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Analysis of Scattering from Composite Conductor and Dielectric
Objects Using Single Integral Equation Method

and MLFMA Based on JMCFIE

Hua-Long Sun*, Chuang-Ming Tong, and Peng Peng

Abstract—A highly efficient hybrid method of single integral equation (SIE) and electric/magnetic
current combined field integral equation (JMCFIE) is presented, named as SJMCFIE, for analysing
scattering from composite conductor and dielectric objects, in which, SIE can reduce one half unknowns
in dielectric region. The resultant matrix equation of SJMCFIE can be represented in the iteration
form, which makes the computation complexity reduced further, and coupling mechanism of composite
model becomes more explicit. For accelerating matrix-vector multiplications (MVMs), Multilevel Fast
Multipole Algorithm (MLFMA) is employed to combine SJMCFIE to formulate SJMCFIE-MLFMA at
last, which is the extension of SIE-MLFMA in the proposed reference. Finally, some examples verify
the new hybrid method on accuracy, memory storage, computation efficiency compared to SIE-MLFMA
and JMCFIE-MLFMA. Besides, SJMCFIE-MLFMA can also be used to analyse the complete coated
model’s scattering.

1. INTRODUCTION

Analyzing electromagnetic scattering from composite conductor and dielectric objects has gained wide
interest from many researchers, which have the importance in studying coated targets, cavity filled with
dielectric materials, printed antenna on substrate, and substrate integrated waveguide (SIW). Specially,
the research on stealthy weapon platforms and system, and the target’s recognition motivates the
requirement for precisely computing and analyzing the target’s electromagnetic scattering. Traditional
high-frequency asymptotic methods are not suitable for this kind of requirement due to poor accuracy
in spatial, angular and frequency domain, whereas numerical algorithms are suitable for this situation
due to their high precision. Computing composite models can utilize the methods based on surface
integral equation [1–4], hybrid volume-surface integral equations [5], or Finite-Element-Boundary-
integral techniques [6]. The methods based on surface integral equation have the advantage over
hybrid volume-surface integral equation on computing homogeneous material objects. In practice, when
analyzing scattering from composite objects based on surface integral equations, the conducting part
usually utilizes electric field integral equation (EFIE), magnetic field integral equation or combined field
integral equation, and the dielectric part utilizes Poggio-Miller-Chang-Harrington-Wu-Tsai (PMCHWT)
equations [7], electric and magnetic current combine field integral equation (JMCFIE) [8–12], or N-
Müller integral equations [13]. Especially, formulating equations in the dielectric part concerns both
equivalent electric and magnetic currents. Yeung [14] proposes single integral equation (SIE), which
only concerns the effective currents rather than both electric and magnetic currents, and as a result, the
unknowns of SIE are only one half of JMCFIE or PMCHWT. However, SIE in [14] is only used to analyze
the pure dielectric objects. Then, Wang et al. [15] extend SIE to analyze the combined conducting and
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dielectric bodies, and incorporate multilevel fast multipole algorithm (MLFMA) [16, 17] as the extension
of fast multipole method (FMM) [18] to reduce the complexity of matrix-vector products. It is worth
to note that SIE-MLFMA in [15] is based on EFIE, so its iteration convergence is usually slower than
that of magnetic field integral equation and magnetic field integral equation.

In this paper, a highly efficient hybrid method of SIE and JMCFIE is presented, named as
SJMCFIE, to perform scattering from composite conductor and dielectric objects, which has two
advantages: one is that JMCFIE guarantees fast convergence of iteratively solving compared to EFIE
in SIE-MLFMA [15], and the other is that further SIE translates non-compact operators into compact
operators [19–21] to achieve fast convergence of iteratively solving compared to JMCFIE. SJMCFIE
can be rewritten in new iteration form, which not only reduces computation complexity, but also
makes coupling mechanism explicit. With the unknowns of composite conductor and dielectric objects,
solving resultant matrix equation based SJMCFIE gets harder. Like SIE-MLFMA, SJMCFIE-MLFMA
is obtained by adopting MLFMA to accelerate MVMs. Examples show that: SJMCFIE-MLFMA has
higher efficiency and accuracy than SIE-MLFMA and JMCFIE-MLFMA. Finally, SJMCFIE-MLFMA
can also be used to analyze scattering from the complete coated model.

2. FORMULATION

2.1. Hybrid Method of SIE and JMCFIE

A typical model of composite conductor and dielectric objects is shown in Fig. 1. S1 and S2 are
the surfaces of the conductor and dielectric domain, respectively. S3 is the common interface of the
conductor and dielectric domain. J1e is induced electric current on the exterior surface S1, and J2e

and J2m are equivalent surface electric and magnetic currents on the exterior surface of S2. Jeff
2e is

single effective current on the interior surface of the dielectric domain enclosed by S2 and S3. ε0 and
μ0 are the permittivity and permeability in the free space, respectively. ε and μ are the permittivity
and permeability in the dielectric region, respectively.

Figure 1. Illustration of composite conductor and dielectric objects illuminated by the incident.

Scattering field outside S1 and S2 can be computed by J1e located on the exterior surface S1, and
J2e and J2m located on the exterior surface S2:

Es = η0L0(J1e) + η0L0(J2e) − K0(J2m) Hs = K0(J1e) + (1/η0)L0(J2m) + K0(J2e) (1)

where subscript 0 denotes the free space, and L0(·) and K0(·) are electric field integral operator and
magnetic field integral operator, respectively:

L0(f) = −jk0

∫
Sm

[g0(r, r′)f(r′) + (1/k2
0)∇g0(r, r′)∇′ · f(r′)]dS′ m = 1, 2 (2a)

K0(f) = −
∫

Sm

[f(r′) ×∇g0(r, r′)]dS′ m = 1, 2 (2b)

with g0(r, r′) = exp(−jk0|r − r′|)/(4π|r − r′|) being the Green’s function in the free space and
η0 =

√
μ0/ε0 the wave impedance in the free space. Total electric and magnetic fields satisfy the
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boundary condition of the JMCFIE formulation [4, 11]:{
e1(r) = einc

1 (r) + es
1(r) = 0, j1(r) = jinc

1 (r) + js1(r) = J1e, r ∈ S1

e2(r) = einc
2 (r) + es

2(r) = n2 × J2m, j2(r) = jinc
2 (r) + js2(r) = J2e, r ∈ S2

, (3)

in which, e = n × E × n and j = n × H are the total tangential electric field and magnetic fields,
respectively, and einc(r) and jinc(r) are the incident wave’s tangential electric field and magnetic fields,
respectively. Further, we have:
α

η0
einc

1 (r) + βjinc
1 (r) =−αn1 × L0(J1e) × n1 − αn1 × L0(J2e) × n1+(α/η0)n1 × K̃0(J2m) × n1

+(β/2)J1e − βn1 × K̃0(J1e) − (β/η0)n1 × L0(J2m) − βn1 × K̃0(J2e) r ∈ S1 (4a)

α

η0
einc

2 (r)+βjinc
2 (r) =−αn2×L0(J1e)×n2−αn2×L0(J2e)×n2+

α

2η0
n2×J2m+

α

η0
n2×K̃0(J2m)×n2

−βn2 × K̃0(J1e) − (β/η0)n2 × L0(J2m) + (β/2)J2e − βn2 × K̃0(J2e) r ∈ S2 (4b)

with K̃ being the principle value integral, α and β the combination factors satisfying 0 ≤ α, β ≤ 1 and
α+β = 1. The electric and magnetic currents are expanded with RWG function: J1e =

∑N1
j=1 x1jf1j(r),

J2e =
∑N2

j=1 cjf2j(r) and J2m =
∑N2

j=1 cjf2j(r), in which f1j and f2j are the RWG basis functions [22]
on S1 and S2, respectively. The total number of edges of S1 is N1, including the common edges [15]
connected to S1 and S2, while the total number of edges of S2 is N2, excluding the common edges. In the
frame of Galerkin method, choose test function f1i and f2i for Equation (4) to formulate the resultant
matrix equation, simultaneously define the operator of two complex vectors as 〈u, v〉Γ =

∫
Γ u · vdΓ.

Equations (4a) and (4b) can be translated into:[
Q11

Q21

]
{x1} +

[
Q12 P12

Q22 P22

] [
c

d

]
=

[
b1

b2

]
, (5)

where

Qpp(i, j) = −α 〈fpi, L0(fpj)〉Tpi
+ (β/2) 〈fpi, fpj〉Tpi

− β
〈
fpi,npi × K̃0(fpj)

〉
Tpi

,

i, j ∈ [1, Np], p = 1, 2, (6a)

Qpq(i, j) = −α 〈fpi, L0(fqj)〉Tpi
− β

〈
fpi,npi × K̃0(fqj)

〉
Tpi

,

i ∈ [1, Np], j ∈ [1, Nq], {p, q} = {1, 2} ∪ {2, 1}, (6b)

P12(i, j) = (α/η0)
〈
f1i, K̃0(f2j)

〉
T1i

− (β/η0) 〈f1i,n1i × L0(f2j)〉T1i
,

i ∈ [1, N1], j ∈ [1, N2], (6c)

P22(i, j) =
α

2η0
〈f2i × n2i, f2j〉T2i

+ (α/η0)
〈
f2i, K̃0(f2j)

〉
T2i

− (β/η0) 〈f2i,n2i × L0(f2j)〉T2i
,

i, j ∈ [1, N2], (6d)

bp(i) = (α/η0)
〈
fpi,Einc

p

〉
Tpi

+ β
〈
fpi,n2i × Hinc

p

〉
Tpi

,

i ∈ [1, Np], p = 1, 2. (6e)

The resultant matrix Equation (5) has the size of (N1+N2)×(N1+2N2) which is not sufficient for the
final electric and magnetic currents solution. Considering constructing other supplementary equations
for Eq. (5), formulating equations based on JMCFIE in the interior domain is feasible, whereas this
paper introduces single effective currents of the SIE method [14] rather than the original equivalent
electric and magnetic currents of JMCFIE to represent the interior field. So the unknowns in the
dielectric domain will be reduced by one half compared to JMCFIE. Therefore, this hybrid method
SJMCFIE will be derived in the following.
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In SJMCFIE method, the fields in the dielectric domain can be computed with effective current Jeff
2e

on interior surface Sd = S2 + S3, with the expression of Ed = η1L1(J
eff
2e ),Hd = K1(J

eff
2e ). η1 =

√
μ/ε

being the wave impedance. Besides, in L1(·), K1(·) and g(r, r′), wave number is k = w
√

με. It is pointed
out that the field represented by the effective currents satisfies the interior boundary condition on S2:{

J2e = n2 × Hd = −Jeff
2e /2 + n2 × K̃1(J

eff
2e )

−J2m = n2 ×Ed = n2 × η1L1(J
eff
2e )

on S2 (7a)

and the boundary condition on the common surface S3 of the dielectric and the conducting body:

−αn3 × L1(J
eff
2e ) × n3 − (β/2)Jeff

2e − βn3 × K̃1(J
eff
2e ) = 0 on S3, (7b)

where the effective current on S3 has degenerated to surface equivalent current. Total effective
currents on the dielectric object’s interior surface can be expanded by RWG functions as Jeff

2e (r) =∑N2
i=1 x2if2i +

∑N3
i=1 x3if3i with the number of unknown edges being N2 + N3. Among them, N3 is

the number of unknown edges on S3 including the common edges. Referring to [14], the expansion
coefficients can be approximated by the average values passing through the edges:

xpi = (1/lpi)
∫

lpi

(l̂pi × npi) · Jeff
2e dl, p = 2, 3. (8)

Combining Equations (7a) and (8), expansion coefficients {c} and {d} in Eq. (5) can be expressed as:

{c} = [P̃22]{x2} + [P̃23]{x3}, {d} = [Q̃22]{x2} + [Q̃23]{x3}, {0} = [Q̃32]{x2} + [Q̃33]{x3}. (9)

Here, {x2} and {x3} are the vectors of the expansion coefficients of single effective currents. In Eq. (9),
submatrices’ elements can be represented as:

P̃22(i, j) = −(1/2)δij −
∫

l2i

(l̂2i/l2i) · K̃1(f2j)dl, i, j ∈ [1,N2] (10a)

P̃23(i, j) = −
∫

l2i

(l̂2i/l2i) · K̃1(f3j)dl, i ∈ [1,N2], j ∈ [1,N3] (10b)

Q̃2q(i, j) =
∫

l2i

(η1/l2i)l̂2i · L1(fqj)dl, i ∈ [1,N2], j ∈ [1,Nq], q = 2, 3 (10c)

Q̃32(i, j) = −α 〈f3i, L1(f2j)〉T3i
− β

〈
f3i,n3i × K̃1(f2j)

〉
T3i

, i ∈ [1,N3], j ∈ [1,N2] (10d)

Q̃33(i, j) = −α 〈f3i, L1(f3j)〉T3i
− (β/2) 〈f3i, f3j〉T3i

− β
〈
f3i,n3i × K̃1(f3j)

〉
T3i

, i, j ∈ [1,N3], (10e)

where, if i = j, δij = 1; else if i 	= j, δij = 0. By substituting Eq. (9) into Eq. (5), new resultant matrix
equation is obtained: [

A11 A12 A13

A21 A22 A23

0 A32 A33

] {
x1

x2

x3

}
=

{
b1

b2

0

}
, (11)

where

[A11] = [Q11], [A12] = [Q12] · [P̃22] + [P12] · [Q̃22], [A13] = [Q12] · [P̃23] + [P12] · [Q̃23],

[A21] = [Q21], [A22] = [Q22] · [P̃22] + [P22] · [Q̃22], [A23] = [Q22] · [P̃23] + [P22] · [Q̃23],

[A32] = [Q̃32], [A33] = [Q̃33].

Due to adopting SIE, Equation (11) has the number of unknowns N1 + N2 + N3 less than one of
N1 + 2N2 + N3 based on JMCFIE. We substitute x3 = −A−1

33 A32x2 into Eq. (11), and a new matrix
equation is derived: [

A11(A12 − A13A
−1
33 A32)

A21(A22 − A23A
−1
33 A32)

]{
x1

x2

}
=

{
b1

b2

}
, (12)
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among which the number of unknowns N1 + N2 is less than N1 + N2 + N3 in Eq. (11). A13A
−1
33 A32

represents indirectly mutual interaction between the dielectric exterior surface S2 and the conductor’s
exterior surface S1. A32 denotes the interaction between S2 and the common surface S3. A−1

33 denotes
the self-interaction of S3. A31 denotes the interaction between S1 and S3. In a word, the indirectly
mutual interaction’s process is S2 → S3 → S1.

Similarly, A23A
−1
33 A32 indirectly represents self-interaction of the dielectric exterior surface S2,

which has the process of S2 → S3 → S2.
When total number of unknowns is relatively low, directly solving Eq. (12) is enough; however,

with number of unknowns getting higher, iterative solvers, such as Bi-Conjugate Gradients Stabilized
Approach (BiCGSTAB) and Generalized Minimum Residual (GMRES) method [23], can effectively
reduce the computation complexity. It is worth to note that during per iteration, A−1

33 concerns the
matrix inversion, and in practice, we may translate A−1

33 a = b into Ab
33 = a, which can also be solved

to achieve MVM A−1
33 a by the iteration method. When N3 gets large, solving iteratively Ab

33 = a costs
more time, so Equation (11) is a better choice. Actually, SIE not only reduces the number of unknowns,
but also improves the matrix condition number deduced from EFIE or combined field integral equation.
As we know, matrix equation’s convergence performance is potentially determined by matrix condition
number. Noticeably, magnetic field integral operator belongs to the second-kind Fredholm operator or
compact operator, whereas electric field integral operator belongs to the first-kind Fredholm operator
or non-compact operator [20]. Compact operator makes the matrix condition number better than non-
compact operator because the former is well conditioned. JMCFIE includes non-compact operator or
electric field integral operator in the dielectric domain that will worsen its matrix condition number,
whereas SJMCFIE includes two-fold operators in the dielectric domain such as L0 · K̃1, K̃0 ·L1, L0 ·L1.
The multiplication of compact and non-compact operators is still a compact operator [20, 21], so the
two former ones are compact operators. And the third term is the multiplication of two non-compact
operators and is also a compact operator [13]. As a result, SJMCFIE improves matrix condition number
in the dielectric domain. Iteration convergence will be improved and iteration steps reduced if adopting
iteration methods for solving the resultant matrix equation. This conclusion has been numerically
validated by Yeung in [14] when solving scattering from the pure dielectric object. Wang et al. attempt
to incorporate SIE with EFIE, and as a result, the process of translating non-compact operator is
similar to that in SJMCFIE. However, the conducting part is still based on EFIE, and obviously, this
makes iteration convergence slow compared to combined field integral equation in SJMCFIE. Finally,
the formulating process of resultant matrix equation in JMCFIE will cost more time than that in
SJMCFIE, which will be verified in Section 3.

2.2. Formulation of SJMCFIE-MLFMA

When adopting iteration solvers to solving resultant matrix equation of SJMCFIE, most of MVMs per
iteration will increase total computation complexity. For mitigating this problem, this paper introduces
MLFMA to SJMCFIE. In detail, for the resultant matrix Equation (12), according to the interaction
between basis functions, the impedances of each submatrix can be divided into near-region parts and
well-separated parts, in which the former can only be directly computed by the method of moments
(MOM), and the latter can be approximated by MLFMA. In essence, MLFMA utilizes tree-grouping
concept. Detailed process is: initially define a box enclosing the whole composite objects, which is
marked as the zero level, then divide this box into eight subboxes to form the first level, and after
that, divide these subboxes into finer subboxes. Recursively, the finest level is denoted as Lf whose
box’s length Df is about 0.3λ, in which λ is the wave length in the free space. These boxes are always
called groups. The above grouping process generates an oct-tree. Remember that only non-empty
box on each level is marked as an exclusive index, and computation process is based on these non-
empty boxes/groups. In the detailed implementation, MLFMA includes three important processes:
aggregation, translation and disaggregation, in which the translation process is performed level by
level from the finest to the coarsest, and at some level, only concerns the well-separated groups that
are non-overlapping or adjacent, but their parents’ groups are adjacent [17]. In what follows, some
brief formulations about how to incorporate SJMCFIE with MLFMA are given. Some more detailed
descriptions about MLFMA can be found in [17].
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At some level, utilizing the addition theorem [17], Green’s function and its Gradient can be
expanded with the form of

e−jk0rij/rij = −j(k0/4π)
∫

SE

d2k̂e−jk·(rim−rjm′ )T0(k, r̂mm′) (13a)

∇(e−jk0rij/rij) = −[k2
0/(4π)]

∫
SE

k̂d2k̂e−jk·(rim−rjm′)T0(k, r̂mm′) (13b)

where
T0(k, r̂mm′) =

∑L

l=0
(−j)l(2l + 1)h(2)

l (k0rmm′)Pl(k̂ · r̂mm′).

Here, ri is a field point locating in m-th group with the center rm, and rj is a source point locating
in m′-th group with the center rm′ , satisfying rim = ri − rm, rjm′ = rj − rm′ and rmm′ = rm − rm′ .
SE stands for the Ewald spherical surface [24], and k̂ is the unit angular direction, k = k0k̂. h

(2)
l is the

Hankel function of the 2nd kind. Pl is the Legendre polynomial. L is the number of modes referring to
[16]. Substituting Eq. (13) into Eq. (6), the well-separated group’s impedances can be approximated as

Qpq(i, j) =
∫

SE

d2k̂U
Qpp

im · T0(k, r̂mm′)V Qqq

jm′ , p, q = 1, 2

Ppq(i, j) =
∫

SE

d2k̂U
Ppp

im · T0(k, r̂mm′)V Pqq

jm′ , p = 1, 2; q = 2

U
Qpp

im = [k2
0/(16π

2)][α
∫

Tpi

dse−jk·rimfpi · ( ¯̄I − k̂k̂) + βk̂ ×
∫

Tpi

dse−jk·rim(npi × fpi)], p = 1, 2

U
Ppp

im = [k2
0/(16π

2η0)][α
∫

Tpi

ds(k̂ × fpi)e−jk·rim+β

∫
Tpi

dse−jk·rim(fpi × npi) · ( ¯̄I − k̂k̂)], p = 1, 2

V
Qqq

jm′ = V
Pqq

jm′ =
∫

Tqj

ds′ejk·rjm′ fqj · ( ¯̄I − k̂k̂), q = 1, 2

(14)

However, for Equation (9), wave number, wave impedance and Green’s function should be replaced
with k, η1 and g with respect to ε, μ in the dielectric region. So in Equation (9), the well-separated
group’s impedances can be approximated as

P̃2q(i, j) =
∫

SE

d2k̂U P̃22
im · T1(k1, r̂mm′)V P̃qq

jm′ , q = 2, 3

Q̃2q(i, j) =
∫

SE

d2k̂U Q̃22
im · T1(k1, r̂mm′)V Q̃qq

jm′ , q = 2, 3

Q̃3q(i, j) =
∫

SE

d2k̂U Q̃33
im · T1(k1, r̂mm′)V Q̃qq

jm′ , q = 2, 3

U P̃22
im = [k2/(l2i16π2)]

∫
l2i

dl(l̂2i × k̂)e−jk1·rim ,

U Q̃22
im = −[(η1k

2)/(l2i16π2)]
∫

l2i

dle−jk1·rim l̂2i · ( ¯̄I − k̂k̂),

U Q̃33
im = [k2/(16π2)]

[
α

∫
Tpi

dse−jk1·rimf3i · ( ¯̄I − k̂k̂) +βk̂ ×
∫

Tpi

dse−jk1·rim(n3i × f3i)

]
,

V
P̃qq

jm′ = V
Q̃qq

jm′ =
∫

Tqj

ds′ejk1·rjm′ fqj · ( ¯̄I − k̂k̂), q = 2, 3

(15)



Progress In Electromagnetics Research M, Vol. 52, 2016 147

in which, k1 = kk̂, and Uim, Vjm′ and T0/T1 are the receiving pattern, radiation pattern and translation
pattern respectively. Substituting Eqs. (14) and (15) into Eqs. (5) and (9), we have:

Qpq = Qnear
pq +

Lf∑
l=2

U
(l)
Qpp

T
(l)
0 V

(l)
Qqq

, p, q = 1, 2

Ppq = Pnear
pq +

Lf∑
l=2

U
(l)
Ppp

T
(l)
0 V

(l)
Pqq

, p, q = 1, 2

P̃2q = P̃near
2q +

Lf∑
l=2

U
(l)

P̃22
T

(l)
1 V

(l)

P̃qq
, q = 2, 3

Q̃2q = Q̃near
2q +

Lf∑
l=2

U
(l)

Q̃22
T

(l)
1 V

(l)

Q̃qq
, q = 2, 3

Q̃3q = Q̃near
3q +

Lf∑
l=2

U
(l)

Q̃33
T

(l)
1 V

(l)

Q̃qq
, q = 2, 3

(16)

Here, the Lf th level is the finest level, and Lf is the number of total levels. U (l), V (l) and T
(l)
0 /T

(l)
1

are the disaggregation, aggregation and translation matrices at the l-th level, respectively, in which
U (l) and V (l) are composed of Uim and Vjm′ in Eqs. (14) and (15). The translation matrices at each
level, and aggregation and disaggregation matrices at the finest level may be precomputed and stored,
which can utilize the symmetry of unit angular directions k̂ to optimize storage requirement. As we
know, MLFMA is used to accelerate MVMs per iteration and usually includes two sweeps: during the
first sweep, the main implementation concerns the aggregation and translation processes. In detail,
different from computing the aggregation matrices at the finest level, at the other levels the aggregation
ones are indirectly computed by interpolation level-by-level from the (Lf − 1)-th level to the second
level. Simultaneously, the translation process about the well-separated groups is also done with the
above aggregation process. During the second sweep, the incoming waves composed of aggregation and
translation matrices’ elements with respect to some receiving group are computed level-by-level from the
second level to the finest level by shifting and anterpolation [17]. After the above two sweeps, multiplying
incoming waves by disaggregation matrices’ elements realizes the reduction of MVMs’ complexity in the
resultant matrix Equation (12).

If adopting iteration method to solving Equation (11), the cost of one MVM in SJMCFIE is
(N1 + N2 + N3)2, and for JMCFIE, the cost of one MVM is (N1 + N2)2+(N1 + N2)N2 on the exterior
surfaces of S1 and S2, and is (N2 + N3)2 + (N2 + N3)N2 on S3 and interior surface of S2, so the whole
cost of one MVM in JMCFIE is (N1 + N2)2 + (N2 + N3)2 + (N1 + 2N2 + N3)N2. Obviously, SJMCFIE
has lower cost of one MVM than JMCFIE. Furthermore, because the condition number of SJMCFIE is
better than that of JMCFIE as shown in Subsection 2.1, SJMCFIE has faster convergence property than
JMCFIE. When combining MLFMA with SJMCFIE, redundant computations concerning sub-matrices’
MVMs will emerge and can be reduced. In detail, [Q11]{x1} and [Q21]{x1} have the same aggregation
terms for Equation (11). This property is also reflected in [P̃22]{x2}, [Q̃22]{x2} and [Q̃32]{x2}, as well as
[P̃23]{x3}, [Q̃23]{x3} and [Q̃33]{x3}. After setting {y} = [P̃22]{x2}, {y′} = [Q̃22]{x2}, {z} = [P̃23]{x3},
{z′} = [Q̃23]{x3}, the property of having the same aggregation terms is also reflected in [Q12]{y} and
[Q22]{y}, [P12]{y′} and [P22]{y′}, [Q12]{z} and [Q22]{z}, [P12]{z′} and [P22]{z′}, respectively. So the
cost of one MVM is O((N1 + N2) log(N1 + N2)) on the exterior surfaces of S1 and S2 and on the
exterior surfaces of S1 and S2 on composite objects’ exterior surface, and the cost of one MVM reaches
O((N2 +N3) log(N2 +N3)) on S3 and interior surface of S2, so SJMCFIE-MLFMA has the computation
complexity of O((N1 + N2) log(N1 + N2) + (N2 + N3) log(N2 + N3)). Similarly, for JMCFIE-MLFMA,
the cost of one MVM is O((N1 + 2N2) log(N1 + 2N2)) on the exterior surfaces of S1 and S2 and is
O((2N2 + N3) log(2N2 + N3)) on S3 and interior surface of S2, so it has the computation complexity
of O((N1 + 2N2) log(N1 + 2N2) + (2N2 + N3) log(2N2 + N3)). Obviously, computation complexity of
JMCFIE-MLFMA is more than that of the proposed method, which will be verified in the next section.
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As we see, hybrid method SJMCFIE-MLFMA is an extension of SIE-MLFMA in [15] due to (i)
adopting JMCFIE rather than EFIE in SIE-MLFMA; (ii) Equation (12) explicitly reflecting coupling
mechanism of the composite model; (iii) better condition number of resultant matrix. So the new hybrid
method makes total computation more efficient than SIE-MLFMA.

3. NUMERICAL RESULTS AND DISCUSSION

3.1. A Composite Sphere

For verifying the validation of SJMCFIE-MLFMA, see a composite sphere composed of a perfecting
conducting (PEC) hemisphere and a dielectric hemisphere with the relative permittivity εr = 3.0.
The radius of this composite sphere is 6.0λ0 with λ0 the wavelength in free space. We have a total
of 102625 triangular patches with a length less than 0.09λ0 to model this composite sphere including
153938 unknowns if adopting SJMCFIE-MLFMA or SIE-MLFMA while 216175 unknowns have to be
calculated if adopting JMCFIE-MLFMA.

For comparing the precision of these methods, define the root mean square error (RMSE) of

RMSE =

√√√√ 1
N

N∑
m=1

|RCSCalculated − RCSJMCFIE |2, (17)

where N is the number of unknowns of the recorded azimuth.
Figure 2 shows the bistatic RCS of the composite sphere by SJMCFIE-MLFMA, SIE-MLFMA

in [15] and JMCFIE-MLFMA. The parameters with respect to MLFMA have Df = 0.2λ0, Lf = 6, and
L = 11 satisfying L = k0Df + 5 ln(π + k0Df ) in outer domain of composite objects; Df = 0.2λ with λ
being the wavelength in dielectric part, Lf = 7, and L = 11 satisfying L = kDf + 5 ln(π + kDf ) in the
dielectric part. The computing platform is AMD processor of 2.3 GHz with 64 kernels and 64 GB RAM
adopting Microsoft Visual C++ programming language. BICGSTAB is chosen as the iteration solver.
Set relative error of unknown currents to be 10−5. Fig. 2 shows that the results by SJMCFIE-MLFMA
and SIE-MLFMA are in good agreement with that by JMCFIE-MLFMA.
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Figure 2. The bistatic RCS curves of a composite sphere by three kinds of methods.

Also, Table 1 gives a detailed comparison of these three methods. JMCFIE-MLFMA costs more
time in matrix filling process than SJMCFIE-MLFMA and SIE-MLFMA, because in the dielectric’s
interior surface, the equation’s form of JMCFIE-MLFMA is similar to Equation (4). As a result, both
of the electric and magnetic currents concern two integral operators L1(·) and K1(·) compared to the
single effective currents concerning L1(·) and K1(·). SIE-MLFMA and SJMCFIE-MLFMA have less
computation time per iteration than JMCFIE-MLFMA, which verifies the result in Subsection 2.2.
SIE-MLFMA is more efficient than SJMCFIE-MLFMA for which in conducting part the former only
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Table 1. Comparison of SIE-MLFMA, JMCFIE-MLFMA and SJMCFIE-MLFMA.

Matrix-filling

time (s)

Storage

requirement

(GB)

Computation

time per

iteration (s)

Iteration

steps

Total

computation

time (s)

SIE-MLFMA 203 5.862 5.3 224 1390.2

JMCFIE-MLFMA 369.8 8.152 7.8 120 1305.8

SJMCFIE-MLFMA 256 5.878 6.365 48 561.52

adopts EFIE, and the latter adopts CFIE. Due to better condition number of SJMCFIE, it needs the
least iteration steps and total computation time.

3.2. A Bullet-shaped Composite Model

Another example is a bullet-shaped composite model illustrated in Fig. 3 including its geometric
parameters. This model is composed of a conducting cylinder and coated head. The coated structure
has the elliptical cross section with elliptical radii being a, b for the inner conductor and a1, b1 for the
outer coated layer.
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Figure 3. The bullet-shaped composite model composed of the conducting cylinder and coated.

The working frequency is 2GHz, and the incident wave illuminates the composite model with the
incident angle θ = 0◦ and the polarization direction along x-axis. Computing platform and iteration
solver are similar to that in the above example. Set the length of discretized patches to less than 0.09λ0,
0.05λ0, 0.03λ0 for the coated layer’s permittivity εr = 3.0, 5.0, 8.0, respectively. Fig. 4(a) gives the
bistatic RCS curves with different coated materials, while the coated structure has a = 0.4 m, b = 0.9 m,
and the thickness has t = (a1 − a) = (b1 − b) = 0.1 m. The parameters with respect to MLFMA satisfy
Df = 0.2λ0 and Lf = 7, L = 11 in outer domain of composite objects. In the coated head’s domain, set
λ to be the wavelength in dielectric part, and if relative permittivity has εr = 3.0, the coated domain
has Df = 0.2λ, Lf = 6, L = 11; if relative permittivity has εr = 5.0, the coated domain has Df = 0.24λ,
Lf = 6, L = 12; if relative permittivity has εr = 8.0, the coated domain has Df = 0.2λ, Lf = 7, L = 11.
The bistatic RCS curves are located on the x-z plane. Fig. 4(a) indicates that in total, with the coated
material’s relative permittivity getting small, backscattering will decrease.

Figure 4(b) gives the bistatic RCS curves of the bullet-shaped composite model with different
coated layer thicknesses t. The working frequency and cylinder part’s geometric parameter are similar
to that in Fig. 3. The coated material has the relative permittivity εr = 5.0, and coated layer has the
maximum patch’s length of 0.05λ0. Set a1 = 0.5 m, b1 = 1 m. The parameters with respect to MLFMA
satisfy Df = 0.2λ0 and Lf = 7, L = 11 in outer domain of composite objects, and Df = 0.24λ with λ
being the wavelength in dielectric part, Lf = 6, L = 12 in the coated material’s domain. The bistatic
RCS curves are located on the x-z plane. As we see, when t = 0, the composite model degenerates a
PEC object, and backscattering decreases. With the increase of thickness t, t = 0.1 m, backscattering
will increase; however, during the directions ranging from 20◦ to 40◦, the scattering curve has a deep
drop. When t = 0.2 m, backscattering in directions ranging from 20◦ to 80◦ will increase compared to
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(a) (b)

Figure 4. The bistatic RCS curves of the bullet-shaped composite model with different coated layer
material and thickness.
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Figure 5. The bistatic RCS curves of the coated cube with different coated layer’s thickness and
relative permittivity.

that of t = 0 and t = 0.1 m. This example indicates that under the special condition, the coated layer
thickness increases, and the backward RCS of the bullet-shaped composite model will increase.

3.3. The Coated Object

Another typical composite model is the coated cube. It can also be computed by SJMCFIE-MLFMA,
except that S1 does not exist. Equation (11) can be reduced to the form of[

A22 A23

A32 A33

]{
x2

x3

}
=

{
b2

0

}
, (18)

The inner conducting cube’s length a equals 1.5 m, and the coated layer’s thickness is t = (b−a)/2.
Set the working frequency as 2 GHz, the incident direction as θ = 0◦, ϕ = 0◦, and scattering curves
located on the x-z plane.

Figure 5 gives the comparison of different coated layer’s thicknesses and relative permittivities.
Suppose that the maximum patch length is 0.09λ0 with coated material’s permittivity εr = 3.0. The
maximum patch length is 0.04λ0 with coated material’s permittivity εr = 6.0. When t = 0.1 m, the
parameters with respect to MLFMA are Df = 0.2λ0, Lf = 6 and L = 11 in the outer domain of the
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coated object, are Df = 0.2λ, Lf = 7 and L = 11 in the interior domain of the coated material with
εr = 3.0, and are Df = 0.22λ, Lf = 7 and L = 11 in the interior domain of the coated material with
εr = 6.0. When t = 0.2 m, the parameters with respect to MLFMA are Df = 0.2λ0, Lf = 6 and L = 11
in the outer domain of the coated object, are Df = 0.2λ, Lf = 7 and L = 11 in the interior domain
of the coated material with εr = 3.0, and are Df = 0.2λ, Lf = 8 and L = 11 in the interior domain
of the coated material with εr = 6.0. As depicted in Fig. 5, under the condition of the same relative
permittivity, scattering in almost all the directions will decrease with the thickness increasing, and under
the condition of the same thickness, backscattering in directions ranging from 50◦ to 90◦ will decrease
with the relative permittivity decreasing. This example illuminates that SJMCFIE-MLFMA can be
applied in designing the coated layer to change the distribution of scattering energy. Simultaneously,
due to this hybrid method’s high efficiency and accuracy, it can be incorporated with fast frequency or
angular sweeping techniques to reduce the complexity in computing frequency or angular response.

4. CONCLUSION

This paper proposes a highly efficient hybrid method of SJMCFIE-MLFMA by combining SIE and
MLFMA based on JMCFIE for computing composite conductor and dielectric objects. More details
about formulating SJMCFIE-MLFMA are shown including the formulation of SJMCFIE and how to
combine MLFMA with SJMCFIE. The final resultant matrix equation has fewer unknowns than that
by JMCFIE, and this hybrid method based on JMCFIE is an extension of SIE-MLFMA based EFIE in
the proposed reference, therefore has higher efficiency than SIE-MLFMA. Examples verify the accuracy
and efficiency of this new hybrid method in computing composite models. Due to high efficiency and
accuracy in computing composite conductor and dielectric objects, this hybrid method can be used
in designing a local coated structure to effectively reduce backscattering. Besides, SJMCFIE-MLFMA
also can be used in analyzing scattering from the complete coated model. This paper indicates that
the scheme of combining SIE with MLFMA based on JMCFIE is feasible in analyzing scattering from
the composite model composed of a single conductor and a single dielectric body. In the following, we
focus on extending SJMCFIE-MLFMA to compute more complicated composite models composed of
multi-objects with different dielectric materials.
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