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Analysis and Design of E-CRLH TL Characteristics
with New Closed-Form Solutions

Hien Ba Chu and Hiroshi Shirai*

Abstract—In this study, new closed-form solutions are presented for deriving inductance and
capacitance elements of the extended-composite right/left-handed transmission line (E-CRLH TL) unit
cell from the cutoff frequencies of right-handed (RH) and left-handed (LH) bands. The characteristics of
the E-CRLH TL are investigated for unbalanced, balanced, and mixed cases. The dispersion diagram,
Bloch impedance, S-parameters are analyzed by the TL, circuit theories and the Bloch-Floquet theorem.
Lastly, the usefulness of our method has been shown in detail by designing the desired characteristics
for various cases.

1. INTRODUCTION

In recent years, metamaterials have drawn much attention in both theoretical and experimental studies,
because of the unique electromagnetic properties not available in nature. Metamaterials have been
applied in a large number of microwave applications such as antennas, filters, power dividers and
directional couplers. With the metamaterial transmission line approach, a composite-right/left-handed
transmission line (CRLH TL) is introduced in 2006 [1]. The CRLH TL exhibits a LH band at low
frequencies and a RH band at high frequencies. At the zeroth order resonance, the CRLH TL also
includes an unusual characteristic, namely the resonant frequency is independent of the physical size of
the structure. After the CRLH TL had been reported, a dual-composite right/left-handed transmission
line (D-CRLH TL) has been proposed [2, 3]. Dispersion diagram of a D-CRLH TL shows two RH and
one LH bands [4]. More recently, an extended-composite right/left-handed transmission line (E-CRLH
TL) has been combined from CRLH and D-CRLH TLs to get more involved band structures [5, 6].
This TL is also known as a generalized negative refraction index transmission line (NRI TL) [7]. The
E-CRLH TL has recently been found in dual-band filters and quad-band power dividers [6, 8].

Most microwave application designs with E-CRLH TL are based on the controllability of the
dispersion diagram, and the impedance matching consideration of the Bloch impedance. Therefore, it is
important to find appropriate L-C elements to match the requirements. Previous studies for designing
E-CRLH TL have presented balanced cases and seldom mentioned unbalanced cases. Reference [9]
presented a possible solution for a balanced case to achieve a desired phase at four specified frequencies.
A balanced E-CRLH TL with arbitrary phase shifts at four arbitrary frequencies is reported in [10] by
using the results of homogeneous E-CRLH medium. Homogeneous E-CRLH medium may be useful for
idealization but not for the case of a practical E-CRLH TL lumped implementation, since the unit-cells
will sometimes cascade periodically to build effectively the corresponding uniform TL structure [5].

The objective of this study is to show a novel procedure for designing the E-CRLH TL in
unbalanced, balanced, and mixed cases. By solving a set of equations explicitly, one can easily design
a desired dispersion diagram and control the Bloch impedance. In addition, scattering parameters of a
periodic E-CRLH TL unit-cells network have been investigated carefully to show a complete view about
the applicability of E-CRLH TLs.
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This paper is organized as follows. E-CRLH TL is analyzed first in Section 2, and new closed-
form solutions for designing E-CRLH TL are presented. Numerical results are given to demonstrate
the effectiveness of our approach in Section 3. Section 4 shows more the results at a desired phase
characteristic. Conclusions are made in Section 5.

2. E-CRLH TL ANALYSIS

The equivalent circuit of an E-CRLH TL unit cell [5, 7] is shown in Fig. 1. In the horizontal branch, a
series L1-C1 resonator connects in series with a parallel L2-C2 resonator. The vertical branch contains a
parallel L3-C3 resonator in shunt with a series L4-C4 resonator. From this equivalent circuit model, the
fundamental characteristics of this transmission line are straight forwardly analyzed by a standard TL
and circuit theories. The impedance Zh of the horizontal branch and the admittance Yv of the vertical
branch are given respectively by
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Figure 1. Equivalent circuit of an E-CRLH TL
unit cell [5, 7].
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By applying the periodic boundary conditions related with Bloch-Floquet theorem [11] to the unit cell,
the dispersion relation is obtained as

cos(βd) = 1 + ZhYv, (8)
where β is the propagation constant for the Bloch waves and d the length of the unit cell. The possible
bands of the E-CRLH TL are shown by the dispersion diagram, which can be plotted from Eq. (8). An
example of the dispersion diagram of the unbalanced E-CRLH TL is depicted in Fig. 2. The dispersion
diagram shows two RH bands (fC8, fC4), (fC6, fC2), two LH bands (fC1, fC5), (fC3, fC7). The
balanced E-CRLH TL is obtained when fC5 = fC6 and fC7 = fC8. The cutoff frequencies fC1 ∼ fC8

are calculated from the conditions: cos(βd) = ±1.
The Bloch impedance is a quantity to use for the impedance matching. The Bloch impedance of

the proposed metamaterial transmission line may be approximately calculated by the expression [7, 12]:

ZB =
√

2Zh

Yv
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√
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In this study, a different approach is proposed to determine lumped elements of the equivalent circuit.
Required L-C elements of the E-CRLH TL unit cell are calculated from the cutoff frequencies fC1 ∼ fC8

of a desired dispersion diagram. So the proposed procedure can be used for both an unbalanced case
and a balanced case.

Let us begin with a general unbalanced case. From the condition cos(βd) = 1, Eq. (8) becomes
ZhYv = 0, then the cutoff frequencies fC5 ∼ fC8 are determined from ωZ01, ωZ02, ωY 01, ωY 02.
Accordingly, six cases are available:

ωZ02 ≤ ωY 02 < ωZ01 ≤ ωY 01, (10)
ωZ02 ≤ ωZ01 < ωY 02 ≤ ωY 01, (11)
ωZ02 ≤ ωY 02 < ωY 01 ≤ ωZ01, (12)
ωY 02 ≤ ωZ02 < ωY 01 ≤ ωZ01, (13)
ωY 02 ≤ ωY 01 < ωZ02 ≤ ωZ01, (14)
ωY 02 ≤ ωZ02 < ωZ01 ≤ ωY 01, (15)

provided Δ1 = B2
1 − 4A1 ≥ 0, and Δ2 = B2

2 − 4A2 ≥ 0.
From the condition cos(βd) = −1, the cutoff frequencies fC1 ∼ fC4 are calculated from:

ZhYv + 2 = 0, (16)
which is a fourth order equation with respect to ω2 and has four roots (ω2
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From the magnitude relations in Eqs. (10)–(15), one gets respectively, as
ωC5 = ωZ02, ωC6 = ωY 02, ωC7 = ωZ01, ωC8 = ωY 01, (21)
ωC5 = ωZ02, ωC6 = ωZ01, ωC7 = ωY 02, ωC8 = ωY 01, (22)
ωC5 = ωZ02, ωC6 = ωY 02, ωC7 = ωY 01, ωC8 = ωZ01, (23)
ωC5 = ωY 02, ωC6 = ωZ02, ωC7 = ωY 01, ωC8 = ωZ01, (24)
ωC5 = ωY 02, ωC6 = ωY 01, ωC7 = ωZ02, ωC8 = ωZ01, (25)
ωC5 = ωY 02, ωC6 = ωZ02, ωC7 = ωZ01, ωC8 = ωY 01. (26)
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From Eqs. (3)–(5), (17)–(20), one gets two solutions in the case of Eq. (21) for L-C elements, if L1 is
given.
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where A and B are calculated as follows:

A =
D − [x5x7(x6 + x8) + x6x8(x5 + x7)]

(x1 + x2 + x3 + x4) − (x5 + x6 + x7 + x8)
, (28)
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E − [x5x7 + x6x8 + (x5 + x7)(x6 + x8)]

(x1 + x2 + x3 + x4) − (x5 + x6 + x7 + x8)
, (29)

D = x1x2x3 + x2x3x4 + x1x2x4 + x1x3x4, (30)

E = x1x2 + x2x3 + x3x4 + x4x1 + x1x3 + x2x4, (31)

xi = ω2
Ci = (2πfCi)2, i = 1, 2, . . . , 8. (32)

In addition, the following conditions should be satisfied:

Δ = B2 − 4A ≥ 0, (33)
L1, C1, L2, C2, L3, C3, L4, C4 > 0. (34)

When Δ = 0, two solutions degenerate. Two solutions in the cases of Eqs. (22)–(26) can be obtained
easily from two solutions in the case of Eq. (21) (see Appendix A).

In order to design an E-CRLH TL, cutoff frequencies fC1 ∼ fC8 and inductance L1 are set as design
parameters. From Eq. (17), one gets for positive cutoff frequencies

fC1fC2fC3fC4 = fC5fC6fC7fC8. (35)

Accordingly, the cutoff frequencies fC1 ∼ fC8 are not independent. Our design method can be described
in the following steps:

1) Select seven of eight cutoff frequencies, the other is determined from Eq. (35).
2) By setting inductance L1, other elements will be calculated from Eq. (27).
3) Test the conditions in Eqs. (33), (34).

In a balanced case, two solutions for Eqs. (23), (24) and (26) are the same as the two solutions
for Eq. (21) since x5 = x6 and x7 = x8. Thus one may get maximum 6 solutions for a balanced case
and maximum 12 solutions for an unbalanced case with fixed design parameters (fC1 ∼ fC8, L1). The
variety of the solutions gives a chance to choose suitable L-C elements. From Eqs. (9) and (27), the
Bloch impedance becomes a function of L1 with fixed cutoff frequencies fC1 ∼ fC8. So the Bloch
impedance level is controlled by changing the value of L1. Therefore, the desired dispersion diagram
and the Bloch impedance are designed easily by using the proposed closed-form solutions. In the next
section, some numerical examples will be presented for various cases.
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3. NUMERICAL RESULTS

3.1. Unbalanced Case

In order to check the validity of our method, let us first start with an unbalanced case, where two
sets of the short-circuited frequencies of the horizontal branch and the open-circuited frequencies of the
vertical branch are different. For example, let us find a desired dispersion diagram in an unbalanced
case with design frequencies: fC2 = 3.000 GHz, fC3 = 4.000 GHz, fC4 = 10.00 GHz, fC5 = 2.000 GHz,
fC6 = 2.500 GHz, fC7 = 4.500 GHz, fC8 = 5.000 GHz. Then from Eq. (35), one gets fC1 = 0.9375 GHz.

By setting L1 = 1.50 nH and applying our closed-form solutions, totally eight solutions for Eqs. (21),
(23), (24), and (26) are listed in Table 1. Solutions for Eqs. (22) and (25) do not satisfy the condition
in Eq. (34) because C2, L2, C4, and L4 are found to be negative. Eight solutions have exactly the same
dispersion diagram characteristic in Fig. 3(a). Curves connect the desired cutoff frequencies smoothly,
as expected. From the dispersion diagram of the unbalanced case, one may be able to design four
pass-band (two RH and two LH bands) characteristics. Three gaps exist between these RH and LH
bands. The Bloch impedances for Eqs. (21), (23), (24), and (26) are plotted in Figs. 3(b), (c), (d), and
(e), respectively. These figures show three stop-bands corresponding to three gaps in the dispersion
diagram at (2.000 ∼ 2.500 GHz), (3.000 ∼ 4.000 GHz), and (4.500 ∼ 5.000 GHz). At the high-frequency
band (> 5.000 GHz) or the low-frequency band (< 2.000 GHz), impedance matching may be facilitated.
However, the Bloch impedances change dramatically at the middle-frequency bands (2.500 ∼ 3.000 GHz)
and (4.000 ∼ 4.500 GHz). In these bands, it is not easy for the impedance matching.

Table 1. The solutions in an unbalanced case with fC1 = 0.9375 GHz, fC2 = 3.000 GHz, fC3 =
4.000 GHz, fC4 = 10.00 GHz, fC5 = 2.000 GHz, fC6 = 2.500 GHz, fC7 = 4.500 GHz, fC8 = 5.000 GHz.

Eqs. Sol.
L1 C1 C2 L2 C3 L3 L4 C4

[nH] [pF] [pF] [nH] [pF] [nH] [nH] [pF]

(21)
1 1.50 3.21 4.68 0.352 0.480 3.25 9.80 0.269
2 1.50 2.00 2.72 0.969 0.480 5.20 9.24 0.178

(23)
1 1.50 2.60 2.37 0.694 0.480 4.01 14.2 0.186
2 1.50 1.62 1.88 1.40 0.480 6.41 18.3 0.0902

(24)
1 1.50 1.66 2.96 0.557 0.480 6.26 8.50 0.310
2 1.50 1.04 3.14 0.840 0.480 10.0 14.6 0.112

(26)
1 1.50 2.05 5.84 0.282 0.480 5.07 5.88 0.448
2 1.50 1.28 4.54 0.581 0.480 8.12 7.41 0.222

While a proper method for deriving the parameters of the unbalanced E-CRLH TL is not yet
reported, our closed-form solutions clearly have effectiveness for deriving this case. In addition, the
ability to select flexibly the cutoff frequencies fC1 ∼ fC8 is beneficial for designing the resonant
frequencies of a multi-band antenna, and building the pass- or stop-bands of a filter.

3.2. Mixed Case

Tri-pass band characteristics can also be realizable by choosing fC5 = fC6 or fC7 = fC8. This means that
one set of the short-circuited frequencies of the horizontal branch and the open-circuited frequencies
of the vertical branch are equal (balanced case) while another set of those is different (unbalanced
case). This mixed case of the E-CRLH TL has not been mentioned in previous papers. A numerical
example for fC5 = fC6 is presented for this case. Design parameters are set to be fC1 = 0.7500 GHz,
fC2 = 3.000 GHz, fC3 = 4.000 GHz, fC4 = 10.00 GHz, fC5 = fC6 = 2.000 GHz, fC7 = 4.500 GHz,
fC8 = 5.000 GHz, and L1 = 1.50 nH. Possible meaningful solutions are listed in Table 2.



168 Chu and Shirai

0.0 0.5 1.0 1.5 2.0 2.5 3.0
 β d (radians)

8

6

4

2

10

12

0

Fr
eq

ue
nc

y 
[G

H
z]

(a)

0 2 4 6 8 10 12 14
Frequency [GHz]

0

100

200

300

400

Im
pe

da
nc

e 
[ Ω

]

Solution 1
Solution 2

(b)

Solution 1
Solution 2

0 2 4 6 8 10 12 14
Frequency [GHz]

0

100

200

300

400

Im
pe

da
nc

e 
[ Ω

]

(c)

0 2 4 6 8 10 12 14
Frequency [GHz]

0

100

200

300

400

Im
pe

da
nc

e 
[ Ω

]

Solution 1
Solution 2

(d)

0 2 4 6 8 10 12 14
Frequency [GHz]

0

100

200

300

400

Im
pe

da
nc

e 
[ Ω

]

Solution 1
Solution 2

(e)

Figure 3. Dispersion diagram and Bloch impedances in an unbalanced case with the L-C elements in
Table 1. (a) Dispersion diagram. (b) Bloch impedance for Eq. (21). (c) Bloch impedance for Eq. (23).
(d) Bloch impedance for Eq. (24). (e) Bloch impedance for Eq. (26).
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Table 2. The solutions in a mixed case with fC1 = 0.7500 GHz, fC2 = 3.000 GHz, fC3 = 4.000 GHz,
fC4 = 10.00 GHz, fC5 = fC6 = 2.000 GHz, fC7 = 4.500 GHz, fC8 = 5.000 GHz.

Eqs. Sol.
L1 C1 C2 L2 C3 L3 L4 C4

[nH] [pF] [pF] [nH] [pF] [nH] [nH] [pF]

(21), (26)
1 1.50 3.17 4.53 0.368 0.467 5.49 6.03 0.415
2 1.50 2.11 2.76 0.908 0.467 8.24 7.51 0.222

(23), (24)
1 1.50 2.57 2.34 0.714 0.467 6.77 8.85 0.283
2 1.50 1.71 1.88 1.33 0.467 10.2 14.6 0.115
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Figure 4. Dispersion diagram and Bloch impedances in a mixed case with the L-C elements in Table 2.
(a) Dispersion diagram. (b) Bloch impedance for Eqs. (21) and (26). (c) Bloch impedance for Eqs. (23)
and (24).

The dispersion diagram of these solutions is plotted in Fig. 4(a). The Bloch impedances are
calculated in Fig. 4(b) for Eqs. (21) and (26), and in Fig. 4(c) for Eqs. (23) and (24). Two stop-bands at
(3.000 ∼ 4.000 GHz) and (4.500 ∼ 5.000 GHz) are shown in these figures. At the middle-frequency band
(4.000 ∼ 4.500 GHz) and the high-frequency band (> 5.000 GHz), the Bloch impedances of two solutions
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show similar frequency behaviors with the unbalanced case in Figs. 3(b) and (c). On the other hand,
the Bloch impedances exhibit a complementary behavior at the low-frequency band (< 3.000 GHz).

3.3. Balanced Case

For a balanced case with design parameters: fC1 = 0.7500 GHz, fC2 = 3.000 GHz, fC3 = 4.000 GHz,
fC4 = 9.000 GHz, fC5 = fC6 = 2.000 GHz, fC7 = fC8 = 4.500 GHz, and L1 = 1.50 nH, two solutions
for Eqs. (21), (23), (24), and (26) are shown in Table 3. Physically meaningful solutions also do
not exist for Eqs. (22) and (25). Fig. 5 presents the dispersion diagram and Bloch impedances for
this case. The dispersion diagram shows a dual-pass band characteristic at (0.7500 ∼ 3.000 GHz) and
(4.000 ∼ 9.000 GHz). The Bloch impedance exhibits a complementary behavior and has one stop-band
corresponding to one gap in the dispersion diagram at (3.000 ∼ 4.000 GHz).

Table 3. The solutions in a balanced case with fC1 = 0.7500 GHz, fC2 = 3.000 GHz, fC3 = 4.000 GHz,
fC4 = 9.000 GHz, fC5 = fC6 = 2.000 GHz, fC7 = fC8 = 4.500 GHz.

Eqs. Sol.
L1 C1 C2 L2 C3 L3 L4 C4

[nH] [pF] [pF] [nH] [pF] [nH] [nH] [pF]
(21), (23) 1 1.50 3.24 4.83 0.338 0.582 5.34 7.07 0.361
(24), (26) 2 1.50 2.07 2.74 0.931 0.582 8.35 12.4 0.131
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Figure 5. Dispersion diagram and Bloch impedance in a balanced case with the L-C elements in
Table 3. (a) Dispersion diagram. (b) Bloch impedance.

3.4. A Special Case for a Constant Bloch Impedance

A constant Bloch impedance allows an easy broadband impedance matching with other circuits and is
preferable for many practical applications. From Eq. (9), one gets a constant Bloch impedance

ZB =
√

2L1/C3, (36)

by setting:

ωZ01 = ωY 01, ωZ02 = ωY 02, ωZ∞ = ωY ∞. (37)
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This is a special case of the balanced E-CRLH TL for Eqs. (21), (23), (24), and (26). It leads to Δ = 0,
and two solutions degenerate. Thus L-C elements become

C1 =
B

2x5x7L1
, (38)

C2 =
[(

x5 + x7 − 2x5x7

B
− B

2

)
L1

]−1

, (39)
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2

BC2
, (40)

C3 =
2

[(x1 + x2 + x3 + x4) − (x5 + x6 + x7 + x8)]L1
, (41)
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B

2x6x8C3
, (42)

L4 =
[(

x6 + x8 − 2x6x8

B
− B

2

)
C3

]−1

, (43)

C4 =
2

BL4
, (44)

where

x5 = x6, x7 = x8, x5x7 = x6x8 =
√

x1x2x3x4, x5 + x7 = x6 + x8 = T, (45)

and T is calculated from the following equation:

T 4 − (12
√

x1x2x3x4 + 2E) T 2 + [8 (x1 + x2 + x3 + x4)
√

x1x2x3x4 + 8D]T

+ (E − 2
√

x1x2x3x4)
2 − 4D(x1 + x2 + x3 + x4) = 0. (46)

In this case, cutoff frequencies fC5 ∼ fC8 are calculated from fC1 ∼ fC4 because of the setting
ωZ∞ = ωY ∞. Equation (46) may have four possible roots. However, only the real and positive roots
are chosen to satisfy the condition in Eq. (34). From Eqs. (36) and (41), the relation between L1 and
ZB is

L1 =
ZB√

(x1 + x2 + x3 + x4) − (x5 + x6 + x7 + x8)
. (47)

Inductance L1 may be determined from a desired ZB for an impedance matching. For example, let
us design a desired dispersion diagram in a special case from design parameters: ZB = 50.00 Ω,
fC1 = 0.7500 GHz, fC2 = 3.000 GHz, fC3 = 4.000 GHz, and fC4 = 9.000 GHz. With these design
parameters, one gets four roots of T (T1 = −3.435 × 1021, T2 = 4.145 × 1020, T3 = 1.954 × 1021,
T4 = 1.066× 1021) from Eq. (46). Only T = 1.066× 1021 satisfies the condition. Then L-C elements are
calculated from Eqs. (38)–(45), and (47), and are shown in Table 4. The cutoff frequencies fC5 ∼ fC8

are given as fC5 = fC6 = 1.854 GHz, fC7 = fC8 = 4.854 GHz from Eq. (45).
Figure 6 presents dispersion diagram and Bloch impedance of the designed E-CRLH TL in this

special case. One should notice that the gap between fC2 and fC3 is unavoidable due to the band-stop
nature of the D-CRLH TL [5].

Table 4. The solutions in a special case with ZB = 50.00Ω, fC1 = 0.7500 GHz, fC2 = 3.000 GHz,
fC3 = 4.000 GHz, fC4 = 9.000 GHz.

Eqs. Sol.
L1 C1 C2 L2 C3 L3 L4 C4

[nH] [pF] [pF] [nH] [pF] [nH] [nH] [pF]
(21), (23)
(24), (26)

1, 2 1.10 3.63 2.92 0.682 0.878 4.53 3.65 0.546
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Figure 6. Dispersion diagram and Bloch impedance in a special case with the L-C elements in Table 4.
(a) Dispersion diagram. (b) Bloch impedance.

3.5. Scattering Parameters

Scattering parameters of the E-CRLH TLs for various cases in the previous subsections are calculated
to check the impedance matching for a network connection. A periodic E-CRLH TL unit cells network
is shown in Fig. 7 with standard 50.00 Ω impedances in two ports, and N is the number of unit cells.
L-C elements in each cell are given from Solution 1 of Eq. (21) in Tables 1, 2, and 3 for an unbalanced
case, a mixed case, and a balanced case, respectively, and in Table 4 for a special case.

An important parameter in design process is the number of unit cells. Effect of the number of unit
cells is illustrated in Fig. 8 by calculating S21 characteristic for different number N . A similar effect
with the investigation of the CRLH TL unit cells network in [1] can be seen here. A small number of
unit cells provides weak-slope edges of the bands, while the cutoffs are sharp as the number of cells is
increased. The balanced and special cases have dual-band characteristics even designed with one cell.
The highlight point occurs at N = 1 in the unbalanced and mixed cases. These cases show dual-band
properties. One needs a larger number of the unit cells to accomplish the quad-band and tri-band
properties. From our calculation, N should be selected to be larger than 3 for better filter performance.

With N = 10, computed S11 and S21 of these designed E-CRLH TLs are presented in Fig. 9. S11

and S21 show the impedance matching and filtering characteristics. For practical applications, pass-
bands are determined at frequencies in which |S21| = −3 dB. These frequencies are slightly different
from the cutoff frequencies fC1 ∼ fC8 of RH and LH bands. For example, the pass-bands of the designed
E-CRLH TL in the unbalanced case are (0.954 ∼ 1.915 GHz), (2.546 ∼ 2.993 GHz), (4.001 ∼ 4.517 GHz)
and (5.361 ∼ 9.884 GHz). Therefore, the bandwidth of RH and LH bands in the dispersion diagram
should be designed large enough to get desired pass-bands in S-parameters.

To avoid complexity, S-parameters of the E-CRLH TL in the unbalanced case have not been
characterized [5, 9, 10]. By using our closed-form solutions, Fig. 9(a) confirms that the E-CRLH TL in

E-CRLH
unit cell

d

E-CRLH
unit cell

E-CRLH
unit cell

d d

1 2 N...

50 Ω 50 Ω

Figure 7. A periodic E-CRLH TL unit-cells network.
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Figure 8. S21 characteristic for different number N of unit cells, N = 1, 5, and 10. (a) An unbalanced
case with the L-C elements from Solution 1 of Eq. (21) in Table 1. (b) A mixed case with the L-C
elements from Solution 1 of Eq. (21) in Table 2. (c) A balanced case with the L-C elements from
Solution 1 of Eq. (21) in Table 3. (d) A special case with the L-C elements in Table 4.

the unbalanced case can be applied easily in quad-band applications while the mixed case is preferred
for tri-band applications as can be seen from Fig. 9(b). On the other hand, this section presents the
results for one solution of these case, while eight and four solutions for L-C elements are available
from Tables 1 and 2. Since each solution has a distinct Bloch impedance for the impedance matching
consideration, one may choose the best solution depending on the performance of S-parameters. Both
the balanced case and special case are suitable for dual-band applications from Figs. 9(c) and (d). The
main difference between the balanced case and special case are the performance of S11 and bandwidth
of RH, LH bands. With the constant Bloch impedance, the special case has better S11 characteristics
than the balanced case. However, the balanced case is easier to control the bandwidth of RH and LH
bands because of a flexibility of selecting fC5 ∼ fC8, while the cutoff frequencies fC5 ∼ fC8 of the
special case are calculated from fC1 ∼ fC4 in Eqs. (45) and (46). The bandwidth of RH and LH bands
is useful for positive/negative index artificial lenses.

In order to evaluate our method for designing S-parameters of E-CRLH TL, one may compare
it with previous results. Reference [5] already presented S-parameters of a balanced E-CRLH TL
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Figure 9. Computed S-parameters of E-CRLH TL for 10 cells network, S11 (dashed line), S21 (solid
line). (a) An unbalanced case with the L-C elements from Solution 1 of Eq. (21) in Table 1. (b) A
mixed case with the L-C elements from Solution 1 of Eq. (21) in Table 2. (c) A balanced case with
the L-C elements from Solution 1 of Eq. (21) in Table 3. (d) A special case with the L-C elements in
Table 4. Shading areas indicate RH and LH bands.

consisting of 10 unit-cells. This case is similar to a special case with a constant Bloch impedance, since
the balanced case of homogeneous E-CRLH medium in [5] is associated with a constant characteristic
impedance. Our closed-form solutions in the special case can be used to calculate L-C elements
from cutoff frequencies fC1 ∼ fC4 and Bloch impedance. The design parameters for this case are
fC1 = 0.726 GHz, fC2 = 1.953 GHz, fC3 = 2.351 GHz, fC4 = 6.311 GHz (these cutoff frequencies
are chosen approximately from Fig. 6 of [5]), and ZB = 50.00Ω. Then one gets four roots of T
(T1 = −1.558 × 1021, T2 = 2.744 × 1020, T3 = 4.499 × 1020, T4 = 8.335 × 1020) from Eq. (46). Only
T = 4.499 × 1020 satisfies the condition in Eq. (34). L-C elements are calculated from Eqs. (38)–
(45), and (47) as L1 = 1.534 nH, C1 = 3.604 pF, C2 = 7.428 pF, L2 = 0.7426 nH, C3 = 1.227 pF,
L3 = 4.505 nH, L4 = 9.284 nH, and C4 = 0.5941 pF. The cutoff frequencies fC5 ∼ fC8 are given as
fC5 = fC6 = 1.522 GHz, and fC7 = fC8 = 3.013 GHz from Eq. (45). Fig. 10 shows the S-parameters
of the designed E-CRLH TL connected 10 cells in cascade. From the calculated results, the proposed
approach gives us the results comparable with those in Fig. 6 of [5]. It confirms the good quality of our
method for designing S-parameters of E-CRLH TL circuit.



Progress In Electromagnetics Research C, Vol. 68, 2016 175

10

-60

-50

-40

-30

-20

-10

0

M
ag

ni
tu

de
 o

f 
S-

pa
ra

m
et

er
 [

dB
]

0 1 2 3 4 5 6 7
Frequency [GHz]

S11
S21RHRH LHLH

Figure 10. Computed S-parameters of E-CRLH TL for 10 cells network with L-C elements:
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Figure 11. Dispersion diagrams. (a) Dispersion diagram in a general unbalanced case for a desired
phase characteristic (φ0 = βd). (b) Dispersion diagram in a special case with the L-C elements in
Table 5.

4. DESIRED PHASE CHARACTERISTIC DESIGN

This section presents the design of E-CRLH TL to achieve a desired phase characteristic φ0 = βd (−φ0

in two LH bands, +φ0 in two RH bands) at four design frequencies fC1 ∼ fC4 as shown in Fig. 11(a).
It is useful for phase shift devices such as directional couplers and power dividers. For this case, the
design frequencies fC1 ∼ fC4 are determined from the equation:

ZhYv + 1 − cos(φ0) = 0. (48)

Similarly, for Eq. (21), design equations for C1, C2, L2, L3, L4, and C4 are retained as shown in Eq. (27),
except that C3 is given by

C3 =
1 − cos(φ0)

[(x1 + x2 + x3 + x4) − (x5 + x6 + x7 + x8)]L1
. (49)
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While the solutions for Eqs. (22)–(26) may be obtained easily from two solutions of Eq. (21) as the
transformation given in Appendix A. For a constant Bloch impedance of the special case, design
equations of C1, C2, L2, L3, L4, and C4 are the same as Eqs. (38)–(40), (42)–(44), and C3 is calculated
from Eq. (49). The relation between L1 and ZB becomes

L1 = ZB

√
1 − cos(φ0)

2 [(x1 + x2 + x3 + x4) − (x5 + x6 + x7 + x8)]
. (50)

For designing phase shift devices, it is important to achieve a desired phase characteristic at four
design frequencies fC1 ∼ fC4 and to have good impedance matching. A numerical example for designing
π/4 phase characteristic in a special case is shown in Table 5. The design procedures in the previous
sections are used for obtaining these L-C elements. Fig. 11(b) shows the corresponding dispersion
diagram calculated from the L-C elements in Table 5. The dispersion diagram correctly presents four
designed frequencies, fC1 = 1.500 GHz, fC2 = 2.500 GHz, fC3 = 4.000 GHz, and fC4 = 5.000 GHz at
the desired phase characteristics φ0 = π/4. Our calculated result covers the result in Fig. 2 of [9], in
which the balanced case with some specified conditions is a special case in this paper. Therefore, our
design equations are in a general form and can be used for many cases, while the design equations of [9]
may only be used for a special case.

Table 5. An example of π/4 phase characteristic.

φ0 = π/4 at fC1 = 1.500 GHz, fC2 = 2.500 GHz, fC3 = 4.000 GHz,
fC4 = 5.000 GHz, ZB = 50.00 Ω. T = 8.981 × 1020.
fC5 = fC6 = 2.000 GHz, fC7 = fC8 = 4.330 GHz.

Eqs. Sol.
L1 C1 C2 L2 C3 L3 L4 C4

[nH] [pF] [pF] [nH] [pF] [nH] [nH] [pF]
(21), (23)
(23), (26)

1, 2 1.52 2.63 3.65 0.584 1.22 3.29 4.56 0.468

5. CONCLUSION

This paper presents a new way for designing the E-CRLH TLs. All possible values of L-C elements to
achieve the desired characteristics of the E-CRLH TLs are shown by using new closed-form solutions.
Unlikely the previous methods, our method is helpful for various cases. The numerical results
demonstrate the usefulness of the method. Thus this study contributes to the theory and applications of
the E-CRLH TLs, and its results can be applied to design dual-, tri- and quad-band microwave devices.
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APPENDIX A. POSSIBLE SOLUTIONS FOR OTHER CASES

The solutions in the cases of Eqs. (22)–(26) are obtained easily from two solutions in the case of Eq. (21)
by the following transformation: x6 → x7, x7 → x6 in the case of Eq. (22), x7 → x8, x8 → x7

in the case of Eq. (23), x5 → x6, x6 → x5, x7 → x8, x8 → x7 in the case of Eq. (24),
x5 → x7, x6 → x5, x7 → x8, x8 → x6 in the case of Eq. (25), x5 → x6, x6 → x5 in the case of
Eq. (26).
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For example, two solutions in the case of Eq. (22) are obtained by interchanging x6 and x7 in
Eqs. (27) ∼ (29) as

Solution 1 : Solution 2 :

C1 = B0+
√

B2
0−4A0

2x5x6L1
, C1 = B0−

√
B2

0−4A0

2x5x6L1
,

C2 =
[(

x5+x6− 2x5x6

B0+
√

B2
0−4A0

−B0+
√

B2
0−4A0

2

)
L1

]−1

, C2 =
[(

x5+x6− 2x5x6

B0−
√

B2
0−4A

−B0−
√

B2
0−4A0

2

)
L1

]−1

,

L2 = 2

(B0+
√

B2
0−4A0)C2

, L2 = 2

(B0−
√

B2
0−4A0)C2

,

C3 = 2
[(x1+x2+x3+x4)−(x5+x6+x7+x8)]L1

, C3 = 2
[(x1+x2+x3+x4)−(x5+x6+x7+x8)]L1

,

L3 = B0−
√

B2
0−4A0

2x7x8C3
, L3 = B+

√
B2

0−4A0

2x7x8C3
,

L4 =
[(

x7+x8− 2x7x8

B0−
√

B2
0−4A0

−B0−
√

B2
0−4A0

2

)
C3

]−1

, L4 =
[(

x7+x8− 2x7x8

B0+
√

B2
0−4A0

−B0+
√

B2
0−4A0

2

)
C3

]−1

,

C4 = 2

(B0−
√

B2
0−4A0)L4

, C4 = 2

(B0+
√

B2
0−4A0)L4

,

(A1)

where A0 and B0 are calculated as follows:

A0 =
D − [x5x6(x7 + x8) + x7x8(x5 + x6)]

(x1 + x2 + x3 + x4) − (x5 + x6 + x7 + x8)
, (A2)

B0 =
E − [x5x6 + x7x8 + (x5 + x6)(x7 + x8)]

(x1 + x2 + x3 + x4) − (x5 + x6 + x7 + x8)
, (A3)

and other parameters D, E, xi are the same as in Eqs. (30) ∼ (32).
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