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Hierarchical Layer-Multiple-Scattering Theory for Metamaterials
of Clusters of Nonspherical Particles

Vassilios Yannopapas*

Abstract—We present a hierarchical layer-multiple-scattering method of electromagnetic waves for the
study of photonic structures consisting of many-scatterers per unit cell (clusters of scatterers) where
the scatterers are in general non-spherical and/or anisotropic or inhomogeneous. Our approach is a
two-stage process where we take into account all the multiple-scattering events involved: (a) among the
scatterers of the cluster comprising the unit cell of the structure, and (b) among the clusters within
the structure. As text cases, we model the optical properties of plasmonic metamaterials made from
clusters of gold nanocubes.

1. INTRODUCTION

Artificial photonic structures fall within three main categories: photonic crystals, plasmonic crystals
and metamaterials. Photonic crystals possess an absolute band gap, i.e., a frequency region where no
electromagnetic (EM) Bloch modes are allowed as a result of destructive interference allowing for the
passive control of light emission and flow within their volume. Plasmonic materials and metamaterials
operate both in the subwavelength regime, i.e., around the center of the Brillouin zone. Plasmonic
materials are mainly used for boosting electric field in small volumes and tailoring light absorption.
Metamaterials have more unconventional features such as negative refractive index and/or magnetic
permeability with application in optical microscopy, imaging and cloaking.

An indispensable theoretical tool for the modelling of photonic structures is the multiple-scattering
method for electromagnetic (EM) waves. There are two basic variations of the multiple-scattering
method: the bulk and the layer-multiple-scattering one. In the bulk multiple-scattering theory, one deals
with an infinitely periodic crystal and obtains the energy band structure for electrons in atomic solids [1],
or the frequency band structure for classical (EM and elastic) waves [2, 3]. In the layer-multiple-
scattering (LMS) formulation, one assumes periodic arrangement of scatterers in two dimensions (2D)
offering the possibility for the study of various configurations such as a single plane (monolayer) of
scatterers, a finite slab of several planes or scatterers or an infinitely periodic three-dimensional (3D)
crystal viewed as a succession of planes parallel to a given crystallographic direction. Within a given 2D
lattice (plane) of spheres, the EM field is written in terms of vector spherical waves and is obtained via
the multiple-scattering technique. In the space between two consecutive planes, the EM field is written
in a plane wave basis where the multiple-scattering between the planes is taken into account fully. A
slab of macroscopic thickness, i.e., containing several hundreds of planes of spheres, can be easily built
up via a doubling-layer process [4–6]. By imposing boundary conditions along the growth direction of
the crystal slab, one can also calculate the complex frequency band structure [4–6].

The LMS method has been mainly applied to model the optical properties of colloidal photonic
crystals and metamaterials of spherical scatterers which are usually realized by self-assembly. After
being generalized to treat non-spherical axi-symmetric scatterers [7, 8], the LMS method can simulate
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lithography-based structures such as arrays of plasmonic nanodisks and nanorods [9, 10]. Recently, the
LMS has been extended so as to treat anisotropic spherical scatterers [11, 12] whereby non-reciprocal
structures such as arrays of magnetized plasma spheres [13]. In order to model metamaterials consisting
of clusters of metallic nanoparticles [14, 15], the LMS has been generalized so that it can accommodate
many spheres per unit cell [16]. Lastly, a hybrid discrete-dipole approximation (DDA)/LMS method
has been developed so that the LMS can treat photonic structures of general scatterers, i.e., scatterers
of general (non-spherical) shape which might be anisotropic and/or inhomogeneous [17]. In this work,
we aim at merging the many-spheres per unit cell formalism of [16] with that of the hybrid DDA/LMS
method of [17] so that it can tackle photonic structures with many scatterers per unit cell where the
scatterers can in general be non-spherical, anisotropic and/or inhomogeneous. Such structures are
known as hierarchical metamaterials, and their modelling with standard EM solvers is very challenging
due to the involvement of two different length scales, i.e., the characteristic interparticle distance within
the cluster and the lattice constant (period) of the metamaterial. The latter, however, constitutes the
principle advantage of the presented method, i.e., the ability to deal with two different length scales
so as to simulate the optical response of hierarchical metamaterials. In the following, we present the
mathematical formalism of the developed many-scatterer per unit cell hybrid DDA/LMS method as
well as an application to the case of plasmonic structures made from clusters of gold nanocubes.

2. MULTIPOLE EXPANSION OF THE EM FIELD

Let us consider a harmonic EM wave of angular frequency ω which is described by its electric-field
component

E(r, t) = Re [E(r) exp(−iωt)] . (1)
In a homogeneous medium characterized by a dielectric function ε(ω)ε0 and a magnetic permeability
μ(ω)μ0, where ε0, μ0 are the electric permittivity and magnetic permeability of vacuum, Maxwell
equations imply that E(r) satisfies a vector Helmholtz equation, subject to the condition ∇ · E = 0,
with a wave number q = ω/c, where c = 1/

√
μεμ0ε0 = c0/

√
με is the velocity of light in the medium.

The spherical-wave expansion of E(r) is given by [18]

E(r) =
∞∑
l=1

l∑
m=−l

{
aH

lmfl(qr)Xlm(̂r) + aE
lm

i
q
∇× [fl(qr)Xlm(̂r)]

}
, (2)

where aP
lm (P = E,H) are coefficients to be determined. Xlm(̂r) are the so-called vector spherical

harmonics [18], and fl may be any linear combination of the spherical Bessel function, jl, and the
spherical Hankel function, h+

l . The corresponding magnetic induction, B(r), can be readily obtained
from E(r, t) using Maxwell’s equations,

B(r) =
√

εμ

c0

∞∑
l=1

l∑
m=−l

{
aE

lmfl(qr)Xlm(̂r) − aH
lm

i
q
∇× [fl(qr)Xlm(̂r)]

}
, (3)

and we shall not write it down explicitly in what follows.

3. SCATTERING BY A SINGLE SPHERICAL SCATTERER

In this section, we present a brief summary of the solution to the problem of EM scattering from a
single sphere (Mie scattering theory [18, 19]). We will make use of the compact notation of [20] for the
eigenfunctions and the angular-momentum indices, which allows for easier computer coding.

We consider a sphere of radius S, with its center at the origin of coordinates, and assume
that its electric permittivity εs and/or magnetic permeability μs are different from those, εh, μh, of
the surrounding homogeneous medium. An EM plane wave incident on this scatterer is described,
respectively, by Eq. (2) with fl = jl (since the plane wave is finite everywhere) and appropriate
coefficients a0

L, where L denotes collectively the indices Plm. That is,

E0(r) =
∑
L

a0
LJL(r) (4)



Progress In Electromagnetics Research B, Vol. 70, 2016 15

where
JElm(r) =

i
qh

∇× jl(qhr)Xlm(r̂), JHlm(r) = jl(qhr)Xlm(r̂) (5)

and qh =
√

εhμhω/c0. The coefficients a0
L depend on the amplitude, polarization and propagation

direction of the incident EM plane wave [4–6, 18].
Similarly, the wave that is scattered from the sphere is described by Eq. (2) with fl = h+

l , which has
the asymptotic form appropriate to an outgoing spherical wave: h+

l ≈ (−i)l exp(iqhr)/iqhr as r → ∞,
and appropriate expansion coefficients a+

L . Namely,

E+(r) =
∑
L

a+
LHL(r) (6)

where
HElm(r) =

i
qh

∇× h+
l (qhr)Xlm(r̂), HHlm(r) = h+

l (qhr)Xlm(r̂). (7)

The wavefield for r > S is the sum of the incident and scattered waves, i.e., Eout = E0 + E+. The
spherical-wave expansion of the field EI for r < R (inside the sphere) is obtained in a similar manner
by the requirement that it is finite at the origin (r = 0), i.e.,

EI(r) =
∑
L

aI
LJs

L(r) (8)

where Js
L(r) are given from Eq. (5) by replacing qh with qs =

√
εsμsω/c0.

By applying the requirement that the tangential components of E and H are continuous at the
surface of the scatterer, we obtain a relation between the expansion coefficients of the incident and the
scattered field, as follows:

a+
L =

∑
L′

TLL′a0
L′ , (9)

where TLL′ are the elements of the so-called scattering transition T -matrix [19]. Eq. (9) is valid for any
shape of scatterer; for spherically symmetric scatterers, each spherical wave scatters independently of
all others, which leads to a transition T -matrix which does not depend on m and is diagonal in l, i.e.,
TLL′ = TLδLL′ ; it is given by

TEl(ω) =

⎡
⎢⎣ jl(qsr)

∂

∂r
(rjl(qhr)) εs − jl(qhr)

∂

∂r
(rjl(qsr)) εh

h+
l (qhr) ∂

∂r (rjl(qsr)) εh − jl(qsr)
∂

∂r

(
rh+

l (qhr)
)
εs

⎤
⎥⎦

r=S

(10)

THl(ω) =

⎡
⎢⎣ jl(qsr)

∂

∂r
(rjl(qhr))μs − jl(qhr)

∂

∂r
(rjl(qsr))μh

h+
l (qhr)

∂

∂r
(rjl(qsr))μh − jl(qsr)

∂

∂r

(
rh+

l (qhr)
)
μs

⎤
⎥⎦

r=S

(11)

4. MULTIPLE-SCATTERING BY A NON-SPHERICAL SCATTERER

4.1. Discrete Dipole Approximation

Next, we study the optical response of a generally anisotropic scatterer of arbitrary shape using the
DDA [21–23]. The scattering object is considered as an array of point dipoles (i = 1, . . . , N), each of
which is located at the position ri and corresponds to a dipole moment Pi and a (position-dependent)
polarizability tensor α̃i. The above quantities are connected by

Pi = α̃iEi (12)
where Ei is the electric field at i-th dipole,

Ei = E0
i −

∑
j �=i

Aij ·Pj (13)
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which consists of the directly incident field E0
i as well as the field scattered by all the other dipoles

j �= i, and it is incident on the i-th dipole [second term of Eq. (13)]. The interaction matrix Aij is given
from

Aij =
exp(ikrij)

rij

[
k2 (r̂ij r̂ij − 13) +

ikrij − 1
r2
ij

(3r̂ij r̂ij − 13)

]
, i �= j (14)

where 13 is the 3×3 unit matrix, rij = ri −rj, r̂ij = rij/|rij |. By combining Eqs. (12) to (14) we obtain
a linear system of equations, i.e.,

N∑
j=1

AijPj = E0
i (15)

where the diagonal elements of the interaction matrix are essentially the inverse of the polarizability
tensor of each dipole, i.e.,

Aii = [α̃i]−1. (16)
For an anisotropic sphere characterized by a dielectric tensor ε̃s and immersed within an isotropic host
of dielectric constant εh, the polarizability tensor of the sphere is given by the Clausius-Mossoti formula
for anisotropic spheres, that is

α̃i = Vs
3εh

4π
[ε̃s − εh13] [ε̃s + 2εh13]

−1 . (17)

Equation (15) is preferentially solved by conjugate-gradient-type solvers for fast convergence [24].
Having determined the dipole moment Pi at each point dipole, one can calculate quantities such as the
scattering, extinction and absorption cross sections [21–23].

The scattered field E+(rp) at a given point rp in space is the sum of the (secondary) field emitted
by each dipole into which the actual scatterer is discretized, i.e.,

E+(rp) =
∑

i

ApiPi (18)

where Api is provided by Eq. (14), and the point in space does not coincide with one of the dipoles
(rp �= ri). The polarization vectors Pi at each point dipole are provided by Eq. (15).

4.2. Calculation of the T -Matrix via Point-Matching

The point-matching (PM) method for calculating the T -matrix of general scatterers has been first
proposed in [25]. Here, we restate the DDA-based PM method in the spirit of the LMS formalism [16].
Note in passing that a PM method for the calculation of the T -matrix has also been presented in
conjunction with the FDTD method [26]. Moreover, the PM method has been employed for obtaining
the T -matrix and the multipole moments for a collection of spherical scatterers [27].

We assume that a single spherical EM wave is incident on an arbitrary scatterer, i.e., E0(r) = JL0(r).
This means that in Eq. (9) we set a0

L = δLL0 which becomes

a+
L = TLL0 . (19)

Equation (6) becomes ∑
L

TLL0HL(rp) = E+(rp) (20)

The matrix elements of the L0-column of the T -matrix can be calculated from the above equation
provided that we know the scattered field E+ at a sufficient number of points rp in space. Eq. (20) must
be solved for different incident spherical waves JL0 in order to obtain all the T -matrix columns. Namely,
we calculate the scattered field via DDA [Eq. (18)] at several points on a spherical surface surrounding
the scatterer so that Eq. (20) becomes a linear system of equations for the T -matrix elements. However,
in practice, we calculate the scattered field E+ via DDA at a large number of points so that the unknowns
TLL0 are fewer than the system equations. In this case, Eq. (20) is solved by seeking a least-squares
solution.

The scattering/extinction and absorption cross sections of light scattered off a single scatterer can
be calculated in a spherical wave expansion by use of the obtained T -matrix — see Eq. (15) of [7].



Progress In Electromagnetics Research B, Vol. 70, 2016 17

5. MULTIPLE SCATTERING BY MANY SCATTERERS

5.1. Multiple Scattering by a Cluster of Scatterers

Next we consider a collection of Ns nonoverlapping spherical scatterers centered at sites Rn in a
homogeneous host medium. An outgoing vector spherical wave about Rn′ can be expanded in a series
of incoming vector spherical waves around Rn as follows

HL′ (r− Rn′) =
∑
L

Ωnn′
LL′JL (r− Rn) . (21)

An outgoing vector spherical wave about Rn′ can be expanded in a series of outgoing vector spherical
waves around Rn as follows

HL′ (r − Rn′) =
∑
L

Ξnn′
LL′HL (r− Rn) . (22)

and similarly for incoming vector spherical waves

JL′ (r − Rn′) =
∑
L

Ξnn′
LL′JL (r− Rn) . (23)

Explicit formulae for the matrices Ω and Ξ are given elsewhere [16]. These matrices do not depend on
the material properties of the scatterers but on their particular arrangement in space. From Eq. (21)
we can express an outgoing EM wave about Rn′ ,

∑
L′ b

+n′
L′ HL′(r−Rn′), as an incoming EM wave about

Rn,
∑

L b
′n
L JL(r− Rn), as follows

b
′n
L (n′) =

∑
L′

Ωnn′
LL′b+n′

L′ . (24)

The wave scattered from the sphere at Rn is determined by the total incident wave on that sphere, i.e.,

b+n
L =

∑
L′

T n
LL′

⎡
⎣a0n

L′ +
∑
n′ �=n

b
′n
L′(n′)

⎤
⎦ , (25)

where T n
LL′ = T n

LδLL′ is the T -matrix for the sphere at Rn, and a0n
L are the spherical-wave expansion

coefficients of an externally incident wave. Eq. (25) can be written as
∑
n′L′

[
δnn′δLL′ −

∑
L′′

T n
LL′′Ωnn′

L′′L′

]
b+n′
L′ =

∑
L′

T n
LL′a0n

L′ . (26)

The above equation is the basic equation of multiple scattering and can be solved either by standard
linear-system numerical solvers or iteratively [28]. The solution provides the scattering wave b+n

L

outgoing from each sphere of the collection for a given externally incident wave a0n
L . Having calculated

b+n
L from Eq. (26) one can readily find the coefficients b

′n
L (n′) from Eq. (24) and therefore the total

incident wave to each sphere of the collection given by the square brackets of Eq. (25).
The electric field outside the spheres, Eout, is written as the sum of the scattered field from all

spheres plus the incident wave field, i.e.,
Eout(r) = Esc(r) + E0(r) (27)

where the incident field E0 is given by Eq. (4), and Esc is given as follows

Esc(r) =
Ns∑
n=1

∑
L

b+n
L HL (r− Rn) . (28)

In order to incorporate of a cluster of spherical scatterers within the existing LMS code as single
scattering entity, we need to calculate the scattering T -matrix T cl

LL′ of the entire cluster. It can be
shown that the scattering matrix T cl

LL′ assumes the form [20]

T cl
LL′ =

∑
nn′

∑
L′′L′′′

Ξ0n
LL′′

[
[I − TΩ]−1 T

]nn′

L′′L′′′
Ξn′0

L′′′L′ , (29)
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where the matrix [I − TΩ] is the one appearing in the left-hand side of Eq. (26). T cl
LL′ contains

nondiagonal elements in general. We note that alternative formulations of the EM scattering by a
finite number of scatterers were developed in the past [2, 3]. However, the formalism presented above is
suitable for embedding the T -matrix of Eq. (29) in the existing LMS formalism.

5.2. Multiple-Scattering within a 2D Plane of Scatterers

The structures that we are interested in usually contain more than one plane of scatterers, but to begin
with, we consider just one plane, at z = 0, in which case the single scatterers or the clusters of scatterers,
which do not overlap with each other, are centred on the sites Rn of a given 2D lattice. We define the
2D reciprocal vectors g and the surface Brillouin zone (SBZ) corresponding to this lattice in the usual
manner [5, 6].

Let the plane wave, described by Eq. (1), be incident on this plane of (single or clusters of)
scatterers. We can always write the component of its wavevector parallel to the plane of scatterers, as
follows

q‖ = k‖ + g′ (30)

where the reduced wavevector k‖ lies in the SBZ, and g′ is a certain reciprocal vector. In what follows,
we shall write the wavevector of a plane wave of given q =

√
μεω/c and given q‖ = k‖ + g as follows

K±
g =

(
k‖ + g, ±

[
q2 −

(
k‖ + g

)2
]1/2

)
(31)

where the +,− sign defines the sign of the z component of the wavevector. We note that when
q2 < (k‖ + g)2, the above defines a decaying wave; the positive sign in Eq. (31) describes a wave
propagating or decaying to the right, and the negative sign describes a wave propagating or decaying
to the left.

We write the electric field of the incident wave in the form

Es′
in(r) =

2∑
i′=1

[Ein]s
′

g′i′ exp
(
iKs′

g′ · r
)
êi′ (32)

where s′ = +(−) corresponds to a propagating or decaying wave incident on the plane of spheres from
the left (right), and ê1, ê2 are the polar and azimuthal unit vectors, respectively, which are perpendicular
to Ks′

g′ . In the same manner [according to Eq. (31)] we define, for given k‖ and q, a wavevector Ks
g and

the corresponding êi for any g and s = ±. In this way, we can expand the electric-field component of
an EM wave into p- and s-polarized transverse plane waves, i.e., polarized along ê1 and ê2, respectively.
We note that, in the case of a decaying wave, the unit vectors ê1 and ê2 are complex, but they are still
orthonormal (êi · êj = δij , i, j = 1, 2). The coefficients a0

L in the expansion in Eq. (4) of the plane wave
in Eq. (32) can be written in the following form

a0
L =

2∑
i′=1

A0
L;i′

(
Ks′

g′
)

[Ein]s
′

g′i′ , for P = E,H (33)

where the coefficients A0
L are provided by

A0
Elm

(
K̂s′

g′
)

=
4πil(−1)m+1√

l(l + 1)

{
i
[
αm

l eiφY −m−1
l

(
K̂s′

g′
)
− α−m

l e−iφY −m+1
l

(
K̂s′

g′
)]

ê1

−
[
αm

l cos θeiφY −m−1
l

(
K̂s′

g′
)

+ m sin θY −m
l

(
K̂s′

g′
)

+α−m
l cos θe−iφY −m+1

l

(
K̂s′

g′
)]

ê2

}
, (34)
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and

A0
Hlm

(
K̂s′

g′
)

=
4πil(−1)m+1√

l(l + 1)

{[
αm

l cos θeiφY −m−1
l (K̂s′

g′) + m sin θY −m
l

(
K̂s′

g′
)

+α−m
l cos θe−iφY −m+1

l

(
K̂s′

g′
)]

ê1

+i
[
αm

l eiφY −m−1
l

(
K̂s′

g′
)
− α−m

l e−iφY −m+1
l

(
K̂s′

g′
)]

ê2

}
, (35)

where θ, φ are the angular variables (K̂s′
g′) of Ks′

g′ .
Because of the 2D periodicity of the plane of (single or clusters of) scatterers, the wave scattered

from it, when the wave in Eq. (32) is incident upon it, has the following form

Esc(r) =
∑
Rn

exp
(
ik‖ · Rn

) ∑
L

b+
LHL(rn) (36)

where rn = r − Rn. The coefficients b+
L , which depend linearly on the amplitude of the incident wave,

can be written as follows

b+
L =

2∑
i′=1

B+
L;i′

(
Ks′

g′
)

[Ein]s
′

g′i′ . (37)

We obtain B+
L in terms of the coefficients A0

L of Eqs. (34) and (35), by solving the following system of
linear equations [5, 6]∑

L′

[
δLL′ −

∑
L′′

TLL′′ΩL′′L′

]
B+

L′;i′

(
Ks′

g′
)

=
∑
L′

TLL′A0
L′;i′

(
Ks′

g′
)

. (38)

The matrix elements ΩLL′ depend on the geometry of the plane, on the reduced wavevector k‖ and on
the frequency ω of the incident wave. They are the Fourier transform of the Ωnn′

LL′ introduced in Sec. 5
(explicit relations of which are provided elsewhere [16]). The scattering matrix TLL′ for a single sphere
is provided by Eqs. (10) and (11). For a single non-spherical scatterer, the T-matrix TLL′ is provided
numerically by solving Eq. (20). For a cluster of spheres, TLL′ is provided by Eq. (29).

Finally, the scattered wave in Eq. (36) is expressed as a sum of plane waves as follows

Es
sc(r) =

2∑
i=1

∑
g

[Esc]
s
gi exp

(
iKs

g · r
)
êi (39)

where the superscript s = +(−) holds for z > 0 (z < 0). Though the scattered wave consists, in general,
of a number of diffracted beams corresponding to different g vectors, only beams for which Ks

gz is real
constitute propagating waves. The coefficients in Eq. (39) are given by

[Esc]sgi =
∑
L

ΔL;i

(
Ks

g

)
B+

L;i

(
Ks′

g′
)

(40)

where ΔL;i(Ks
g) are provided by

ΔElm

(
Ks

g

)
=

2π(−i)l

qA0K
+
gz

√
l(l + 1)

{
i
[
α−m

l eiφY m−1
l

(
K̂s

g

)
− αm

l e−iφY m+1
l

(
K̂s

g

)]
ê1

−
[
α−m

l cos θeiφY m−1
l

(
K̂s

g

)
−m sin θY m

l

(
K̂s

g

)
+αm

l cos θe−iφY m+1
l

(
K̂s

g

)]
ê2

}
, (41)

ΔHlm

(
Ks

g

)
=

2π(−i)l

qA0K
+
gz

√
l(l + 1)

{ [
α−m

l cos θeiφY m−1
l

(
K̂s

g

)

−m sin θY m
l

(
K̂s

g

)
+ αm

l cos θe−iφY m+1
l

(
K̂s

g

)]
ê1

+i
[
α−m

l eiφY m−1
l

(
K̂s

g

)
− αm

l e−iφY m+1
l

(
K̂s

g

)]
ê2

}
, (42)
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where θ, φ denote the angular variables (K̂s
g) of Ks

g. We note that the z component of Ks
g (denoted

by Ks
gz) can be real or imaginary. We point out that according to Eq. (40), [Esc]sgi depend on the

incident plane wave through the coefficients B+
L;i′(K

s′
g′). These coefficients are evaluated for an incident

plane wave with parallel wavevector k‖ + g′, incident from the left (right) corresponding to s′ = +(−),
with an electric field, along the i′th direction, of magnitude equal to unity. In other words, B+

L;i′(K
s′
g′)

are calculated from Eq. (38) by substituting in the right-hand side of this equation A0
L;i′(K

s′
g′) from

Eqs. (34) and (35).
For example, when a plane wave in Eq. (32) is incident on the plane of scatterers from the left, the

transmitted wave (incident + scattered) on the right of the plane of scatterers is given by

E+
tr(r) =

2∑
i=1

∑
g

[Etr]+gi exp
(
iK+

g · r
)
êi, z > 0 (43)

with
[Etr]

+
gi = [Ein]+g′i δgg′ + [Esc]

+
gi =

∑
i′

M++
gi;g′i′ [Ein]+g′i′ (44)

and the reflected wave by

E−
rf (r) =

2∑
i=1

∑
g

[Erf ]−gi exp
(
iK−

g · r
)
êi, z < 0 (45)

with
[Erf ]−gi = [Esc]

−
gi =

∑
i′

M−+
gi;g′i′ [Ein]+g′i′ (46)

Similarly, we can define the transmission matrix elements M−−
gi;g′i′ and the reflection matrix elements

M+−
gi;g′i′ for a plane wave incident on the plane of scatterers from the right. Using Eq. (40) we obtain

M ss′
gi;g′i′ = δss′δgg′δii′ +

∑
L

ΔL;i

(
Ks

g

)
B+

L;i′

(
Ks′

g′
)

(47)

The matrix elements M ss′
gi; g′i′ obey the following symmetry relation [5, 6]

M−s−s′
gi;g′i′ = (−1)i+i′M ss′

gi;g′i′ (48)

The transmission/reflection matrices of a stack of planes of scatterers with the same 2D periodicity
parallel to the xy plane are obtained from the transmission/reflection matrices of the individual
planes [5, 6]. We express the waves on the left of a given plane of scatterers with respect to an origin,
Al, on the left of the plane at −dl from its centre and the waves on the right of this plane with respect
to an origin, Ar, on the right of the plane at dr from its centre. With the above choice of origins the
transmission/reflection matrix elements of a plane of (single or clusters of) scatterers become

QI
gi;g′i′ = M++

gi; g′i′ exp
(
i(K+

g · dr + K+
g′ · dl)

)
QII

gi;g′i′ = M+−
gi; g′i′ exp

(
i(K+

g · dr − K−
g′ · dr)

)
QIII

gi;g′i′ = M−+
gi; g′i′ exp

(
−i(K−

g · dl − K+
g′ · dl)

)
QIV

gi;g′i′ = M−−
gi; g′i′ exp

(
−i(K−

g · dl + K−
g′ · dr)

)
(49)

In what follows we shall write the above matrix elements in compact form: QI, QII, QIII, and QIV

which implies a definite sequence in the ordering of the indices: g11, g12, g21, g22, . . ..
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5.3. Multiple-Scattering within a Slab of Many 2D Planes of Scatterers

We obtain the transmission and reflection matrices of two successive 2D planes of scatterers, 1 and 2,
by combining the matrices of the two elements, as shown schematically in Fig. 1. It is worth noting
that each element need not be exclusively a single plane of scatterers, but it may comprise many 2D
planes of identical or different scatterers wherein each scatterer may be a single non-spherical objects
or a cluster of non-spherical objects. One can easily prove that the transmission and reflection matrices
for the pair of elements, denoted by Q(1, 2), are

QI(1, 2) = QI(2)
[
I− QII(1)QIII(2)

]−1
QI(1)

QII(1, 2) = QII(2) + QI(2)QII(1) ×
[
I − QIII(2)QII(1)

]−1
QIV(2)

QIII(1, 2) = QIII(1) + QIV(1)QIII(2) ×
[
I− QII(1)QIII(2)

]−1
QI(1)

QIV(1, 2) = QIV(1)
[
I − QIII(2)QII(1)

]−1
QIV(2)

(50)

All matrices refer of course to the same ω and k‖. We note in particular that the waves on the left
(right) of the pair of elements are referred to an origin at −dl(1) (+dr(2)) from the centre of the 1st
(2nd) element.

It is obvious that we can repeat the process to obtain the transmission and reflection matrices of
three elements, by combining those of the pair of elements with those of the third element, and that
we can in a similar fashion repeat the process to obtain the scattering matrices of a slab consisting of
any finite number of elements. However, a slab may consist of a number of identical elements stacked
together along the z-axis (normal to the surface of the slab). We assume that the slab consists of 2N

elements, where N = 0, 1, 2, . . ..
Having calculated the Q-matrix elements of a single element, we obtain those of the slab, by

a doubling-layer scheme as follows: we first obtain the Q-matrix of two consecutive elements in the
manner described above; then, using as units the Q-matrix of a pair of elements, we obtain those of
four consecutive elements, and in this way, by doubling the number of elements at each stage we finally
obtain the Q-matrix elements of the 2N elements of the slab.

In summary, for a plane wave
∑

i[Ein]+g′i exp(iK+
g′ ·(r−AL))êi, incident on the slab from the left, we

finally obtain a reflected wave
∑

gi[Erf ]−gi exp(iK−
g · (r−AL))êi on the left of the slab and a transmitted

wave
∑

gi[Etr]+gi exp(iK+
g · (r−AR))êi on the right of the slab, where AL (AR) is the appropriate origin

1 2
Q1

III

Q1
IV

Q1
I Q2

I

Q1
II Q2

II

Q2
III

Q2
IV

Figure 1. Schematic definition of the scattering Q-matrices of two finite slabs. For the calculation
of the scattering matrix of the pair of slabs one takes into account all the multiple-scattering paths
between the two constituent slabs.
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on the left (right) of the slab. We have

[Etr]
+
gi =

∑
i′

QI
gi;g′i′ [Ein]+g′i′ (51)

[Erf ]−gi =
∑
i′

QIII
gi;g′i′ [Ein]+g′i′ (52)

where the Q-matrix elements are those of the whole slab.
When we have calculated the transmitted wave in Eq. (51) and reflected wave in Eq. (52),

corresponding to the given incident wave, we can obtain the transmittance T and reflectivity R of
the slab. T (R) is defined as the ratio of the flux of the transmitted (reflected) wave to the flux of the
incident wave. Integrating the Poynting vector over the xy-plane, on the appropriate side of the slab
and taking the time average over a period T = 2π/ω, we obtain

T =

∑
g,i [Etr]

+
gi

(
[Etr]

+
gi

)∗
K+

gz∑
i [Ein]+g′i

(
[Ein]+g′i

)∗
K+

g′z

R =

∑
g,i [Erf ]−gi

(
[Erf ]−gi

)∗
K+

gz∑
i [Ein]+g′i

(
[Ein]+g′i

)∗
K+

g′z

(53)

where the ∗ sign denotes complex conjugation as usual. If the structure contains light-absorbing
materials, the requirement of energy conservation implies that the absorbance A of the slab is

A = 1 − T −R (54)

6. TEST EXAMPLE

The technique presented so far has a hierarchical structure which is demonstrated with the following
test cases. Namely, we start by calculating the scattering from a single metallic (gold) nanocube (see
Fig. 2), then we proceed to solving the scattering problem for a cluster of gold nanocubes (see Fig. 3)
whereby we solve the problem of light scattering of a square lattice of clusters of nanocubes (see Fig. 4)
or from a slab of square lattices (layers) of clusters of nanocubes (see Fig. 5).

First we find the scattering T -matrix as well as the corresponding extinction, absorption and
scattering spectra for 100 nm gold nanocube based on the point-matching method of Sec. 4.2. The
dielectric function of gold is taken from experiment [29]. Fig. 2 shows the cross-sections for linearly
polarized light incident normally on a nanocube face. The curves are obtained by discretizing the cubes
into 103 = 1000 dipoles while the cutoff in the angular-momentum expansion is taken lmax = 7. We note
that the cross sections already converge for a lower cutoff (lmax = 4); however, for the periodic photonic
structures of gold nanocubes studied right below, a higher angular-momentum cutoff (lmax = 7) is
needed to achieve convergence [4–6]. The evident peak in all three curves of Fig. 2 is attributed to the
excitation of the surface plasmon resonance at 540 nm (when defined from the absorption cross section).

A note on the numerical accuracy of the presented method. The multiple-scattering methods
are, in general, semi-analytical methods and therefore contain minimum numerical errors. The only
numerically involved part of the presented hierarchical multiple-scattering theory is the point-matching
method which provides the scattering T -matrix of a general non-spherical object. The relative error in
the point-matching method is 1.3% [17] which is also the principle numerical error of the entire method.

Having calculated the T -matrix for a single 100 nm gold nanocube as described in Sec. 4.2, we apply
the real-space multiple-scattering formalism of Sec. 5 to obtain the total scattering matrix, i.e., Eq. (29)
of the cluster of nanocubes shown in Fig. 3. The corresponding extinction, scattering and absorption
spectra can be found from Eq. (15) of [7] which is based on the elements of a given T -matrix. The
general features of all spectra are similar to those of a single nanocube (Fig. 2) except from a ‘fat tail’
in the extinction and scattering spectra at long wavelengths which is absent for a single nanocube. This
is an expected result stemming from the interaction of the surface-plasmons among the nanocubes of
the cluster.
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Figure 2. (Color online) Extinction (solid),
scattering (dashed) and absorption (dotted line)
cross sections (in arbitrary units) for light incident
normally on one of the faces of gold nanocube
(shown in the top) with 100 nm edge. The curves
are calculated by assuming 1000 dipoles in the
DDA and lmax = 7 in the angular momentum
expansion.
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Figure 3. (Color online) Extinction (solid),
scattering (dashed) and absorption (dot-
ted line) cross sections (in arbitrary units)
for light incident normally on the cluster
of 100 nm gold nanocubes (shown in the
top). The cubes are positioned at the points:
(0, 0, 0), (200, 0, 0), (−200, 0, 0), (0, 200, 0), (0,−200, 0)
in nm units. The curves are calculated by as-
suming lmax = 7 in the angular momentum
expansion.

The total T -matrix [Eq. (29)] for the cluster of nanocubes is embedded within the LMS formalism
[see Eq. (38)] whereby we can model the EM response of 2D or 3D lattices which possess the cluster of
nanocubes as unit cell shown in Fig. 3. Indeed, in Fig. 4 we show the transmittance, reflectance and
absorbance spectra for light incident normally on a 2D square lattice of clusters of nanocubes of Fig. 3.
In the absorbance spectrum, apart from the main peak around 545 nm due to the surface-plasmon
excitation of the nanocubes, there is a distinct peak at λ = α/2 = 325 nm (corresponding to a dip in
the transmittance spectrum) as well as a dip at λ = α/

√
2 = 459 nm (corresponding to a peak of the

transmittance spectrum). Both the above features stem from the periodicity of the nanocube array and
are characterized as Wood anomalies; they correspond to the wavelengths for which the z-component of
the wavevector diffracted beams, i.e., the z-component of the wavevector of Eq. (31), is equal to zero.
There occurs a Wood anomaly at λ = α = 650 nm as well, but it is less evident than the other two at
λ = 459, 325 nm.

In Fig. 5, we study a 3D simple cubic crystal whose sites are occupied by the cluster of nanocubes of
Fig. 3. Fig. 5(a) shows the frequency band structure (dispersion relation) of a (infinitely periodic) simple
cubic crystal of lattice constant of 650 nm. Figs. 5(b) and (c) depict the reflectance and absorbance of
light incident normally on finite slabs of the simple cubic crystal of Fig. 5(a). The various slabs consist
of 1, 2 and 4 layers (each layer is a 2D square lattice of clusters of nanocubes). Evidently, as the number
of layers (slab thickness) increases the absorbance curve increases too, except for longer wavelengths
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Figure 4. (Color online) Transmittance,
reflectance and absorbance for light incident
normally on an infinitely periodic 2D square
lattice where the unit cell is the cluster of cubes
of Fig. 3. The lattice constant a = 650 nm.

-0.2 0.0
300

400

500

600

700

λ
 (

nm
)

300

400

500

600

700

k  α/π
-0.1 0.1 0.3 0.6 0.9 0.3 0.6 0.9

z Reflectance Absorbance

4 planes
2 planes
1 plane

(a) (b) (c)

Figure 5. (Color online) (a) Dispersion curves
along the [0, 0, 1] crystallographic direction of
simple cubic crystal where the periodic unit is the
cluster of cubes of Fig. 3. The lattice constant
of the simple cubic lattice is a = 650 nm. (b)
Reflectance and (c) absorbance of light incident
normally on finite slabs of various thicknesses
(number of layers) of the simple cubic crystal of
(a).

(above 600 nm) where absorbance is suppressed due to the enhance reflectivity which is because of weak
coupling of incident light with the crystal modes within the slab.

7. CONCLUSION

We have presented an extension of the layer-multiple-scattering technique so that it can accommodate
clusters of general-shaped scatterers. The developed technique breaks down to two stages of EM
multiple-scattering, i.e., within the (finite) cluster of scatterers and within the (infinite) 2D or 3D lattice
of clusters. The scattering off a single scatterer is solved via a hybrid discrete-dipole approximation/T -
matrix method based on a point-matching module. The developed formalism is applied to the modelling
of 2D and 3D periodic lattices consisting of gold nanocubes in terms of the optical properties. The
generalization of the layer-multiple-scattering method to many non-spherical scatterers is potentially
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useful for thin plasmonic metasurfaces [30] where the corresponding unit cell consists of dissimilar
scatterers.
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