the dielectric tensor. The calculation may also be extended to complex
permittivity. And finally, the problem of a hole on the side of the cylindrical cavity may be treated for
TE modes. Another direction for further extension of this work is the modeling of the experimental
setup in which a cylindrical sapphire core is enclosed by a metallic (niobium or lead) cylinder that is
larger than the sapphire core and has two holes at top and bottom.
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Figure 3. Δω vs. b/a and γ̃ with d = 10a,
x01 ≡ 2.40482 in units of

√
εzza.

Figure 4. Δω vs. b/a and d/a with γ̃ = −0.1848,
x01 ≡ 2.40482 in units of

√
εzza.
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