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Manipulation of One-Dimension Photonic Crystal Spectrum
via Perforated Silicon Slab

Borys Chernyshov* and Sergei I. Tarapov

Abstract—This paper describes the study of zone-spectra of one-dimension finite-element photonic
crystal quartz/silicon in the millimetre waveband. The silicon elements of photonic crystal are performed
as slabs with holes. The numerical and experimental investigations have demonstrated the possibility of
using the effective medium approach for the silicon element of photonic crystal. The paper introduces a
simple phenomenological formula for the calculation of effective permittivity of perforated silicon slab.

1. INTRODUCTION

As known, a photonic crystal is a structure in which the refractive index changes spatially and
periodically [1]. The major property of photonic crystals spectra is the existence of allowed and
forbidden bands of electromagnetic wave propagation. Such a structure of photonic crystals spectra
is similar to the structure of electron energy spectra in solids. The properties of photonic crystals allow
them to be widely used as frequency filters, lasers, waveguides with low losses, and as the key elements
in optical computers [2]. It is widely known that 1D, 2D, 3D photonic crystals consist of dielectric layers
[3]. The dielectric photonic crystals might be used in different frequency ranges including millimetre
range. A downside to dielectric photonic crystals is that it is impossible to manipulate the spectrum
band structure. There are many papers devoted to creating and controlling the photonic crystal spectra
using ferrites [4]. The presence of ferrites in photonic crystals permits to change the photonic band
gap by using the external permanent magnetic field. Unfortunately, to reach a sufficiently large shift of
band gap, it is necessary to apply a very large magnetic field (about 1kOe), so we cannot talk about
the efficient control of photonic band gap; and very large magnets would be required in any case. For
this reason, the actual problem is controlling the photonic band gap using the external electric field or
electromagnetic radiation instead of magnetic field. Semiconductor materials seem to be a promising
option for addressing this problem [5]. The use of these materials allows for varying the spectrum of
photonic crystal using the electromagnetic radiation, temperature or external bias voltage. However,
in the millimetre waveband, the losses in the semiconductor are very large and almost all energy of
electromagnetic wave is absorbed by the sample. To be able to use semiconductors in the microwave
range, these losses need to be reduced significantly. There are different ways to address this problem:
by, for example, using donor or acceptor dopes [6], low temperatures [7]. A possible way to reduce the
effect of losses in semiconductor is to structure the surface by perforating holes in a semiconductor slab.
But in this case, the continuous medium condition for all (d � λ) is not obvious. If so, every hole in
the sample must be considered as a separate element which is quite a difficult task.

The aim of this paper is to consider the use of a continuous medium model by examining the
transmission of electromagnetic waves through the perforated silicon slabs, which are the elements of
the photonic crystal.
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2. DESCRIPTION OF THE STRUCTURE, MOTION EQUATIONS

One-dimension finite-element photonic crystal (PC) consisting of 8 unit cells from quartz and silicon
(Fig. 1) is under investigation. The PC is constructed using slabs whose linear dimensions are
a × b = 7.2 × 3.4 mm (the experimental implementation is shown in Fig. 4). The permittivity of
quartz is assumed as ε1 = 3.8, and its width is d1 = 2 mm. The width of the silicon layer equals
d2 = 0.34 mm. The holes with a diameter of d = 0.5 were fabricated in the silicon. These holes are
located on the slab in different geometrical configurations: “5 × 3”; “6 × 4”; and “7 × 5” (Fig. 2). In
the first configuration, fifteen holes are located five in three rows. The second configuration comprises
twenty four holes located six in four rows. In the third configuration, thirty five holes are located seven
in five rows. To describe the complex permittivity of silicon, we use the known Drude model [8]:

ε2 = εp

[
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− ω2

pp
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]
, (1)

where ωpn, ωpp are plasma frequencies of electrons and holes in semiconductor; νn, νp are electrons and
holes collision frequencies; εp = 11, 8 is the lattice part of permittivity in silicon; ω is the frequency of
the incident electromagnetic wave.

The expression for the plasma frequency is given by [10]:

ωpn,p =
√

4πe2nn,p
/
m∗

n,pεp
, (2)

where nn,p are electrons and holes concentrations respectively; m∗
n,p are effective masses of charge

carriers; e is the electron charge.
The collision frequencies of charge carriers are coupled with carrier mobility and can be determined

using the relation [9]:
νn,p = e

/
μn,pm

∗
n,p, (3)

where μn,p is the electrons and holes mobility.

Figure 1. Dielectric photonic crystal: 1 — quartz
layer with the thickness d1, 2 — silicon layer with
the thickness d2.

(a) (b) (c)

Figure 2. Location of holes in silicon slab:
(a) “5 × 3”; (b) “6 × 4”; (c) “7 × 5”.

The electron and hole concentration values are coupled with the intrinsic carrier concentration in
the relation: n2

i = nnnp [11]. The intrinsic concentration value for silicon under room temperature
is ni = 1 · 1010 cm−3. The charge carrier mobility values are as follows: μn = 1400 cm2/(V·s),
μp = 500 cm2/(V·s). The charge carrier effective masses are equal to m∗

n = 0.98m0; m∗
p = 0.49m0,

where m0 is the mass of free electron.
Note that a similar structure made of metallic film with sub-wavelength holes dimensions was

considered in [12]. That paper shows that in metallic film with holes the abnormal transparency arises
due to the resonance interaction of surface plasmons with incident electromagnetic wave. Our paper
does not address the excitation of surface plasmons because the real part of silicon permittivity that
is under investigation here for the considered frequency range is positive. In this case, the surface
electromagnetic waves in the considered structure do not exist. Besides, there are papers in which
not metallic but semiconductor structure with holes is under investigation [13] where the holes in
semiconductor film are regarded as a photonic crystal. Disorder of position holes in the semiconductor
film lead to the generation of electromagnetic modes coupled with Anderson localization. In our paper,
the semiconductor slab with holes is not considered as a photonic crystal.
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The most common models for describing the averaged medium permittivity with positive real
part are Maxwell-Garnett’s model [14] and Bruggeman’s model [15]. These models are used for
electromagnetic description of media with spherical inclusions having dimensions well below the
wavelength. Note, however, that these models have a complicated form when describing medium with
permittivity as Eq. (1). In addition, in the structure considered in our paper, the inclusions have a
cylindrical form. In a thin slab approximation, these inclusions are circular, so they might hardly be
viewed as polarizing centres on which the Maxwell-Garnett and Bruggeman’s models are based.

We use a simple phenomenological formula for describing a silicon structure with holes in it. Our
formula uses the Drude formula as a basis in Eq. (1). In that formula, we introduce the fill factor
coefficient for holes in silicon slab. In this case, the form and location of holes are not taken into
account. The formula that we consider appears as follows:

εeff = ε2 (1 − δ) , (4)

where δ = V1/V2 is the fill factor coefficient of silicon slab, V1 the total volume of all holes in the slab,
and V2 the total slab volume.

In the case when the holes have a cylindrical form, and the slab is a rectangular parallelepiped.
The fill factor coefficient of silicon slab should be calculated as a ratio between the surface areas of all
holes and entire slab.

To calculate the transmission coefficients, we use the transmission matrix technique [16] and FDTD-
technique. The FDTD-technique has been realized by using CST Microwave Studio Suite Student
Edition. The transmission matrix for unit cell of the considered photonic crystal is given by:

M =
(

M11 M12

M21 M22

)
, (5)

where M11 = cos(k1d1) cos(k2d2) − (n2/n1) sin(k1d1) sin(k2d2); M12 = −i[(1/n2) cos(k1d1) sin(k2d2) +
(1/n1) sin(k1d1) cos(k2d2)]; M21 = −i[n1 sin(k1d1) cos(k2d2) + n2 cos(k1d1) sin(k2d2)]; M22 =
cos(k1d1) cos(k2d2) − (n1/n2) sin(k1d1) sin(k2d2).

The transmission matrix for all photonic crystals from 8 unit cells is given by m = M8. The
transmission coefficient is defined as: T =

∣∣t2∣∣, where t = 2/(m11 + m12 + m21 + m22).
The refractive indexes are determined as n1,2 = √

ε1,2 — in the case when a slab has no holes
and when there is no slab (thereat ε2 = 1 is the permittivity of air). In the case when a slab with
holes is used, the substitution ε2 → εeff takes place. Because the materials are non-magnetic, the
permeability equals 1 and does not affect the refractive indexes. The wavenumbers are defined as

k1,2 =
√

(ω/c)2 n1,2 − k2
x, where c is the light velocity in vacuum, and kx = π/a is the transverse

wavenumber in which a is the length of a long wall of waveguide. In our paper, the electron silicon
KEF-100 with electrons concentration nn = 2·1013 cm−3 is under investigation. The fill factor coefficient
of silicon slab with holes for different structures equals 0.125 for structure “5 × 3”; 0.19 for structure
“6 × 4”; and 0.28 for structure “7 × 5”. We also calculated two boundary cases: 1) silicon slabs are
regarded complete (“Full” in Fig. 3), and 2) there are not silicon slabs (photonic crystal quartz/air).
The results of calculations of transmission coefficient in the frequency range 0–120 GHz are presented in
Figs. 3(a), (b). In order to find a more effective way for calculating spectra, the following two methods
were employed: FDTD-technique and transmission matrix technique. In these figures, the minimum
values of transmission coefficients correspond to forbidden bands and maximum values correspond to
allowed bands. As can be seen, the fill factor coefficients corresponding to the forbidden bands shift
towards the higher frequencies as the number of holes in the silicon slab increases. At the same time,
the minimum values of transmission coefficients decrease, and their widths shrink by about 10%. It can
also be seen that the left edge of a forbidden band shifts more than the right edge.

The observed effect is explained by a change in the effective dielectric permittivity of slab caused
by a change in the fill factor coefficient of holes in the silicon slab.

It can be seen that the graphs in Fig. 3(a) and Fig. 3(b) have some differences with respect to the
minimum values that are less deep in Fig. 3(a). There is also an insignificant difference in the forbidden
bands widths.

The discrepancy in minimum values of transmission coefficients calculated using the FDTD and
matrix techniques is caused by the following factors: when using FDTD-technique, the calculating
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Figure 3. Numerical calculations of band structure spectra of photonic crystals with silicon slabs: (a)
FDTD-method; (b) transmission matrix method.

structure splits into tetrahedral cells. So this method allows to take into account the geometrical
parameters of the structure with a good precision about 0.01 mm (0.08 wavelength). In matrix technique,
we use the average, and this obviously means lower precision. Definitely, the FDTD-technique is much
more accurate. But the calculation process takes much more time (for comparison, the calculation
process is about half a minute with the matrix technique and about 5 minutes with the FDTD-
technique). The FDTD-technique also requires special software while the matrix technique does not.

3. DESCRIPTION OF THE EXPERIMENT

We inserted the photonic crystal comprising 8 unit cells from quartz and silicon layers in the measuring
cell using the technique described in [5]. The measuring cell is fitted to ports of Vector Network Analyzer
VNA Agilent PNA-L N5230 A. The measurement is carried out in the frequency range 22–40 GHz.

For the experiment, we used silicon slabs with holes of two configurations “5×3” & “6×4” to form
the photonic crystal (Fig. 4 (2, 3, 4)). The holes with a diameter of 0.5 mm were fabricated using laser
technology. The slab of configuration “7 × 5” was impossible to fabricate because of greater fragility
and shifting the holes toward the edge of the slab under bleaching. These slabs were therefore not
considered in the experiment.

The observed spectra are presented in Figs. 5(a), (b). The spectrum of photonic crystal formed by
slabs with “5 × 3” holes is much more precise than the spectrum of photonic crystal formed of slabs
with “6 × 4” holes. The absorption values in the forbidden band are about 18 dB. At the same time,

Figure 4. Measuring cell (1) and photonic crystal quartz/silicon (2); insert silicon slabs “5 × 3” (3)
and “6 × 4” (4).
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Figure 5. Experimental transmission spectra of photonic crystals: (a) with slabs “5 × 3”; (b) with
slabs “6 × 4”.

the absorption values in the forbidden band of photonic crystal formed of slabs with “6 × 4” holes do
not exceed 10 dB, and there are blips in the spectrum. It is likely to be associated with a large area of
oxide film that has been developed due to holes bleaching and possible cracks and cleavages of slabs.

4. RESULTS AND DISCUSSION

To analyse the results, a graph of dependence of left and right edges of forbidden bands upon the fill
factor coefficient of holes in the silicon slab has been plotted. On the graph (Fig. 6), the numerical
(matrix technique and FDTD-technique) and experimental results are presented. One can see from
Fig. 6 that the dependence of the left edges of forbidden band upon the fill factor coefficient of holes in
the silicon slab has a similar form. The left edge of the forbidden band frequency calculated using the
FDTD-technique is about 1GHz higher than that calculated using the transmission matrix technique.
In the experiment, the frequency of the left edge of forbidden band is about 2 GHz higher than that was
calculated by the transmission matrix technique. Thus, the quantitative discrepancy of the numerical
and experimental results is less than 10%. For the right edge of the forbidden band, the quantitative
consistency of numerical and experimental results is even better. It should be noted that the difference
between the numerical calculations produced using two above mentioned algorithms is practically
imperceptible, being less than 1%. The experimental values differ from the numerical estimates by less
than 1GHz (about 3%). The experiment shows quite good agreement with the numerical calculations,
so we can talk about the applicability of continuous medium model for photonic crystal that has been
considered in this paper.

The discrepancies in results are most likely caused by the shortcomings in the silicon slabs with
configuration “6×4”, such as cracks and cleavages (experimental data for photonic crystal from slabs of
this configuration type are less consistent with results of numerical calculations than those for photonic
crystal from slabs with configuration type “5 × 3”, Figs. 5(a), (b)). Furthermore, our model does not
take into account the development of the oxide film on the silicon surface. It might be important because
the oxide film with holes on the slab type “6 × 4” occupies most of the surface space in contrast to the
slab type “5 × 3”. This fact may lead to re-reflections, local deviations in periodicity and deterioration
of electromagnetic wave dumping in photonic crystal constructed of slabs of “6 × 4” configuration.

A quite good agreement between the calculations and experimental result suggests the t possibility
of using the continuous medium approach for describing the spectrum of photonic crystal quartz/silicon
with holes in silicon whose dimensions can be large enough and even within the order of wavelength.
The qualitative and quantitative comparison of results demonstrates the possibility of using the simple
formula for estimating the effective permittivity of the perforated silicon slab in the millimetre waveband.
Moreover, this approach permits not to take into account the form and location of imperfections and
also not to consider them as polarizing centres.
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Figure 6. The dependence of left edge frequency (fl) and right edge frequency (fr) of forbidden band
upon the fill factor coefficient of holes in silicon (δ): FDTD method; matrix method (Mat); experiment
(Exp).

5. CONCLUSIONS

The numerical and experimental investigations of one-dimension finite-element photonic crystal
quartz/silicon containing silicon slabs with holes whose dimensions are within the order of wavelength
has been carried out in the microwave range. A simple formula for calculating the effective permittivity
of perforated slabs which takes into account holes in silicon slab fill factor coefficient has been introduced
and verified. The experimental data show a quite good agreement with numerical calculation results
of spectrum of photonic crystal. The divergence between the numerical calculations and experimental
results is less than 10%. This small divergence confirms that the proposed formula well describes the
spectrum of photonic crystal quartz/silicon with holes whose dimensions are in the order of wavelength.
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