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Extension of Thin Wire Techniques in the FDTD Method
for Debye Media

Dmitry Kuklin*

Abstract—There are applications of the finite difference time domain (FDTD) method, which need to
model thin wires in dispersive media. However, existing thin wire techniques in the FDTD method are
developed only for the conductive and dielectric media. The article presents a modification of oblique
thin wire formalism proposed by Guiffaut et al. and a minor modification for the technique proposed by
Railton et al. for applications with Debye media. The modifications are based on auxiliary differential
equation (ADE) method. The modifications are validated by calculations of grounding potential rise
(GPR) of a horizontal electrode buried in soil with dispersive properties.

1. INTRODUCTION

For particular simulations, there is a need to take into account frequency dependence of complex
permittivity [1]. For example, a recent study [2] shows a significant influence of frequency dependent
soil parameters on the grounding potential rise. As long as FDTD method has some strengths (such as
modeling of inhomogeneities, for example), it is important to have an opportunity to use the method
for calculations with thin wires in dispersive media. However, there is a number of difficulties in
approximating the time domain expressions for the complex permittivity by finite differences [6]. On
the other hand, there exist well-developed methods modeling Debye relaxation [18] which can be used
as an approximation for the complex relative permittivity in a needed frequency range.

One can mark out two groups of techniques modeling thin wires in the FDTD method. In the
first group, the FDTD equations for electric and magnetic field calculation are used to model the wire.
Correct wire diameter is modeled by altering the FDTD equations [13, 14] or modifying parameters of
the medium [15, 16]. The wire itself is modeled by using a high conductivity medium in the electric
field calculation nodes locating along the wire (for the ideal conductor the electric field is set to zero in
those nodes). In this work, the technique proposed by Railton et al. [16] and improved by Taniguchi et
al. [17] is used. In the second group, two additional equations are used to model the current and voltage
waves propagating along the wire. The technique was originally proposed by Holland and Simpson [8]
and improved by number of authors [10–12]. The oblique thin wire formalism [12] is seemingly the only
method to this moment allowing to model arbitrarily oriented thin wires (which radius is not specified
by the cell size) in the FDTD method with rectangular mesh. However, in order to use these techniques
in Debye media, they need to be modified.
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2. OVERVIEW OF AUXILIARY DIFFERENTIAL EQUATION METHOD FOR
DEBYE MEDIA

One of the approaches to model dispersive materials in the FDTD method is the auxiliary differential
equation method [7, 18]. This is an efficient algorithm that adds a relatively small amount of floating-
point operations and storage needed for unknowns to basic FDTD algorithm. It is convenient to make
an overview of ADE method.

Ampere’s law for Debye medium in the frequency domain is

∇× Ĥ = ε0ε∞jωÊ + σÊ +
P∑

p=1

Ĵp, (1)

where Ĥ is the magnetic field, Ê the electric field, ε0 the vacuum permittivity, ε∞ the permittivity at
the high frequency limit, σ the conductivity, P the number of Debye poles, and Ĵp the polarization
current for the p’th Debye pole:

Ĵp =
ε0Δεpjω

1 + jωτp
Ê, (2)

where τp is the relaxation time, Δεp = εp − ε∞ (where εp is the low frequency permittivity).
Multiplication of both sides of Equation (2) by (1 + jωτp) and applying inverse Fourier transform
gives

Jp + τp
∂Jp

∂t
= ε0Δεp

∂E
∂t

. (3)

In the finite difference form, using Jn+1/2
p = (Jn

p + Jn+1
p )/2 (time moment is determined as t = nΔt),

Equation (3) can be approximated as
Jn

p + Jn+1
p

2
+ τp

Jn+1
p − Jn

p

Δt
= ε0Δεp

En+1 − En

Δt
. (4)

Solving this for Jn+1
p gives

Jn+1
p = kpJn

p + βp
En+1 − En

Δt
, (5)

where
kp =

1 − Δt/(2τp)
1 + Δt/(2τp)

, βp =
ε0ΔεpΔt/τp

1 + Δt/(2τp)
. (6)

So that updating of polarization current Jp is performed by Equation (5).
Next, an electric field updating equation should be obtained. Using the Equation (5), Jn+1/2

p can
be evaluated from En, En+1 and Jn:

Jn+1/2
p =

Jn
p + Jn+1

p

2
=

1
2

[
(1 + kp)Jn

p + βp
En+1 − En

Δt

]
, (7)

then it can be substituted into the time domain form of Equation (1) approximated by the finite
differences:

∇× Hn+1/2 = ε0ε∞
En+1 − En

Δt
+ σ

En+1 + En

2
+

1
2

P∑
p=1

[
(1 + kp)Jn

p + βp
En+1 − En

Δt

]
, (8)

and the electric field at n + 1 can be calculated:

En+1 =

2ε0ε∞ +
P∑

p=1

βp − σΔt

2ε0ε∞ +
P∑

p=1

βp + σΔt

En +
2Δt

2ε0ε∞ +
P∑

p=1

βp + σΔt

·
⎡
⎣∇× Hn+1/2 − 1

2

P∑
p=1

(1 + kp)Jn
p

⎤
⎦ . (9)

With this method first the electric field is calculated using Equation (9). Then the polarization current
is calculated with Equation (5). Finally, the magnetic field is obtained from the usual FDTD expression.
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3. MODIFICATION OF THE MODEL PROPOSED BY GUIFFAUT ET AL.

Each method, based on the approach of Holland and Simpson, uses two equations to model propagation
of waves along the wire:

L
∂I

∂t
+

∂V

∂z
+ RI = Ez(d), (10)

Cl
∂V

∂t
+

∂I

∂z
+

σClV

ε0ε∞
= 0, (11)

where I is the current; V is the voltage; Cl, L and R are respectively the capacitance, the inductance
and the resistance per unit length; Ez is the electric field longitudinal to the wire at the distance d from
the wire. Applying ADE approach, the second equation is modified and one more equation is added.

Δx

Δy
θ
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y

z

r
Ez Ez

EzEz
wire

Figure 1. Thin wire and closest electric field nodes of the FDTD grid.

Figure 1 shows a thin wire oriented along z-axis and closest electric field nodes. The θ component
of the Faraday’s law in cylindrical coordinates:

∂Er

∂z
− ∂Ez

∂r
= −μ

∂Hθ

∂t
. (12)

Equation (10) is derived by taking the integral of Equation (12) from r = a (where a is wire radius) to
d ∫ d

a

∂Er

∂z
−

∫ d

a

∂Ez

∂r
= −μ

∫ d

a

∂Hθ

∂t
(13)

and substituting approximations for the magnetic and electric field around the wire (here Q is the charge
per unit length) [8]:

Hθ =
I

2πr
, Er =

Q

2πrε0ε∞
=

ClV

2πrε0ε∞
. (14)

The RI takes into account the resistance of the wire [12]. The L is defined by

L =
μ0

2π
ln(d/a). (15)

Equation (11) is derived from the Ampere’s law in a similar manner as the modified version below (with
the exception that the modified version takes into account the polarization current).

The modification starts from the radial component of Ampere’s law equation in cylindrical
coordinates:

1
r

∂Hz

∂θ
− ∂Hθ

∂z
= jωε0ε∞Er + σEr +

P∑
p=1

Jrp . (16)

Integration of the equation from θ = 0 to 2π yields

1
r

∂

∂θ

∫ 2π

0
Hzdθ − ∂

∂z

∫ 2π

0
Hθdθ = jωε0ε∞

∫ 2π

0
Erdθ + σ

∫ 2π

0
Erdθ +

P∑
p=1

∫ 2π

0
Jrpdθ. (17)
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Using Equation (14) and approximating the derivative ∂I/∂z by finite difference, Equation (17) becomes

Ik+1/2 − Ik−1/2 + jωCV +
σCV

ε0ε∞
+

P∑
p=1

J ′
rp

= 0, (18)

where C is equivalent capacitance for particular node k (in [12], Ck is used), and J ′
rp

equals

J ′
rp

=
Δεpjω

ε∞(1 + jωτp)
CV. (19)

In a similar manner as earlier, an update equation for the J ′
rp

can be obtained:

J ′n+1
rp

= k′
pJ

′n
rp

+ β′
pC

V n+1 − V n

Δt
, (20)

where
k′

p =
1 − Δt/(2τp)
1 + Δt/(2τp)

, β′
p =

ΔεpΔt/τp

ε∞ + ε∞Δt/(2τp)
. (21)

Approximation of time domain version of Equation (18) by finite differences with using J
n+1/2
rp =

(Jn
rp

+ Jn+1
rp

)/2 leads to

−
(
I

n+1/2
k+1/2 − I

n+1/2
k−1/2

)
= C

V n+1 − V n

Δt
+ σC

V n+1 + V n

2ε0ε∞
+

1
2

P∑
p=1

[
(1 + k′

p)J
′n
p + β′

pC
V n+1 − V n

Δt

]
. (22)

Now the voltage at n + 1 can be calculated:

V n+1 = b1V
n − b2

C
·
⎡
⎣I

n+1/2
k+1/2 − I

n+1/2
k−1/2 +

1
2

P∑
p=1

(1 + k′
p)J

′n
rp

⎤
⎦ , (23)

where

b1 =

2ε0ε∞ + ε0ε∞
P∑

p=1

β′
p − σΔt

2ε0ε∞ + ε0ε∞
P∑

p=1

β′
p + σΔt

, b2 =
2ε0ε∞Δt⎛

⎝2ε0ε∞ + ε0ε∞
P∑

p=1

β′
p + σΔt

⎞
⎠

. (24)

Accordingly, calculation of the voltage in a multiwire junction [12] should be modified also:

V n+1 = b1V
n +

b2

Ceq,0
·
⎡
⎣Nw∑

q=1

In+1/2
q − 1

2

P∑
p=1

(1 + k′
p)J

′′n
rp

⎤
⎦ , (25)

where Nw is the number of wires in the junction [12] and Ceq,0 the equivalent capacitance for the
junction [12]. The update equation for the J ′′

rp is

J ′′n+1
rp

= k′
pJ

′′n
rp

+ β′
pCeq,0

V n+1 − V n

Δt
. (26)

The current from the wire is distributed by the FDTD grid by means of the current sources.
Therefore, the electric field at time step n in Equation (9) should be saved before the wire current is
distributed. The saved electric field is used then in a calculation of the polarization current by the
Equation (5).

Summing up, the modification implies using Equations (23) and (25) instead of those presented
in the [12] and calculation of the J ′

rp
and J ′′

rp
by Equations (20) and (26). Other peculiarities of the

method (such as calculation of the inductance per unit length, distribution of the wire current by the
FDTD grid etc.) remain unchanged.
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4. MODIFICATION OF THE MODEL PROPOSED BY RAILTON ET AL.

The technique proposed by Railton et al. [16] is based on the correction of electric and magnetic fields
in the nodes adjacent to the wire. Modeling of the wire itself is performed either by setting the electric
field to zero along the electric field nodes or using a highly conductive medium.

According to the technique [16], the permittivity and the permeability in the nodes adjacent to
z-directed wire should be multiplied by the coefficients εx, εy, μx, μy:

μx =
1
εy

=
ln

(
Δy

a

)

2 arctan
(

Δx

Δy

) Δx

Δy
, μy =

1
εx

=
ln

(
Δx

a

)

2 arctan
(

Δy

Δx

) Δy

Δx
, (27)

where a is the wire radius, and Δx and Δy are respectively x and y dimensions of the cell. If the wire
is located in the conductive medium the conductivity should also be altered [17], and σx = εx, σy = εy.

To use this technique in Debye media, Δε should be corrected as well by Δεx = εx and Δεy = εy.
This can be achieved by altering βp in Equation (6). As long as in the model of Noda and Yokoyama [15]
the permittivity is corrected in a similar way, the same correction of Δε should be applicable to the
model [15] too.

5. VALIDATION

In order to validate the proposed modifications, the calculations of the GPR for a buried horizontal
electrode have been carried out by the FDTD method. Then the calculation results have been compared
to those simulated using the hybrid electromagnetic model (HEM) which is validated experimentally [5].

First, the complex permittivity should be approximated with the Debye relaxation function. From
the empirical expression in the work of [5] the imaginary part of the permittivity can be evaluated:

ε′′r(f) =
1.2 · 10−6σ0.27

0 · (f − 100)0.65

2πfε0
, (28)

where f is the frequency in Hz and σ0 a soil conductivity (σ0 = 1/ρ0). The frequency range for f in
formula (28) is 100 Hz–4 MHz [5]. The real part of the permittivity [5]:

ε′r(f) = 7.6 · 103f−0.4 + 1.3. (29)

The frequency range for Equation (29) is 10 kHz–4 MHz. For the range 100 Hz–10 kHz, it is suggested
in [5] to use constant permittivity equaled to the permittivity at frequency 10 kHz. However, for the
calculations in the present work, the frequency range 10 kHz–4 MHz is enough.

The n-term Debye function expansion is defined by

ε̂r(ω) = ε∞ +
n∑

p=1

Δεp

1 + jωτp
. (30)

To calculate the parameters ε∞, Δε, and τ , a hybrid particle swarm-least squares optimization approach
was used [6]. The obtained four-term expansion parameters for the soils with resistivity 2000 Ω ·m and
4000 Ω · m are listed in Table 1. Fig. 2 shows the real and imaginary parts of the Debye function
expansion compared to those of the empirical functions for 10 kHz–4 MHz frequency range.

It should be noted that the real and imaginary parts of the permittivity are related to each
other by the Kramers-Kronig relations [6, 19]. However, Equations (28) and (29) do not obey these
relations because the imaginary part depends on the ρ0 while the real part does not (in other words,
the imaginary part of the permittivity is not related to the real part mathematically). For this reason,
it is not possible to approximate both equations exactly for all soils by the Debye function expansion
(but a good approximation is possible for soils with ρ0 close to about 2000 Ω · m). Therefore, here the
imaginary part was approximated more exactly than the real part.

In order to perform lengthy calculations (thousands of time steps) in a reasonable amount of time,
the volume size should be relatively small, which, in the case of GPR simulations, can be achieved
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Table 1. The ε∞, Δε, and τ parameters of the four-term expansion used to approximate empirical
expressions.

ρ0, Ω · m ε∞ Δε1 τ1, s Δε2 τ2, s Δε3 τ3, s Δε4 τ4, s

2000 13.120 210.820 2.498 ·10−5 59.823 3.484 ·10−6 35.472 6.032 ·10−7 22.768 7.462 ·10−8

4000 23.282 173.829 2.374 ·10−5 49.872 3.103 ·10−6 27.992 5.056 ·10−7 17.445 6.452 ·10−8
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Figure 2. Approximation of the permittivity with Debye relaxation. (a) 2000 Ω · m, (b) 4000 Ω · m.

by modeling the current lead wire and the voltage reference wire as infinite. In the FDTD method,
wires are simulated infinite when they penetrate absorbing boundary condition (ABC). The uniaxial
perfectly matched layer (UPML) is used as the ABC in the article. In the methods based on the thin
wire formalism of Holland and Simpson [8], the wire current is distributed in the FDTD calculation
grid by means of the current sources. However, the UPML is not intended to contain current sources.
Therefore, when the wire penetrates UPML region this can lead to a calculation error. On the contrary,
the wire simulated by modifying the medium parameters can penetrate UPML region without causing
the error. As long as a wire modeled by the formalism of Holland and Simpson (or model of Guiffaut et
al.) can be located in a conductive medium, it is possible to place this wire in the same location as a
wire simulated by model of Railton et al. (because this wire is modeled simply by using a conductive
medium along the nodes of the electric field grid).

This way of modeling infinite wires can be verified by calculations with two volumes having different
sizes (see Fig. 3). The size of the cell for the computation mesh is 0.125 m (the mesh has the cubic
form). The thickness of the UPML equals 15 cells. The current lead wire, voltage reference wire, and
grounding electrode are located perpendicularly to each other in order to minimize magnetic influence
between the wires. The diameter of all the wires is 14 mm.

To calculate the potential difference between two wires (the grounding rod and the voltage reference
wire), their ends (or nodes) are located at the same point without electrical connection between the
wires. Voltage difference equals to a difference between potentials of the wire nodes. There is an
alternative way to calculate the voltage difference [3].

The form of the current of the ideal current source is set by function

i(t) =
{

0.5 + 0.5 sin(tπ/t1 − 0.5π) if t ≤ t1
1

(31)

where t1 = 0.1 · 10−6 µs. The current amplitude is 1A.
The GPR simulation results for the two different volumes are shown in Fig. 4 (the calculations are

carried for the soil with dispersion). It can be seen that they agree with each other exactly.
The validation calculation model is shown in Fig. 5. The computation mesh and ABC parameters

are the same as earlier. For the wires modeled by the Railton’s technique, the voltage between the
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grounding electrode and the voltage reference wire is calculated as the electric field in the node between
the wires times the cell size: V = EΔl, where Δl is the FDTD cell size. In the case of the model of
Guiffaut et al., the grounding electrode was located differently: along the nodes of the FDTD grid and
with a shift. The start and the end of the shifted grounding electrode were placed in the centers of the
electric field grid cells. Using 0.125 m cell size this means that the grounding electrode cannot be placed
at the depth 0.5 m exactly. To ensure that the depth does not influence significantly, the calculations
were carried for the grounding electrode located 0.5Δl higher and 0.5Δl lower than 0.5 m depth.
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The current form is set by [4]

i(t) =
m∑

k=1

I0k

ηk
exp

(
− t

τ2k

)
(t/τ1k)nk

1 + (t/τ1k)nk
, ηk = exp

(
−τ1k

τ2k

)(
nkτ2k

τ1k

)1/nk

, (32)

where I01 = 15.4 kA, I02 = 7.2 kA, n1 = 3.4, n2 = 2, τ11 = 0.6 µs, τ12 = 4 µs, τ21 = 4 µs, τ22 = 120 µs.
The calculation results are shown in Fig. 6 (the simulations are carried not only for the dispersive

soil but also for the soil with constant permittivity). It is seen from the figure that FDTD method
simulation results are in good agreement with those of the HEM method. The difference between the
results of these two methods is approximately the same both for the cases with dispersion and without
it, which indicates that the difference is caused by peculiarities of the methods (or models) itself related
to the injection of the current into the grounding electrode and calculation of the voltage rather than
inaccuracies of the proposed modifications.
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Figure 6. GPR of the horizontal electrode simulated by different methods. HEM method simulation
results are adopted from [2]. (a) ρ0 = 2000Ω · m, (b) ρ0 = 4000Ω · m.

6. CONCLUSIONS

The modifications of the thin wire model proposed by Guiffaut et al. and the model proposed by
Railton et al. are presented. With the proposed modifications, it is now possible to perform calculations
with thin wires located in Debye media in the FDTD method, which is important, for example, for
simulations involving wires located in soils with dispersive properties. As long as the modifications are
based on the efficient ADE method, their implementation adds a relatively small amount of floating-
point operations and storage needed for unknowns to the thin wire models (in the case of the model
proposed by Railton et al., only a correction of the coefficients is needed). It is expected that thin wires
in other media (such as Lorenz and Drude) can be modeled similarly with the ADE method.
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