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Comparing Different Schemes for Random Arrays

Giovanni Buonanno* and Raffaele Solimene

Abstract—In this work, four types of random arrays are compared. In particular, the mean and
variance of the array factor are derived. This provides a partial statistical characterisation that allows
pointing out some important aspects of random arrays and link them to the number of elements and
array aperture. In the absence of a simple and effective analytical apparatus, here great importance is
also given to the experimental aspect, especially as far as the side-lobe level is concerned. To this end,
Monte Carlo simulations are run to experimentally build the side-lobe distribution as a function of the
number of radiators and the average spacing between two adjacent radiators. The obtained results show
that random arrays where one is free to impose constraints on the minimum spacing between adjacent
elements can obtain performance analogous to those achievable by other schemes which do not put
such constraints. However, the former are preferable because they are able to zero the probability that
adjacent radiators are separated with less than a certain minimum distance, which allows the mitigation
of mutual coupling effects.

1. INTRODUCTION

In aperiodic antenna arrays, the spacing between the elements is chosen to be incommensurable. This
distinctive feature offers a number of advantages as compared to equally-spaced arrays. Grating-lobes
are in principle avoided according to nonuniform sampling theory [1, 2]. Hence, large scan angles are
possible, and/or wide frequency ranges can be covered. This makes somehow the spatial non-uniformity
as a synonymous of broadband functionality [3–5]. Again, especially for large aperture, the number
of radiators can be reduced to a large extent without causing significant performance degradation,
mainly as far as resolution is concerned. Accordingly, the average distance between adjacent radiators
is increased, which makes the assumption of negligible mutual couplings more valid [6]. By reversing
the perspective, having fixed the number of available radiators, they can be located on average more
distant so to have an overall larger aperture. This in turn narrows the main-beam and hence leads to
an improvement in resolution. Actually, the bandwidth-steerability product can be made much larger
than for conventional equally-spaced arrays [5]. Finally, deploying the elements non-uniformly over the
array aperture allows the control of side-lobe level without the need to taper someway the excitation
currents. Accordingly, all the radiators can be uniformly excited so that the amplifiers can all work
at maximum power, and this results in the simplification of the feeding network [7]. Actually, for
aperiodic equally excited arrays the parameter that most influences the side-lobe level is the number of
radiators [6, 8]. Eventually, it can be stated that while designing aperiodic arrays one has more spatial
degrees of freedom allowed (i.e., all the positions of radiators instead of only the uniform step), and
this in principle offers greater possibility for obtaining high performance arrays. Moreover, in many
practical cases, the geometry of the array must necessarily be irregular [7].

Previous discussion justifies why aperiodic arrays have been the subject of a large body of research
since long time [3, 8–14], and a number of ways to attack the analysis and synthesis of such a type of
arrays have been proposed [15–25].
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In this paper, we focus on a special class of aperiodic array: the random arrays. Random arrays are
those for which the positions of radiators are chosen according to some probabilistic law. This naturally
leads to a nonuniform element arrangement (i.e., with probability one). The corresponding array factor
is thus a stochastic process whose features (if determined) allow for an a priori, though statistically,
performance analysis of this type of aperiodic arrays [26]. In this regard, the seminal paper of Lo [8]
was the first at introducing a systematic theory of random arrays. Nonetheless, this issue is still an
open problem. Indeed, while determining the array factor statistics up to the second order can be easily
done, characterising the side-lobe level is a much harder problem. Actually, determining the side-lobe
distribution requires finding that one of the supremum of the array factor magnitude. To cope with this
problem the sampling [8, 27] and the level crossing approaches [28] are among the most used methods.
More rigorously, the extreme value theory should be invoked [29]. However, this is not the subject of
this paper.

In this paper, the aim is to compare different strategies for randomly generating the positions of
radiators. In particular, we compare four types of positions generation rules while the elements are
assumed to be equally-excited. Two approaches are borrowed from the array literature according to [8]
and [30], respectively. Instead the other two approaches come from the nonuniform sampling theory [1].
For all the methods, the first (mean array factor) and second order (variance) statistics are analytically
derived. The side-lobe level distribution is instead studied thanks to Montecarlo simulations.

2. RANDOM ARRAYS UNDER COMPARISON

Consider a linear array of N equally excited isotropic radiators placed at random along the X axis (see
Fig. 1). The corresponding (normalised) array factor can be written as [27]

F (u) =
1
N

N∑
n=1

ej2πXnu (1)

where
• u = sin θ − sinα;
• θ is the observation angle from the broad-side;
• α is the scan angle;
• Xn is the location of the nth element normalised to the wavelength.

Figure 1. Generic random array where the positions of antenna elements are implicitly ordered.

The positions of radiators are randomly generated. Here, four types of generating rule are analysed.
The first generating rule leads to the so-called Totally Random Arrays (TRA) [8, 30]. Here, the

positions of antenna elements X1,X2, . . . ,Xn are i.i.d. random variables with probability densities
supported over [0, L], L being the length of the array normalised with respect to the wavelength.

The second generation rule is associated with the Binned Arrays (BA) [30] and can be expressed
as follows

Xn = (n− 1)
L

N
+ Yn n = 1, 2, . . . , N (2)

wherein Y1, Y2, . . . , YN are independent random variables each taking value within the interval [0, L/N ].
Basically, in this scheme uniform positions are randomly perturbed.
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The next rule is similar to the previous one [31, 32]

Xn = (n− 1)(2ε + Δ) +Wn n = 1, 2, . . . , N (3)

where X1 = 0 and W1,W2, . . . ,WN are independent random variables each assuming values in the
interval (−ε, ε), and Δ is a step parameter. This scheme is similar to some nonuniform sampling method
which is called periodic sampling with jitter [1]. For this reason, we address this way to generate random
arrays as Jittered Random Arrays (JRA).

Finally, as a fourth rule the following scheme is considered [32]

Xn = Xn−1 + Zn−1 =
n−1∑
k=1

Zk n = 2, . . . , N (4)

in which X1 = 0 and Z1, Z2, . . . , ZN−1 are independent random variables taking values within the
interval [zmin, zmax]. Note that this is another rule used in nonuniform sampling theory which is
addressed as additive random sampling [1]. Accordingly, we address this random scheme as Additive
Random Arrays (ARA).

It is noted that these random arrays generally lead to different apertures. For example, the
maximum aperture for TRAs and BAs is L, for JRAs is [(2ε + Δ)(N − 1) + 2ε] while for ARAs
it is [(N − 1)zmax]. The average distance between adjacent elements can be different as well as shown
below.

For BAs, if Y1, Y2, . . . , YN are i.i.d. random variables, the average spacing between adjacent antenna
elements is

dav = E[Xn] − E[Xn−1] = (n− 1)
L

N
+E[Yn] − (n− 2)

L

N
− E[Yn−1] =

L

N
(5)

For JRAs, if W1,W2, . . . ,WN are i.i.d. random variables, the average spacing between adjacent
radiators is

dav = E[Xn] − E[Xn−1] = (n− 1)(2ε + Δ) + E[Wn] − (n− 2)(2ε + Δ) − E[Wn−1] = (2ε + Δ) (6)

For ARAs, if Z1, Z2, . . . , ZN are i.i.d. random variables, the average spacing between adjacent
antenna elements is

dav = E[Xn] − E[Xn−1] = E[Z] =
∫ zmax

zmin

Z f(Z) dZ (7)

In the case of TRAs, the element positions are not in general ordered. However, one can resort to
the order statistics [33] by putting

X(1) = min(X1,X2,X3, . . . ,XN )
X(2) = min({X1,X2,X3, . . . ,XN} − {X(1)})

...
X(n) = min({X1,X2,X3, . . . ,XN} − {X(1),X(2), . . . ,X(n−1)})

...
X(N) = Max(X1,X2,X3, . . . ,XN )

(8)

so that X(1) ≤ X(2) ≤ . . . ≤ X(n) ≤ . . . ≤ X(N). X(n) is called the nth order statistics whose distribution,
since the positions are i.i.d., is given as [33]

fn(x) =
N !

(n− 1)!(N − n)!
Fn−1(x)[1 − F (x)]N−nf(x) (9)

where F (x) and f(x) are the cumulative distribution function (CDF ) and the probability density
function (PDF ) of the above positions, respectively. If θp is the pth quantile of the common CDF of
the positions of radiators and f(θp) �= 0, then follows that [34]

E[X(n)] ≈ θp, p =
n

N + 1
(10)
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So, in general, E[X(n)] − E[X(n−1)] �= E[X(m)] − E[X(m−1)], but for uniform distribution

E[X(n)] − E[X(n−1)] =
L

N + 1
∀ n (11)

and then this quantity can be identified as the average spacing, dav, between adjacent radiators†.
Looking at Eqs. (7)–(11), one can also observe that for BAs and JRAs the average spacing between

adjacent antenna elements does not depend on the probability distribution, as instead it is for TRAs
and ARAs. It is also important to remark that while for TRAs and BAs the radiators can be placed
at each point within the aperture, no matter how close they are, this does not hold true for ARAs and
JRAs. Indeed, in BAs two consecutive elements could result in coincidence whereas in TRAs even
all the elements could in principle be located at the same position. Instead for ARAs, the distance
between adjacent radiators cannot be smaller than zmin while in JRAs there are points on the aperture
where none antenna element can be placed, i.e., those points that fall within the Δ intervals cannot
accommodate any location of radiators. From the point of view of mutual coupling, with JRAs and
ARAs one can constraint the minimum distance between two adjacent antenna elements. For example,
if d is the minimum acceptable spacing between adjacent radiators, then for JRAs one can set Δ ≥ d
whereas for ARAs, zmin = d.

3. FIRST AND SECOND ORDER CHARACTERISATION

A useful even though partial statistical characterisation of the random arrays (obtained according to
the rules reported above) can be easily given. Therefore, here, we derive the mean and variance of the
array factors under comparison.

We start with the TRAs. In this case, the mean and variance of the array factor are the following

φTRA(u) = E[F (u)] =
∫ L

0
f(X) ej2πXudX = ψX(u) (12)

and

σ2
TRA(u) = E[|F (u) − φTRA(u)|2] = E[|F (u)|2] − |φTRA(u)|2

= E

{
1
N

N∑
n=1

ej2πXnu · 1
N

N∑
m=1

e−j2πXmu

}
− |φTRA(u)|2

=
1
N2

N∑
n=1

N∑
m=1

E
{
ej2πXnu · e−j2πXmu

} − |φTRA(u)|2

=
1
N

+
N∑

n=1

N∑
m=1
m�=n

E
{
ej2πXnu

} ·E {
e−j2πXmu

} − |φTRA(u)|2 =
1 − |φTRA(u)|2

N
(13)

For BAs, if Y1, Y2, . . . , YN are i.i.d. random variables, the mean and variance of the array factor
are

φBA(u) =
1
N

N∑
n=1

[
ej2π(n−1) L

N
u · E {

ej2πYnu
}]

=
e−j2π L

N
u

N
· ψY (u) ·

N∑
n=1

[
ej2πn L

N
u
]

=
ejπL N−1

N
u

N
· ψY (u) · sin (πLu)

sin
(
π L

N u
) (14)

† The quantities dav above are all normalised with respect to the wavelength.
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whereas

σ2
BA(u) =

1
N2

N∑
n=1

N∑
m=1

ej2π(n−m) L
N

uE
{
ej2πYnu · e−j2πYmu

} − |φBA(u)|2

=
1
N

+
1
N2

|ψY (u)|2
N∑

n=1

N∑
m=1
m�=n

ej2π(n−m) L
N

u − |φBA(u)|2 =
1 − |ψY (u)|2

N
(15)

where ψY (u) = E
{
ej2πY u

}
=

∫ L/N
0 f(Y ) · ej2πY u dY is once again the characteristic function associated

to the random variable Y .
Similar results are obtained for JRAs after assuming, as done above, that W1,W2, . . . ,WN are

i.i.d. random variables. Accordingly, the mean and variance of the array factor are

φJRA(u) =
1
N

N∑
n=1

[
ej2π(n−1)(2ε+Δ)u · E {

ej2πWnu
}]

=
e−j2π(2ε+Δ)u

N
· ψW (u) ·

N∑
n=1

ej2πn(2ε+Δ)u

=
ejπ(N−1)(2ε+Δ)u

N
· ψW (u) · sin[πN(2ε + Δ)u]

sin[π(2ε + Δ)u]
(16)

and

σ2
JRA(u) =

1
N2

N∑
n=1

N∑
m=1

ej2π(n−m)(2ε+Δ)u ·E {
ej2πWnu · e−j2πWmu

} − |φJRA(u)|2

=
1
N

+
|ψW (u)|2
N2

·
N∑

n=1

N∑
m=1
m�=n

ej2π(n−m)(2ε+Δ)u − |φJRA(u)|2 =
1 − |ψW (u)|2

N
(17)

with ψW (u) = E
{
ej2πWu

}
=

∫ ε
−ε f(W ) · ej2πWu dW .

Finally, for ARAs, if Z1, Z2, . . . , ZN−1 are as usual i.i.d. random variables, we get

φARA(u) =
1
N

·
N∑

n=1

E
{
ej2π

∑n−1
k=1 Zku

}
=

1
N

·
N∑

n=1

[
E

{
ej2πZu

}](n−1)
=

1
N

·
N∑

n=1

ψZ(u)(n−1) (18)

and

σ2
ARA(u) =

1
N2

N∑
n=1

N∑
m=1

E
{
ej2πXnu · e−j2πXmu

} − |φARA(u)|2

=
1
N

+
1
N2

N∑
n=1

N∑
m=1
m�=n

E
{
ej2πXnu · e−j2πXmu

} − |φARA(u)|2

=
1
N

+
1
N2

N∑
n=1

N∑
m=1
m�=n

E
{
ej2π

∑n−1
k=1 Zku · e−j2π

∑m−1
p=1 Zpu

}
− |φARA(u)|2

=
1
N

− |φARA(u)|2 +
1
N2

N∑
n=1

N∑
m=1
m<n

E
{
ej2π

∑n−1
k=1 Zku · e−j2π

∑m−1
p=1 Zpu

}

+
1
N2

N∑
n=1

N∑
m=1
m>n

E
{
ej2π

∑n−1
k=1 Zku · e−j2π

∑m−1
p=1 Zpu

}

=
1
N

− |φARA(u)|2 +
1
N2

N∑
n=1

N∑
m=1
m<n

ψZ(u)(n−m) +
1
N2

N∑
n=1

N∑
m=1
m>n

ψ∗
Z(u)(m−n) (19)
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with ψZ(u) = E{ej2πZu} =
∫ zmax

zmin
f(Z) · ej2πZu dZ.

The central role played by the characteristic functions must be noted.
In order to perform a comparison, we take the same cases as addressed in [30]. The array consists

of 100 radiators and has nominal aperture of 400λ. For JRA and ARA, we can set the minimum
acceptable distance between adjacent elements. According to common usage for avoiding mutual
coupling, this distance is chosen equal to λ/2. Therefore, Δ = 1/2 and zmin = 1/2, respectively.
Moreover, since the nominal aperture is 400λ, ε = 1.7525 and zmax = 4.0404 for JRA and ARA,
respectively. Furthermore, for TRA, the variablesX1,X2, . . . ,XN are chosen to be uniformly distributed
within [0, L]; for BA, the variables Y1, Y2, . . . , YN are uniformly distributed within [0, L/N ]; for JRA,
the variables W1,W2, . . . ,WN are uniformly distributed within [−ε, ε], and finally for ARA, the variables
Z1, Z2, . . . , ZN−1 are uniformly distributed within [zmin, zmax]. This way, the mean array factors are
specialised as

φTRA(u) = φBA(u) = ejπLu · sin(πLu)
πLu

(20)

φJRA(u) =
ejπ(N−1)(2ε+Δ)u

N
· sin(2πεu)

2πεu
· sin[πN(2ε+ Δ)u]

sin[π(2ε + Δ)u]
(21)

φARA(u) =
1
N

·
N∑

n=1

[
ej2πzmaxu − ej2πzminu

j2π(zmax − zmin)u

]n−1

(22)

In Fig. 2, the magnitude of such mean array factors is reported as a function of the observation angle
θ having fixed the steering angle at α = 25◦. As can be seen, |E{F (u)}| for TRA and BA are identical
and similar to that of a continuous uniform current distribution. For JRA, the magnitude of the mean
array factor is similar to the two previous ones around the main beam region, say for θ approximately
within (10◦, 40◦). However, it presents small peaks in correspondence of θ = sin−1[−(1/(2ε + Δ)) +
sin(θ0)] ≈ 9.96◦, θ = sin−1[(1/(2ε+Δ))+sin(θ0)] ≈ 42.24◦ and θ = sin−1[(2/(2ε+Δ))+sin(θ0)] ≈ 67.22◦
which are due to the periodic function {sin[πN(2ε+Δ)u]/ sin[π(2ε+Δ)u]}. Moreover, for θ away from
all peaks, owing to the function {sin(2πεu)/(2πεu)} the level is lower than φTRA(u). It is noted that
in order to remedy the presence of the small peaks, one might think to synthesise PDF of the random
variables W1,W2, . . . ,WN so as to have zeros just in correspondence of such peak positions. Finally,
for ARAs the magnitude of the mean array factor is still similar to the previous ones up to the first
side-lobe region, which is close to the main lobe. Away from that region, however, it does not tend to

0 10 20 30 40 50 60 70 80 90
0

0.2

0.4

0.6

0.8

1
TRA: L=400, N=100

θ

|E
{F

(q
)}

|

0 10 20 30 40 50 60 70 80 90
0

0.2

0.4

0.6

0.8

1

|E
{F

(q
)}

|

θ

BA: L=400, N=100

0 10 20 30 40 50 60 70 80 90
0

0.2

0.4

0.6

0.8

1

|E
{F

(q
)}

|

θ

JRA: Delta=0.5, epsilon=1.7525, N=100

0 10 20 30 40 50 60 70 80 90
0

0.2

0.4

0.6

0.8

1

|E
{F

(q
)}

|

θ

ARA: z
min

=0.5, z
max

=4.0404, N=100

24.5 25 25.5
0

0.5

1

24.5 25 25.5
0

0.5

1

24.5 25 25.5
0

0.5

1

24.5 25 25.5
0

0.5

1

Figure 2. Magnitude of the mean array factor with N = 100, maximum aperture equal to 400λ and
steering angle equal to 25◦.
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Figure 3. Magnitude of sample array factors (blue lines) with normalised variances (red lines)
superimposed. The parameters are the same as in Fig. 2.

zero but assumes a nearly constant value.
In Fig. 3, sample functions of the array factor magnitude for the different cases under consideration

are shown (blue lines) along with the corresponding normalised variance (red lines) defined as σ̃2
i (u) =

σ2
i (u)/maxu{σ2

i (u)} with i = TRA,BA, JRA,ARA. As already shown in [30], the variance relative to
BA is considerably slower at reaching its maximum than TRA. A slightly slower behaviour is observed
for JRA while the slowest to achieve the variance maximum, even though with an oscillatory trend, are
ARAs. However, the latter exhibit higher variance values close to the main beam.

Within the region where the variance assumes low value, the array factor is more probable to be
similar to the mean one. Therefore, at least for TRAs, BAs and JRAs, it can be concluded that the
array factor around the main-beam region is practically certain to coincide with the mean one. This
statement basically coincides with the claim that resolution is mainly affected by the array aperture
rather than by the number and the way the elements are deployed. Moreover, in this regard BAs and
JRAs have a large certain region (as the variance grows up more slowly) and hence should be preferred.

Finally, it is remarked that previous discussion does not dependent on the steering angle.

4. SIDE-LOBE LEVEL

In this section, we turn to consider the comparison in terms of the the side-lobe level (SLL). The SLL
is defined as

SLL = max
u∈[δ,2]

|F (u)| (23)

with δ > 0 being the point where the side-lobe region starts. According to the previous discussion about
the almost deterministic nature of the main beam, δ can be directly linked to the reciprocal of the array
aperture. In particular, it can be fixed as the first zero of the mean array factor. Only the interval [δ, 2]
is of concern. This is because the array factor magnitude is an even function. Also, limiting u to be
≤ 2 allows covering all the visible domain, whatever the steering angle is.

According to Eq. (23), in order to perform the study, the statistical characterisation of
maxu∈[δ,2] |F (u)| is required. This is a hard task which in general cannot be solved in closed form.
To cope with this problem, some approximate approaches have been proposed in literature [8, 27–
29, 35]. Here, the main focus is on establishing how the different random arrays perform. To this
end, it is sufficient to achieve the SLL experimental characterisation. Accordingly, we build up the
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corresponding distributions by Monte Carlo simulations (20000 trials indeed). More in details, in order
to highlight the role played by different array settings, different average spacings dAV = 1/2, 1, 2.5, 5
(between adjacent) antenna elements are considered. Also the number of radiators, for each value of
the average spacing, is varied from 20 to 200 with a step of 20. For JRAs and ARAs, the minimum
acceptable spacing between adjacent antenna elements is chosen equal to 0.3 for dAV = 1/2, while it is
chosen equal to 1/2 for the other values of dAV . Finally, while performing the simulations, the array
factor magnitude is sampled at a step equal to the reciprocal of 20 times the maximum array aperture,
which is a much finer step than the one usually used while analysing this kind of arrays [27].

In Fig. 4, the experimental SLL distributions are reported for dav = 1/2 and for different numbers
N of elements. Note that keeping fixed dav while increasing N entails increasing the array aperture as
well. First, it can be observed that as N increases all the distributions tend to be more peaked. This is
somehow consistent with the behaviour of the variances as N increases reported in the previous section.
Indeed, when N increases, in all the schemes under consideration, the variance decreases making it
thus natural to expect that the SLL approaches the one corresponding to the average array factor.
It is seen that JRAs have a rather high SLL as compared to the other schemes. This is clearly due
to the Dirichlet sine term sin[πN(2ε + Δ)u]/ sin[π(2ε + Δ)u] which is responsible for greeting lobes
appearing at u = 2. Actually, this holds true as long as dav does not exceed 1. Indeed, when dAV is
low and Δ comparable with it, ε is small as well. Hence, the perturbation (on the deterministic parts
of the positions of radiators) (n− 1)(2ε+ Δ) with n = 1, 2, . . . , N , is negligible. On the contrary, when
the average spacing is high, and hence ε can assume sufficiently great values, the JRAs performance
becomes similar to those of the other methods.

That figure also shows that when it is allowed to use an average spacing equal to λ/2, random arrays
generally return a worse SLL than the usual uniform arrays. However, it is interesting to note that
as N increases the SLL tends (even though differently for each scheme but the JRA) to the standard
−13 dB of uniform arrays, regardless the way the elements are arranged over the aperture.

We now turn to address the case reported in Fig. 5 where dav is increased up to 5. It can be
observed that the trend highlighted while discussing the previous figure still persists. Furthermore, as
anticipated before, now JRAs are no more affected by high SLL, and their PDF are similar to the
ones of BAs.

It must be remarked that now the number of elements is roughly ten times lower than the one
that should be used under a uniform setting. This entails that if uniform arrays were used a number
of greeting lobes would manifest. Hence, the advantage provided by randomly putting the radiating
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Figure 4. SLL distributions as a function of the number of antenna elements with dav set at 1/2.
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Figure 5. SLL distributions as a function of the number of antenna elements with dav set at 5.
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Figure 6. Statistical maximum of the SLL for each type of array as function of the number of antenna
elements and for diferent average spacing.

elements is evident, especially when N increases. Moreover, by comparing Figs. 4 and 5 once again it
is clear that the most important parameter that governs the SLL is the number of radiators and much
less the array aperture. Indeed, the SLL distributions corresponding to the same N but at different dav

are very similar (of course, leaving outside the discussion JRAs as explained above) even though the
same number of radiators is deployed over two different array apertures (i.e, the second aperture is ten
times larger than the first one). Instead, according to the previous discussion, for JRAs, the aperture
also plays a crucial role. However, when a large array aperture is of concern JRAs should be preferred.
This is because the SLL distribution is as peaked as BAs PDF , but JRAs also allow constraint of the
distance between adjacent radiators and hence someway mitigation of mutual coupling.

In the next two figures, the experimental statistical maximum and minimum curves of the SLL
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(i.e., the lower and upper edges of the support of the SLL distributions) are compared. These curves
are basically a measure of the best and worst cases as far as SLL is concerned. Indeed, having fixed N
and dav , the probability that the SLL is below the maximum one is 1. Therefore, even by only one trial,
it is almost sure that the sample array factor has SLL below the experimental max{SLL}. Also, from
Fig. 6 it can be seen that BAs are generally the best. Furthermore, as expected, for low values of dAv,
JRAs have very high SLL. However, when the average spacing is increased, JRAs behave similarly
to the other methods. Also, as remarked above, they should be preferred to BAs for mutual coupling
reason, and with respect the other two methods because PDF is more peaked around the mean.

Finally, Fig. 7 compares the experimental statistical minimum curves of the SLL. These curves
can be used as a reference for the best achievable case, although to obtain the optimal positions, i.e.,
the one that provides such minimum SLL, one in general needs to generate many sample positions
vectors. As may be observed, TRAs and ARAs are slightly better (this is already evident in Figs. 4
and 5 indeed). However, according to previous discussion, JRAs are still preferable. It is interesting
to note that, although for dAV = 1/2 random arrays give in general high SLL as compared to uniform
arrays, there is at least one random configuration (the one corresponding to the minimum SLL) that
can return a SLL slightly below the standard −13.4 dB. In this regard, when radiators are equally
excited randomising their locations can lead to lower SLL, confirming what reported in the classical
paper [4].
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Figure 7. Statistical minimum of the SLL for each type of array as function of the number of antenna
elements and for different average spacing.

5. CONCLUSIONS

In this work, four different rules for randomly generating the positions of radiators in random arrays
are compared. In particular, we bring together approaches coming from antenna arrays literature
(i.e., TRAs and BAs) and nonuniform sampling theory (i.e., JRAs and ARAs). The two worlds are
naturally linked when the positions of antenna elements are replaced by the sampling points although
the applications and specifications to be met could be generally different.

For each generation rule, the mean and variance of the array factor are provided under the
assumption (rather common indeed) the random variables describing the element positions are i.i.d..
Of course, this statistics characterisation alone is insufficient. However, such formulas already allow one
to understand the important role that the number of radiators play not only on the side-lobe level but
also in a general synthesis problem.
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The side-lobe distribution is worked out via a Monte Carlo analysis. It is shown that for low values
of average spacing between antenna elements, BAa and ARAs are the better ones and have similar
performance. However, the latter have the advantage of being able to fix a minimum distance allowed
between adjacent elements and hence counteract mutual coupling effects. For high values of dav, JRAs
become more convenient. In particular, they exhibit performance similar to BAs but more resilient
to mutual coupling effects. Furthermore, JRAs are also interesting because they can be optimised by
simply controlling the deterministic parameters, ε and Δ [31].

We end this paper by observing that even though TRAs have the worse performance (at least from
the SLL point of view that was of main concern herein) they can be analytically studied with less effort
also from the synthesis point of view. More in detail, as the larger the number of radiators the smaller
the variance (this is actually holds true for all the generating schemes), the array factor resembles more
and more the mean array factor. Hence, for a sufficiently high N , the synthesis of the array factor may
be re-phrased as the synthesis of the mean array factor, which in turn is linked to the position PDF
the same way the far-field pattern is related to a continuous line-source [36]. Therefore, one can set the
array factor according to some assigned pattern (not just the main beam width and/or the SLL) and
find the corresponding PDF . We plan to show this approach in a future paper.
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