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Retrieval of the Frequency-Dependent Effective Permeability and
Permittivity of the Inhomogeneous Material in a Layer

Armand Wirgin*

Abstract—This study is focused on how to obtain the effective or equivalent properties of
inhomogeneous materials, which, contrary to the usual metamaterials, are assumed to possess only
a sandwich-like form of heterogeneity. More specifically, the aim is to see how the method of inversion,
and associated type and amount of data, condition the outcome of the inversion, notably as concerns
the possibility or not of exotic features such as simultaneous negative permittivity and permeability
in certain frequency intervals. Two inversion schemes are considered and compared: the Nicolson-
Ross-Weir (NRW) scheme and an optimization scheme. The adopted form of the optimization scheme
provides only numerical retrievals, but it applies to any number of far-field data couples, which fact
makes it a useful tool for determining whether the retrieved properties of an inhomogeneous material
really are independent of the angle of incidence as is required for effective properties. It is shown, via the
optimization scheme, that the apparently infinite number of solutions predicted by the NRW scheme is
reduced to a single solution — closest to the predictions of a mixture model — when the constraint of
independence with respect to angle of incidence is invoked. Moreover, this solution exhibits none of the
exotic features of the properties of the usual metamaterials except temporal dispersion and loss even
when the component materials of the inhomogeneous layer are neither dispersive nor lossy.

1. INTRODUCTION

Obtaining the constitutive parameters (or frequency-dependent functions) of a material encased within
a layer from the observed reflection and transmission response of the latter to a plane wave is an
inverse problem (IP) [1, 2], sometimes qualified [3] as a (parameter-) retrieval problem. If the material
is homogeneous [1, 6, 7, 13], one expects to retrieve the true constitutive parameters by this means. If
the material is inhomogeneous (e.g., a metamaterial; [3, 8, 11], one hopes to recover what is often termed
the effective or equivalent constitutive parameters of the supposed-homogeneous material in the layer.

A particularly-illuminating illustration of the ill-posed nature [5] of IP’s can be perceived in
the exact, mathematically-explicit solutions for the permittivity and permeability of a supposed-
homogeneous layer resulting from the Nicolson-Ross-Weir (NRW) technique [10, 18]: these mathematical
(as opposed to numerical) retrievals for reflectivity and transmissivity data turn out to be both infinite
in number, and unstable in the neighborhoods of the so-called Fabry-Pérot resonance frequencies [1, 7].
A more common way to solve IP, applicable to other specimen geometries for which the solutions cannot
be obtained in exact, mathematically-explicit form, is based on optimization techniques, i.e., iterative
minimization of a cost functional which is a measure of the discrepancy between the observed response
and trial responses incorporating trial values of the constitutive parameters. The ill-posedness shows
up in this technique by the fact that the cost functional exhibits a series of more-or-less deep minima
in the multidimensional (2D in the case of real permittivity and permeability) constitutive parameter
search region, and the locations of these minima may vary considerably with observed-data noise and/or
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uncertainty of the model (termed the retrieval model) employed for the generation of trial values of the
sought-for parameters.

Actually, the NRW technique employs the same basic ingredients as the optimization technique since
it compares observed data to trial data resulting from the employment of a retrieval model that appeals
to the exact solutions of the forward problem of a plane wave impinging on a flat-faced, homogeneous
layer (henceforth, each face of the layer is considered to occupy the entire x-y plane for a particular
value of z). If the material in the layer is really homogeneous, then the response, takes the form,
as assumed in the retrieval model, of a reflected plane wave (RPW) and a transmitted plane wave
(TPW) outside the layer. If, on the other hand, the material in the layer is really inhomogeneous,
then the response outside the layer is generally not reducible to a single RPW and a single TPW, i.e.,
homogeneous plane waves are also sent out in other directions (scattering), and, in addition, surface
waves make their appearance. In this situation, which we term model discordance, the retrieval model
is not telling the same story as the observed data since the retrieval model only accounts for one RPW
and one TPW, whereas the data says that there are other waves as well. This discordance shows up in
another manner when one produces the data by simulation [16] rather than by experimental observation.
Suppose, for instance, that the inhomogeneity in the layer takes the form of two spheres, each enclosing
a non-lossy material that is different from that of the homogeneous non-lossy host material in the layer.
Then, six (real) constitutive and four geometrical parameters are necessary to simulate the response
of the inhomogeneous layer to a solicitation whereas only two (real) constitutive and one geometrical
parameters are employed in the homogeneous-layer retrieval model. This parameter reduction is, of
course, the desirable feature in homogenization techniques which seek to characterize inhomogeneous
materials by means of effective or equivalent homogenous surrogates. But, this desirable feature can be
accompanied by undesirable, or at least unexpected, features in the process and results of inversion. For
instance: violation of the principle of conservation of energy (when scattering is produced, since the sum
of the reflected and transmitted energy is not equal to the incident energy when there is no dissipation
in the layer) unless the constitutive parameters of the homogenized layer are assumed to be complex, in
which case the parameter reduction is less pronounced since the number of to-be-retrieved parameters
is four (i.e., two real parts and two imaginary parts). Another, perhaps unexpected feature, in the case
in which the component materials in the inhomogeneous layers are all temporally non-dispersive, is that
the homogenized material turns out to be temporally-dispersive and, in some cases, even anomalously-
dispersive. All these features make the inverse problem, associated with the homogenization procedure,
more difficult to solve, in that they have effects on the ill-posedness that are not easy to predict and
understand.

A recurrent question is whether exotic features of retrieved constitutive parameters, such as negative
(real and/or imaginary parts of) permittivities and permeabilities (in the electromagnetic metamaterial
context: [3, 11, 16, 17]) of the homogenized materials, really exist (i.e., are physically-realistic [8, 15, 17])
or are just artifacts of the inversion procedure ([9, 20]. It is not evident how to deal with such a
question because a constitutive parameter is never a direct result of measurement, but rather an indirect
result, precisely that of the aforementioned inverse problem which gives rise to the abnormal (or even
normal) features [15]. This dilemma is usually resolved by invoking various physical constraints such as
passivity [15, 16, 20], or considering the feature to be physically-realistic if it is also the indirect result
of other types of observations (and associated inverse problem solutions) [12]. But before resorting to
this expedient, one should examine in detail how the the retrieved parameters depend on the various
ingredients of the IP. This constitutes the principal task of the present investigation.

To achieve this, we shall invert the response of two types of layers. Both of these layers give rise to
a single RPW and a single TPW under plane wave solicitation although the first type is homogeneous
and the second inhomogeneous. The reason why our inhomogeneous layer produces the same type of
external response as the homogeneous layer is that our inhomogeneity is invariant with respect to the
x, y coordinates of the plane occupied by each face of the layer, i.e., our inhomogeneity varies only with
respect to the z coordinate perpendicular to this plane. Such a model of inhomogeneity is not very
different from that of [10] consisting of a row of cylinders and has been shown in the past to be useful
for characterizing the modes of a structure containing a pseudo-planar heterogeneity [19]. Consequently,
it is quite easy to simulate the data very precisely for both types of layers and eliminate two of the
sources (i.e., scattering and data noise due to computational error when the data is simulated) of model
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discordance mentioned previously. To make the IP even more simple, we assume that we know precisely
where the layer is situated in space (occupied by the vacumn), what exactly is its thickness, what
precisely is the (angle of) incidence (necessarily normal to the plane of the layer in the NRW technique),
frequency and polarization of the incident plane wave, and what precisely are the amplitudes and phases
of the observed reflected and transmitted waves. Finally, the two-parameter retrieval IP will be solved
both by the NRW and optimization techniques, the latter being applicable also to obliquely-incident
plane waves. Thus, as stressed above, we expect to be able to retrieve, over a wide range of frequencies,
the true permittivity and permeability of the homogeneous layer and the effective permittivity and
permeability of the the inhomogeneous layer.

2. COMPONENTS OF THE INVERSE PROBLEM

A material body B(b), subjected to a wavelike solicitation S(s), gives rise to the observable response
Rd(b, s, r), with b and s denumerable sets of the physical and geometrical properties of B and S
respectively and r the properties of the receivers. The retrieval of subsets of b or of s from Rd is an
IP which is usually solved by minimizing the difference (in the NRW technique, this difference is taken
to be zero) between Rd and a trial response Rr(B,S,R) incorporating the sets of variable properties
grouped into the parameter vectors B, S and R [2, 13]. The solution to this IP is denoted by B = B̃
and/or S = S̃. Henceforth, we seek to retrieve only subsets of b, so that s is known (i.e., S = s),
and we also assume r is known (i.e., R = r). In our IP, the numbers of entries of B and b are not
necessarily equal, nor are the entries of B̃ necessarily close in value or nature, to those of b. Moreover,
our response is not observed but rather simulated (also denoted by Rd) by means of the data model
Md which is the mathematical-numerical apparatus required to obtain the solution Rd of a forward
problem. A second, so-called retrieval, model Mr is the mathematical-numerical apparatus required to
obtain the solution Rr of another forward problem. We shall be particularly interested in the case in
which Mr(B, s, r) is quite different from Md(b, s, r), due essentially to the difference in number and/or
nature between the entries of B and b. In this study, B is an inhomogeneous layer in the form of a
sandwich and b = {μ, ε,h}, with μ a set of permeabilities, ε a set of permittivities, and h a set of
layer thicknesses. Moreover, the solicitation is a plane wave so that s = {θi, ai, ω}, wherein θi is the
incident angle, ai an amplitude, ω = 2πf the angular frequency (f the frequency which will be varied),
with r = {r1, r2, ..., rnr} denoting the angular and radial coordinates of the sensors. The observation is
assumed to take place in the far-field, on both sides of the layer so that r = {r1, r2}, whose two entries
are the angles of emergence of the reflected and transmitted plane waves.

The crucial point here is that Mr differs from Md by the fact that b = {M,E,H} corresponds to
a homogeneous layer of the same thickness as the sandwich connected with B, whence the fact that the
multitude of parameters (all of which are assumed to be real, with μ and ε assumed to not depend on
f) contained in the three vectors of b are reduced to the only three scalar (real or complex), possibly
frequency-dependent parameters in B.

3. THE DATA MODEL (Md) BOUNDARY VALUE PROBLEM

Figure 1 depicts the linear, inhomogeneous, non-lossy, non-dispersive, x, y-independent layer structure
(sandwich) in its cross-section plane. The half-infinite regions below and above the sandwich are Ω0 and
Ω4 respectively, filled with media m[0] and m[4]. The upper and lower plane-parallel faces of the sandwich
are z = 0 and z = −h6 respectively. The sandwich is composed of three homogeneous sublayers, which
occupy the regions Ω1, Ω2, Ω3, whose thicknesses are h1, h2, h3, with h6 = h1 +h2 +h3. The upper and
lower plane parallel faces of the middle sublayer are z = −h3 and z = −h5 = −(h2+h3) respectively. The
isotropic, homogeneous medium in Ωj is m[j], described by the two real, scalar constitutive constants
μ[j] (permeability), ε[j] (permittivity). The sandwich becomes a homogeneous layer when the three
media in Ω1, Ω2, Ω3 are identical, so that the sandwich data model applies equally well to simulate the
response data of a homogenous layer. The incident plane wave propagates in Ω0 and is associated either
with the electric field ei

y (i.e., hi
y = 0; the TE-polarization case) or the magnetic field hi

y (i.e., ei
y = 0;
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Figure 1. Scattering configuration in the sagittal plane. Normal incidence corresponds to θi = 0.

the TM-polarization case). This wave produces a response in Ωj to which are associated the total fields
e
[j]
y (i.e., h

[j]
y = 0) in the TE case, and h

[j]
y (i.e., e

[j]
y = 0) in the TM case.

Let u[j](x, ω) (wherein x is the vector, in the x-z plane, joining the origin O to the generic point
(x, z)) denote the frequency domain total electric (magnetic) field in Ωj for the TE (TM) case. Maxwell’s
equations give rise to:

u[j]
,xx(x, ω) + u[j]

,zz(x, ω) + (k[j])2u[j](x, ω) = 0; ∀x ∈ Ωj, j = 0, 1, 2, 3, 4, (1)

wherein: u,z = ∂u/∂z, u,zz = ∂2u/∂z2, and k[j] = ω/c[j], c[j] = 1/
√

μ[j]ε[j]. The general solution of
Eq. (1) satisfying the radiation conditions at z → ±∞ is u[j](x, ω) = u[j+](x, ω) + u[j]−(x, ω), with

u[j]+(x, ω) = a[j](ω) exp[i(kxx + k[j]
z z)], u[j]−(x, ω) = b[j](ω) exp[i(kxx − k[j]

z z)], (2)

b[4](ω) = 0, kx = k[0] sin θi, k[j]
z =

√
[k[j])2 − (kx)2, �k[j]

z ≥ 0, �k[j]
z ≥ 0; ∀ω ≥ 0, (3)

and θi the incident angle associated with the incident plane wave u[0]+ = a[0](ω) exp(iki · x) whose
spectral amplitude (a supposedly-known function) is a[0]. The eight unknown coefficients b[j]; j =
0, 1, 2, 3 and a[j]; j = 1, 2, 3, 4 are obtained from the eight transmission conditions on the four interfaces
z1 = −h6, z2 = −h5, z3 = −h3, z4 = 0:

u[j−1](x, zj , ω) − u[j](x, zj , ω) = 0, f [j−1]u[j−1]
,z (x, zj , ω) − f [j]u[j]

,z (x, zj , ω) = 0;

∀x ∈ R; j = 1, 2, 3, 4. (4)

wherein f [j] = 1/μ[j] (TE), and f [j] = 1/ε[j] (TM). Two of these transmission conditions lead to explicit
expressions of b[3] and a[4] in terms of a[3] and the remaining transmission conditions give rise to an
easily-inverted matrix equation for the other six coefficients. Of particular interest are the reflection and
transmission coefficients b[0] and a[4] respectively in the regions below, and above the inhomogeneous
layer since these coefficients are what constitutes the simulated data employed further on to solve the
inverse problem for both the homogeneous and inhomogeneous layers.

4. THE RETRIEVAL MODEL (Mr) BOUNDARY VALUE PROBLEM

Figure 1, in which the three sublayers are replaced by a single layer, depicts the homogeneous, linear,
isotropic x, y-independent layer structure (in its cross-section plane). Ω0 and Ω4, filled with M[0] = m[0]

and M[4] = m[4] respectively are as previously. The generally-dispersive, lossy, linear, isotropic,
homogeneous layer occupies, in the cross-section plane, the region Ω whose upper and lower plane



Progress In Electromagnetics Research B, Vol. 70, 2016 135

parallel faces are z = 0 and z = −H = −h6 respectively. The constitutive parameters of the medium
M in the layer are the two complex functions (of the angular frequency ω) M(ω) = M ′(ω) + iM ′′(ω)
(permeability), and E(ω) = E′(ω) + iE′′(ω) (permittivity). The layer is again solicited by a plane wave
propagating in Ω0 with which is associated either the electric field Ei

y (i.e., H i
y = 0; TE-case) or the

magnetic field H i
y (i.e., Ei

y = 0; TM case). With U [j](x, ω) denoting the frequency domain total electric
(magnetic) fields in Ωj ; j = 0, 4, 6 respectively for the TE (TM) case, and Ω6 = Ω, the wave equations
are (1) in which U [j],K [j] replace u[j], k[j] with K [j] = ω/C [j], C [j] = 1/

√
M [j]/E[j], M [6] = M , E[6] = E.

As previously, we find: U [j](x, ω) = U [j+](x, ω) + U [j]−(x, ω), with:

U [j]+(x, ω) = A[j](ω) exp[i(Kxx + K [j]
z z)], U [j]−(x, ω) = B[j](ω) exp[i(Kxx − K [j]

z z)], (5)

B[4](ω) = 0, Kx = K [0] sin Θi, K [j]
z =

√
[K [j])2 − (Kx)2, �K [j]

z ≥ 0, �K [j]
z ≥ 0; ∀ω ≥ 0, (6)

whereas Θi is the incident angle associated with the incident plane wave U [0]+ = A[0](ω) exp(iKi · x)
whose spectral amplitude (a supposedly-known function) is A[0]. The four unknown coefficients
B[j]; j = 0, 6 and A[j]; j = 6, 4 are obtained from the four transmission conditions on the two interfaces
z3 = −H6 = −H, z5 = 0 as previously. The reflection and transmission coefficients B[0] and A[4]

respectively in the regions below and above the homogeneous layer are given in Section 5.

5. THE NRW METHOD FOR THE RETRIEVAL OF THE EFFECTIVE
PERMITTIVITY AND EFFECTIVE PERMEABILITY

The NRW method [10, 18] provides explicit, exact solutions to the inverse problem of the simultaneous
retrieval of M and E from the observed reflection and transmission functions B[0] and A[4] in the
case K [4] = K [0] and Θi = 0, i.e., the two media adjoining the homogenized layer are identical, and
the plane wave strikes the layer at normal incidence. Note that the NRW method treats the layer as
being homogeneous, but the observed reflection and transmission functions can be those of either an
inhomogeneous or homogeneous layer. The explicit solutions of the boundary-value problem of Section 4
are (in the notation of [1])

B[0] = −A[0](E−
06)

2S11, A[4] = A[0]E−
06S21, E±

jk = exp(±iK [j]
z Hk), (7)

wherein:

S11 = Γ
(

1 − T 2

1 − Γ2T 2

)
, S21 = T

(
1 − Γ2

1 − Γ2T 2

)
, Γ =

G[6] − G[0]

G[6] + G[0]
, T = E+

66, (8)

and G[j] = G
[j]
E = K

[j]
z /M [j] in the TE case, whereas G[j] = G

[j]
H = K

[j]
z /E[j] in the TM case.

Next consider the problem at hand of the retrieval of M = M [6] and E = E[6] from S11 and S21.
It can be shown [1] that T admits two solutions

T± = − (S11 + S21) − Γ±
1 − Γ±(S11 + S21)

, Γ± = L ±
√

L2 − 1, L =
S2

11 − S2
21 + 1

2S11
. (9)

In the assumed case of normal incidence, K
[6]
z = K [6] and T± = exp(iK [6]

± H6), with K
[6]
± = K

[6]′
± +iK

[6]′′
± ,

T± = T ′± + iT ′′± so that

K
[6]′′
± = − 1

h6
ln

(√
T±T ∗±

)
, K

[6]′
m± = − 1

h6

[
arctan

(
T ′′±
T ′±

)
+ mπ

]
; m = 0,±1,±2, . . . . (10)

with ∗ denoting the complex conjugate. Also, let

Z [6] =

√
M

E
. (11)

and recall that

C [6] =
ω

K [6]
=

√
1

ME
. (12)
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In the TE case, Γ = ΓE, whereas in the TM case, Γ = ΓH , so that

Z [6] = Z
[6]
E = Z [0]

(
1 − ΓE

1 + ΓE

)
, Z [6] = Z

[6]
H = Z [0]

(
1 + ΓH

1 − ΓH

)
, (13)

wherein Z [0] =
√

μ[0]/ε[0]. It then follows that:

M =
Z [6]K [6]

ω
, E =

K [6]

Z [6]ω
, (14)

or, on account of the dependencies on the polarization and m±:

MEm± =
Z

[6]
Em±K

[6]
Em±

ω
, EEm± =

K
[6]
Em±

ωZ
[6]
Em±

; m = 0,±1,±2, . . . , (15)

MHm± =
Z

[6]
Hm±K

[6]
Hm±

ω
, EHm± =

K
[6]
Hm±

ωZ
[6]
Hm±

; m = 0,±1,±2, . . . . (16)

Thus, as a result of the NRW scheme, the inverse homogeneous layer problem appears to possess a
doubly-infinite set of solutions at each frequency and for each polarization. To verify that a particular
set {M,E} = {MEm±, EEm±} or {M,E} = {MHm±,HEm±} is a valid solution of the inverse problem,
we must show that it enables the regeneration of the data S11, S21 for all ω = 2πf . To do this, we carry
out the preceding operations, at each frequency, in reverse order and reject the {Mm±, Em±} for which
the reconstructed reflection coefficient does not equal S11 or the reconstructed transmission coefficient
does not equal S21.

6. COMPUTATIONAL PROCEDURES

6.1. Data

We shall employ two types of (complex) data:

choice 1: Rd1(ω) = b[0](ω, θi), Rd2(ω) = a[4](ω, θi);

choice 2: Rd1(ω) = b[0](ω, θi
1), Rd2(ω) = a[4](ω, θi

1), Rd3(ω) = b[0](ω, θi
2), Rd4(ω) =

a[4](ω, θi
2), . . . , Rdnr−1(ω) = b[0](ω, θi

nr/2), Rdnr(ω) = a[4](ω, θi
nr/2).

The first choice is made for the NRW technique; we shall also use it in the optimization method.
The second choice stems from the requirement [15] that the constitutive properties of a homogenized
layer be independent of the angle of incidence of the plane wave solicitation; we shall employ it in the
optimization method in order to reduce the number of candidate solutions of the IP.

6.2. Priors, Unknown Parameters and To-Be-Retrieved Parameter Functions

In Section 2, we introduced the three true parameter sets involved in the inverse problem: b, s, r. We
also wrote that s, r were assumed to be known (they are therefore termed priors, which means that they
are not to be retrieved) and that S = s and R = r, so that only b was unknown. Hereafter, the entries
of the sets s, r are given by S = s = {θi, ai, ω}, with a[0] = A[0] = ai = 1 at all ω, and R = r = {θr, θt},
for choice 1 data (θr, θt, the angles of specular reflection and transmission for incidence angle θi)
and r = {θr

1, θ
t
1, θ

r
2, θ

t
2, . . . , θ

r
nr/2, θ

t
nr/2} for choice 2 data. In the usual constitutive parameter retrieval

problems, one aims at estimating one or more of the entries of b, termed unknown or to-be-retrieved
parameters, the other entries being priors, so that for the present sandwich characterization problem,
the unknown parameters would be from one to nine of the real, frequency-independent entries in the set

b = {μ, ε,h} =
{
μ[1], μ[2], μ[3], ε[1], ε[2], ε[3], h1, h2, h3

}
. (17)
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In Section 2, we stressed the crucial difference between the present approach and the traditional
constitutive parameter retrieval approach, by the fact that the entries in the trial set B may be different
in number and nature from those of the set b. At present, this is manifested by the choice

B = {M(ωm), E(ωm);m = 1, 2, . . . ,mω,H}, (18)

wherein ωm = ωb + (m − 1)(ωe−ωb
mω−1 ); m = 1, 2, . . . ,mω, it being understood that M(ω) and E(ω) are

generally-complex functions of ω which we term the to-be-retrieved parameter functions (of frequency).
Note that the response functions involved in both the forward and inverse problems at a given frequency
ω1 are independent of their counterparts at frequency ω2, whatever be ω1 and ω2. This means that
M(ω), E(ω) can, and should, be retrieved frequency-by-frequency in the interval [ωb, ωe], so that at a
given frequency ωm, there are only two (generally) complex unknowns: M(ωm), E(ωm), assuming that
h is a prior and that H = h.

6.3. Cost Function in the Optimization Method

The basic tool of the optimization method [2, 13] is the cost function K which is a measure of the
discrepancy between the data response(s) and the trial response(s). Our choice of cost functions (one
for each frequency ωm) is

K(Bm) =
∑nr

n=1 (Rdn(ωm) −Rrn(ωm)) (Rdn(ωm) −Rrn(ωm))∗∑nr
n=1 (Rdn(ωm)) (Rdn(ωm))∗

; m = 1, 2, . . . ,mω, (19)

wherein Rdn(ωm) = Rd(ωm,b, s, rn) and Rrn(ωm) = Rr(ωm,Bm, s, rn), Bm = {M(ωm), E(ωm), h}.
Note that nr = 2 for choice 1 data and nr ≥ 4 for choice 2 data.

6.4. Candidate Solutions of the Inverse Problem Obtained by Minimization of the Cost
Function

In the optimization scheme, the inversion proceeds by searching (at each ωm) for the (relative and
global) minima of the cost function K within: either a two-dimensional (2D) search space of trial
parameters M ′

m = �M(ωm) (M ′′
m = �M(ωm) = 0 implicitly), E′

m = �E(ωm), (E′′
m = �E(ωm) = 0

implicitly) or a four-dimensional (4D) search space of trial parameters M ′
m = �M(ωm), M ′′

m = �M(ωm),
E′

m = �E(ωm), E′′
m = �E(ωm). The 2D search space is such that M ′

m ∈ [M ′
m,M ′

m], E′
m ∈ [E′

m, E′
m].

The 4D search space is such that M ′
m ∈ [M ′

m,M ′
m] M ′′

m ∈ [M ′′
m,M ′′

m], E′
m ∈ [E′

m, E′
m], E′′

m ∈ [E′′
m, E′′

m].
In the 2D problem, the choice of M ′

m,M ′
m and E′

m, E′
m is dictated by a priori knowledge one may

have of the solution to the inverse problem such as is provided by mixing formulae (see Section 6.5).
The same holds true for the 4D problem. The hypervolume of the search space is usually larger in the
case of an inhomogeneous material because the effective dynamic properties of the latter are generally
less-well known a priori than those of a homogeneous material. Moreover, the larger is the search space,
the more likely one will encounter relative minima. A severe restriction of the size of the search space
is not a remedy to this problem since it might entail the elimination of significant candidate retrievals.
Also, the larger the difference between the homogenized layer and the sandwich, the more difficult it
is to find well-defined troughs in the cost function, which often means that many solutions are equally
likely. If possible, as is the case in 2D problems (which is a good reason for treating them first), one
should take a look at the graphs of the cost function to understand their topography. Whatever the
dimension of the problem, the adopted solution, at each frequency, is chosen to correspond to the global
minimum of the cost function in the last selected search space. This guarantees uniqueness, but does
not mean that relative minima are absent in the cost functional at apparently-plausible locations.

6.5. Mixture Models to Furnish a Priori Estimations of the Properties of the
Homogenized Layer

Consider the sandwich in its sagittal plane. The total area per unit length in the x direction of the
sandwich is h. The area per unit length of the j-th sublayer is hj . The filling factor (of the sublayer
area with respect to the total area) is φj = hj/h, which varies between 0 (no sublayer) and 1 (sublayer
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occupying the whole sandwich). The general mixing formula [14], thought to be valid at low frequencies
only, takes the following particular forms (on account of the assumed lossless nature of the sublayers of
the sandwich):

M ′ ≈ M ′
‖ = μ[1]φ1 + μ[2]φ2 + μ[3]φ3, M ′′ ≈ M ′′

‖ = 0, (20)

E′ ≈ E′
‖ = ε[1]φ1 + ε[2]φ2 + ε[3]φ3, E′′ ≈ E′′

‖ = 0, (21)

or, alternatively:

(M ′)−1 ≈ (M ′
⊥)−1 = (μ[1])−1φ1 + (μ[2])−1φ2 + (μ[3])−1φ3, (M ′′)−1 ≈ (M ′′

⊥)−1 = ∞, (22)

(E′)−1 ≈ (E′
⊥)−1 = (ε[1])−1φ1 + (ε[2])−1φ2 + (ε[3])−1φ3, (E′′)−1 ≈ (E′′

⊥)−1 = ∞, (23)

Eqs. (20)–(21) and (22)–(23) are the so-called parallel and series (respectively) versions of more general
mixing formulae [14]. Note that neither the frequency nor other parameters of the problem enter into
these mixing formulae. Moreover, the latter show that the three constitutive parameters are not related
one to the other. We shall compare the predictions of the parallel and series (red horizontal lines in the
graphs) formulae to the the estimations of the properties of the homogenized layer obtained by the 2D
and 4D optimization schemes.

6.6. True Parameters

In all cases, we chose: μ[j] = μ0, ε[j] = ε0; j = 0, 4, with μ0 and ε0 the permeability and permittivity
in the vacumn. The units of frequencies f in the graphs are GHz. The true relative parameters of
the homogeneous layer are: μ

[6]
r = μ[6]/μ0 = 2 and ε

[6]
r = ε[6]/ε0 = 2.25, with h6 = 0.012 m, so that

k[6]h6 varies from 0.5332 to 2.6658 when f varies from 1 to 5GHz. The fixed true relative parameters
of the three sublayer sandwich are: μ

[j]
r = 2 and ε

[j]
r = 2.25; j = 1, 3 with h1 = 0.004 m, h2 = 0.006 m,

h3 = 0.004 m (all fixed). The variable relative parameters μ
[2]
r , ε

[2]
r of the central sublayer of the sandwich

are as indicated in the figure captions. The angle of incidence is 0◦ relative to all the NRW results and
most of the optimization results, and varies between 0◦ and 40◦ in 10◦ steps in the remainder of the
optimization results. The polarization in the graphs is TM (index H, whereas in the TE case the index
is E) since we found that MEm± = MHm∓ and EEm± = EHm∓.

7. RETRIEVALS OBTAINED VIA THE NRW SCHEME FOR θI = 0◦

In all the following graphs, the horizontal red lines represent the parallel and series mixture model
solutions which usually nearly coincide.

7.1. Unsorted and Sorted Retrievals

The (sorting) method for distinguishing between a valid and invalid solution was described at the end
of Section 5. In Figs. 2–3, the green symbols represent the unsorted NRW solutions and those with
central blue points the sorted (i.e., valid) solutions.

We note that at least two valid solutions exist at each frequency (non-uniqueness) and that one
of these is nearly coincident with the mixture model solutions at low frequencies. Furthermore, in
what appear as continuous branches, the value of m abruptly changes at certain frequencies and
at these frequencies other branches start to make their appearance. Although the general pattern
of inhomogeneous (IL) and homogeneous layer (HL) solutions appear to be quite similar, notably
concerning the non-uniqueness, there are notable differences: (a) in the HL case, there are no signs of
Fabry-Perot resonances (FBR) contrary to the IL case, (b) in the HL case, at least one branch coincides
with the true solution (which also coincides with the mixture model solutions, (c) the imaginary parts
of M and E are nil (actually very small due to numerical error) in the HL case, contrary to the IL case.
This means that the inhomogeneity induces an apparent dissipation (or perhaps amplification) when
the layer is viewed as an effective medium.
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Figure 2. Candidate solutions obtained by the NRW scheme for m = −2,−1, 0, 1 as a function
of frequency f . Mp, Mm, Ep, Em, mean MHm+, MHm−, EHm+, EHm− respectively. μ

[2]
r = 2.0,

ε
[2]
r = 2.25: this is the HL case in which the totality of the layer is filled with the same material.
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Figure 3. Same types of graphs as in Fig. 2. μ
[2]
r = 3.1, ε

[2]
r = 3.35: this is an IL case in which the

central sublayer is different from the other two sublayers.

7.2. Sorted Retrievals Only

In Figs. 4–11, we depict the sorted (valid) retrievals (represented by blue points as previously) for a
fixed value of m. We note that that only two such retrievals (corresponding to m+ and m−) exist for
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a given m at a given frequency. In the HL case, one of these retrievals coincides with the true solution
and in the IL case it is the solution closest to the mixture model prediction. More remarkably, in both
the HL and IL cases, the other solution corresponds to simultaneously-negative M ′ and E′ in certain
frequency intervals. In other frequency intervals, this solution corresponds to simultaneously-positive
M ′ and E′. The zooms in Figs. 10–11 show clearly the resonant nature of the m = 1 solution in the
neighborhood of (what appears to be the Fabry-Perot frequency) f ≈ 1.6. In this neighborhood, the
real parts of M and E both switch from positive to negative values or vice-versa, this being reminiscent
of what has been found (for either or both M ′ and E′, usually via the NRW scheme) for other types of
IL [3, 6, 8, 11, 16, 20].
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Figure 4. Valid solutions for fixed m = −2 as a function of f .
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Figure 5. Valid solutions for fixed m = 0 as a function of f .



Progress In Electromagnetics Research B, Vol. 70, 2016 141

7.2.1. A HL Case: μ
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Figure 6. Valid solutions for fixed m = 1 as a function of f .

7.2.2. An IL Case: μ
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r = 3.1, ε
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Figure 7. Valid solutions for fixed m = −2 as a function of f .
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Figure 8. Valid solutions for fixed m = 0 as a function of f .
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Figure 9. Valid solutions for fixed m = 1 as a function of f .
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Figure 10. Zoom of Fig. 9.
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Figure 11. Super zoom of Fig. 9.

8. NUMERICAL RESULTS RELATIVE TO THE RETRIEVALS OBTAINED BY THE
OPTIMIZATION SCHEME

In Figs. 12–19, the sizes of the search spaces are voluntarily chosen to be very large since the
inhomogeneous nature of the layer has an incidence on the values of the retrieved effective parameters
that is not known a priori (i.e., these values may be quite different from the mixture model predictions).
Large search spaces means lengthy computations so that it is important to find out if it is possible to
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Figure 12. 2D optimization. TM polarization. θi = 0◦. μ
[2]
r = 2.1, ε

[2]
r = 2.35. The horizontal lines are

relative to the mixture model predictions whereas the circles are relative to the optimization retrievals.

Figure 13. 4D optimization. TM polarization. θi = 0◦. μ
[2]
r = 2.1, ε

[2]
r = 2.35. Same meaning of the

symbols as in previous figure.

Figure 14. nr = 2. θi = 0◦. Figure 15. nr = 6. θi = 0◦, 10◦, 20◦.

reduce the dimensions of the search spaces in order to reduce the computational burden. This is done
in Section 8.1.

8.1. Comparison of 2D to 4D Optimization Results

Figure 12 shows a 2D optimization, i.e., for the retrieval of M ′(ω) and E′(ω), it is assumed that
M ′′(ω) = 0 and E′′(ω) = 0. This figure is similar to what is found in [4] wherein observed (instead of
synthetic) data are used for the retrievals. Fig. 13 shows a 4D optimization, i.e., for the retrieval of
M ′(ω), M ′′(ω), E′(ω) and E′′(ω). One observes that the 2D optimization scheme leads to the same
results (even in the vicinity of the Fabry-Perot resonance) for M ′(ω) and E′(ω) as the 4D optimization
scheme which is why we obtain the remaining retrievals by the 2D optimization scheme.
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Figure 16. nr = 10. θi = 0◦, 10◦, 20◦, 30◦, 40◦.

8.2. 2D Optimization Scheme Results to Determine Whether the Retrievals Can Be
Made to Be Independent of the Incident Angle

Figures 14–19 encompass the results of 2D optimizations: Figs. 14–16 for a HL and Figs. 17–19 for an
IL. The purpose of these figures, in which the polarization is TM, is to show how the results evolve
as a function of the (number nr/2 of) angles of incidence, it being recalled that the notion of effective
medium implies independence of the effective properties with respect to θi. The employed optimization
procedure is as explained in Section 6.3, for nr/2 data couples (for the reflectivity and transmissivity)
(see Section 6.1).

We note that for both the IL and HL, the pattern is the same as the NRW retrievals when nr = 2
and θi = 0◦, evocative of non-uniqueness and the possibility of retrievals for which both M ′ and E′ are
simultaneously negative. However (again for both the IL and HL), when nr is increased, first the negative
retrievals disappear, followed by the disappearance of the positive retrievals that are very different from
the mixture model predictions. For large-enough nr, only the retrievals closest to the mixture model
predictions remain, this being true for both the IL and HL (although the IL retrievals are slightly
dispersive and resonant in the vicinity of what appear to be Fabry-Perot frequencies). This suggests
that the only retrieved effective (or true in the case of a homogeneous layer) properties, compatible with
the requirement of independence with respect to the incident angle, are those closest to the mixture
model predictions and these retrievals are unique at all frequencies. Thus, the simultaneously-negative
M ′ and E′ retrievals obtained by the NRW scheme, as well as by the optimization scheme for nr = 2 and
θi = 0◦, are found, by the optimization scheme, to be incompatible with independence of the properties
of the effective layer.

8.2.1. HL for Which μ[2] = 2, ε[2] = 2.25; Effect of Varying the Incident Angles

Figure 17. nr = 2. θi = 0◦. Figure 18. nr = 6. θi = 0◦, 10◦, 20◦.
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8.2.2. IL for Which μ[2] = 3.1, ε[2] = 3.35; Effect of Varying the Incident Angles

Figure 19. nr = 10. θi = 0◦, 10◦, 20◦, 30◦, 40◦.

9. CONCLUSIONS

We applied both the NRW and optimization schemes to inhomogeneous (IL) as well as homogeneous
(HL) layers, since the inverse problem is the same for both IL and HL, namely to retrieve the properties
of a homogenous layer (homogenized in the IL case); what changes is the data, which is that of the
response of a homogeneous layer for the HL and that of the response of an inhomogeneous layer for the
IL.

The NRW scheme was shown to be inadapted for finding out whether simultaneous M ′ < 0 and
E′ < 0 are properties that are independent of the angle of incidence, as they should be if the retrieved
properties are actually effective properties of the homogenized medium in the layer.

It was found that the numerical optimization scheme produces the same retrievals as the rigorous
NRW scheme in the only case (normal incidence) in which both can be compared, and since there is
no reason why the optimization scheme should change its nature for other incident angles, it can be
considered to be producing correct retrievals for other angles of incidence as well.

Since the optimization scheme shows that the effective properties of the IL are unique (at each
frequency) and those closest to the effective medium predictions (thus far-removed from situations
in which M ′ < 0 and E′ < 0 simultaneously), one might ask how these effective properties differ
from those of a HL. This is an important question and our answer (which is only partial since we
have not analyzed ordinary metamaterials) is that the IL (contrary to the HL) gives rise to temporal
dispersion (anomalous in the vicinity of the Fabry-Perot frequencies, analogous to retrieval instability
in the language of inversion theory [5]) and attenuation in the effective parameters M and E even when
the component media of the inhomogeneous layer are non-dispersive and non-lossy. It is obvious that
this feature is strongly tied up with the process of parameter inversion itself and the concept of model
discordance discussed in Section 1 since it does not occur when there is no model discordance (i.e., the
case in which the data is that of a HL and the retrieval model is that of a HL of the same thickness
submitted to the same solicitation).

Our IL is different from those ordinarily considered as metamaterials, in which the properties of
the former are not variable (as those of the latter which are usually periodic) with respect to the x, y
coordinates (when each face of the layer occupies a x-y plane). Thus, the retrievals found herein do
not necessarily apply to the ordinary metamaterials. Nevertheless, since the optimization scheme we
employ can also be applied to these metamaterials, and since this scheme enabled us to uncover the fact
that the exotic properties of simultaneous M ′ < 0 and E′ < 0 are incompatible with the independence
of these properties with respect to θi, we suggest that the optimization scheme (rather than the NRW)
is employed in the future to retrieve the effective material properties of ordinary metamaterials, notably
to find out whether these properties are really those suggested by the NRW scheme.
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