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A Visibility-Domain Reconstruction Technique for Optical
Interferometry Imaging

Mu-Min Chiou and Jean-Fu Kiang*

Abstract—A visibility-domain processing for optical interferometric imaging (VP-OII) method is
proposed to model the visibility distribution of an image, and a phase recovery technique is proposed to
acquire additional visibility data from the powerspectrum and closure-phase data. This method requires
only a few tunable parameters, and can be easily extended to include more data acquired from different
instruments. By simulating the reconstruction of an LkHα 101 image, the proposed method proves a
few hundreds times faster and is more resilient to noise than the conventional MIRA.

1. INTRODUCTION

Optical interferometry imaging (OII) technique was used to reconstruct an image from the measured
visibility, powerspectrum and phase-closure data [1], which were related to the image via a measurement
equation [2]. Due to under-sampling of measurement data in the spatial-frequency domain and
atmospheric noise on the measurement data, an ill-posed inverse problem was formed when applying
the OII technique. A regularization term, based on a prior solution, was chosen to reduce the ambiguity
of solution due to under-sampling and to make the solution less affected by the atmospheric noise.
However, the reconstructed image was dependent on the regularization term and the initial guesses [3].

Various gradient-based algorithms were proposed, including BBM (building block mapping) [4],
WISARD (weak-phase interferometric sample alternating reconstruction device) [5], MIRA (multi-
aperture image reconstruction algorithm) [6], IRBis (image reconstruction software using the
bispectrum) [7], MACIM (Monte-Carlo imaging) [8], etc. MIRA is one of the commonly used algorithms,
which is based on direct optimization under a Bayesian criterion [9]. The image is related to the visibility
data via a Fourier transform pair, the deviations defined in the visibility domain and the image domain
are alternately minimized to converge to the final image, and some regularization terms and weighting
coefficients are required.

Optical interferometric data were collected with polychromatic instruments like PIONEER [10],
VEGA [11] and GRAVITY [12]. A polychromatic optical interferometric reconstruction software
(PAINTER), which is a spatiospectral image reconstruction algorithm, was proposed to alternately
adjust the polychromatic images and their complex differential phases [13]. In [14], an algorithm for
polychromatic interferometric imaging was proposed to acquire a spatiospectral brightness distribution,
assuming that the image was composed of multiple point-like sources, and some regularization terms
were designed to acquire an optimal image. In [15], an OII method was presented in terms of a
supersymmetric rank-1, order-3 tensor built from vectors representing the image of interest. This
method was applied only to small-size images due to high dimensionality of unknowns.

Modern computer and control technology has enabled the interferometric combination of light
from separate telescopes in the visible and infrared regimes [16]. Large amount of visibility data,
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powerspectrum and closure-phase will be provided with optical interferometers. Taking VLTI Spectro-
Imager (VSI) for example, 28 visibility data in every wavelength channel are measured within a few
minutes by combining up to 8 telescopes. Assuming an observation period of 6 hours at sampling
interval of 10 minutes in 32 channels, 32,256 data will be collected. By combining more interferometers
worldwide, the amount of data will increase even more [16]. Hence, a more efficient algorithm is required
to deal with the increasing trend of visibility data.

A visibility-domain processing for optical interferometric imaging (VP-OII) method is proposed
in this work, which can keep pace with the data growth more easily. The VP-OII processes the data
mainly in the visibility domain, instead of switching between the image and the visibility domains. This
method depends less on the initial guesses, and the number of tunable parameters are very limited.

An image of LkHα 101 [17] is adopted for testing in this work, and the optical interferometric data
are simulated on the configuration of the six-station Navy Prototype Optical Interferometer (NPOI) [18]
plus GRAVITY to verify the efficacy of the proposed method. If the brightness distribution has
a weak dependence on wavelengths [9, 19], polychromatic measurement data can be used to further
enhance the reconstructed image [14, 20]. Based on this idea, the powerspectrum and phase-closure
data at multiple wavelengths are simulated on the configurations of NPOI and CHARA [11], to acquire
additional visibility data.

This paper is organized as follows. The MIRA is briefly reviewed in Section 2; the proposed VP-
OII method is presented in Section 3; the simulation scenario and results are discussed in Sections 4.
Finally, some conclusions are drawn in Section 5.

2. REVIEW OF MULTI-APERTURE IMAGE RECONSTRUCTION ALGORITHM
(MIRA)

A visibility data vpq = |vpq|ejφpq is derived from the measurement data of two telescopes, Tp and Tq.
The phase difference measured between Tp and Tq is degraded by the atmospheric turbulence as [9]

φmea
pq = φpq + ψq − ψp + npq (1)

where ψq −ψp is the differential piston induced by turbulence, and npq is an additive noise. Given a set
of three telescopes, Tp, Tq and Tr, three phase data can be represented as

φmea
pq = φpq + ψq − ψp + npq, φmea

qr = φqr + ψr − ψq + nqr, φmea
rp = φrp + ψp − ψr + nrp

along with a phase-closure data

βmea
pqr = mod

{
φmea

pq + φmea
qr + φmea

rp , 2π
}

= mod {φpq + φqr + φrp + npqr, 2π} (2)

where npqr = npq + nqr + nrp, and the differential pistons are canceled out.
Any phase-closure data βpqr can be represented in terms of three phase-closure data that involving

telescope T1 as βpqr = β1pq+β1qr+β1rp. Thus, there will be (Nt−1)(Nt−2)/2 independent phase-closure
data when Nt telescopes are used [9]. A powerspectrum data is related to a visibility data as

smea
pq = |vpq|2 + nspq (3)

where nspq is a zero-mean Gaussian noise, with its variance depending on the integration time.
Figure 1 shows the coordinate systems to present the image, the visibility data and the telescope

positions; where ν̂u and ν̂v are the unit vectors parallel to the geographic east-west and north-south
directions, respectively; θ̂u and θ̂v are the unit vectors parallel to ν̂u and ν̂v, respectively; (θu, θv) is the
angular position of an image pixel, measured with respect to the image center at r̄c; (νu, νv) represents
a baseline in unit of wavelengths; r̄p and r̄q are the position vectors of telescopes Tp and Tq, respectively.

The visibility data vnv , of an image x̄, at the spatial frequency ν̄nv is represented as [3]

vnv =
N∑

n=1

ej2πθ̄n·ν̄nvxn (4)

with 1 ≤ nv ≤ Nv, where N and Nv are the number of image pixels and visibility data, respectively.
The nth image pixel is located at θ̄n = θ̂uθun + θ̂vθvn, and the nvth visibility data is located at
ν̄nv = ν̂uνunv + ν̂vνvnv .
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Figure 1. Coordinate systems to present image and visibility data, the telescopes are labeled with the
Earth-centered Earth-fixed coordinates.

The image can be reconstructed from the measurement data and the prior information, by
minimizing an object function as [6]

x̄opt = argmin
x̄∈Ω

{
fx̄(x̄, v̄mea, s̄mea, β̄mea) + c1fprior(x̄, x̄prior)

}
(5)

where v̄mea, s̄mea and β̄mea are the measured visibility, powerspectrum and phase-closure data,
respectively; fprior(x̄) is a regularization function, c1 is a hyper-parameter, and

Ω =

{
x̄|xn ≥ 0,

N∑
n=1

xn = 1

}
(6)

is a set of normalized images with non-negative pixels.
A modeled visibility of an image x̄ is computed as

v̄mod = ¯̄H · x̄ (7)

where ¯̄H is a transform matrix corresponding to a nonuniform discrete Fourier transform. In Eq. (5),
fx̄(x̄, v̄mea, s̄mea, β̄mea) characterizes the difference between the modeled and the measured data, which
can be further decomposed into

fx̄(x̄, v̄mea, s̄mea, β̄mea) = fxv(x̄, v̄mea) + fxp(x̄, s̄mea) + fxc(x̄, β̄mea) (8)

with

fxv(x̄, v̄mea) =
∑
p<q

∣∣vmod
pq − vmea

pq

∣∣2
var

{
vmea
pq

} , fxp(x̄, s̄mea) =
∑
p<q

[
smea
pq − smod

pq

]2

var
{
smea
pq

} ,

fxc(x̄, β̄mea) =
∑

p<q<r

∣∣∣ejβmea
pqr − ejβ

mod
pqr

∣∣∣2
var

{
βmea

pqr

} (9)

The function in Eq. (8) is non-convex [3], hence the reconstructed image could be sensitive to the prior
information and the initial guess.

In this work, we choose a prior function, commonly used in MIRA, as [3]

fprior(x̄, x̄prior) =
N∑

n=1

x2
n

xprior
n

(10)

and a Lorentzian model, proper for characterizing a compact object [2], is applied to generate x̄prior

as [9]

xprior
n ∝ 1

1 + 2(θ2
u + θ2

v)/(Δθw)2
(11)
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Figure 2. Interpolating visibility data at ν̄n′ = (ν ′u, ν ′v) by using four surrounding visibility data, v[m′
1],

v[m′
2], v[m

′
3] and v[m′

4], defined on a rectangular grid.

where Δθw is the angular span of the image. To avoid being trapped in a local minimum, the MIRA
begins with a large c1, putting more weight on the prior information. As the iteration moves on, c1 is
gradually decreased [9], and the convergent solution is claimed when c1 drops below a given threshold.
In this work, c1 is set to 10 in the beginning, and is reduced by half each time, until it drops to 10×2−7.
At each c1, as many as 70 iterations are allowed.

3. PROPOSED VP-OII METHOD

Figure 2 shows a rectangular grid in the visibility plane, with cell size of Δνu ×Δνv. The visibility data
on the grid, v[mu,mv] = v(muΔνu,mvΔνv), are stored in a vector v[m]. Each modeled visibility data
corresponding to a given measurement data is interpolated from four surrounding visibility data on the
rectangular grid via a bilinear interpolation as

vmod
n′ =

4∑
i=1

Rn′,m′
i
v[m′

i] (12)

where all elements in the n′th row of matrix ¯̄R are reset to zero, except
Rn′,m′

1
= (1 − ξ′v)(1 − ξ′u), Rn′,m′

2
= ξ′u(1 − ξ′v), Rn′,m′

3
= ξ′uξ

′
v, Rn′,m′

4
= ξ′v(1 − ξ′u)

m′
1, m

′
2, m

′
3 and m′

4 are the one-dimensional indices of (m′
u,m

′
v), (m′

u + 1,m′
v), (m′

u + 1,m′
v + 1) and

(m′
u,m

′
v + 1), respectively, with

m′
u =

⌊
ν ′u

Δνu

⌋
, m′

v =
⌊
ν ′v

Δνv

⌋
, ξ′u =

ν ′u −m′
uΔνu

Δνu
, ξ′v =

ν ′v −m′
vΔνv

Δνv

Instead of computing the visibility data via a Fourier transform on the image data as in (4), the modeled
visibility data in (12) are acquired in a more efficient way.

3.1. Phase Recovery Technique

Figure 3 shows the schematic of phase recovery, in which the phase of additional visibility data is
derived by using the phase-closure data. The shaded area in the visibility plane contains the visibility
data with known phase, which are derived from a low-resolution image or simulated with the GRAVITY
configuration.

A measured phase-closure βmea
pqr is the sum of φpq, φqr and φrp, which are derived from the data of

telescopes Tp, Tq and Tr, respectively. Thus, if φpq and φqr are known, φrp can be derived as
φrp = βmea

pqr − φpq − φqr (13)

Similarly, Eq. (3) can be used to derive the amplitude of visibility data (|vrp|), associated with φrp,
from the powerspectrum data. As a result, additional visibility data are acquired to expand the shaded
region in Fig. 3. The variance of the recovered visibility vrp is estimated as

var{vrp} =
√

var{vpq}var{vqr}
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Figure 3. Schematic of phase recovery.

The phase recovery technique is applied in an iterative manner. In the beginning, the available
visibility data contain only the measured visibility data, namely, v̄ava(0) = v̄mea. In the 
th iteration,
the available visibility data are expanded to v̄ava(�), and v̄rec(�) contains the recovered visibility data.
The shaded area in Fig. 3 is expanded to v̄ava(�+1) as

v̄ava(�+1) = v̄ava(�) +© v̄rec(�)

where +© is a concatenation operator. When no more visibility data can be recovered in the Lth iteration,
the total available data will become v̄ava(L).

3.2. Initial Guess

The initial guess of visibility data is obtained by applying the BFGS algorithm [6] to optimize an object
function as

v̄
(�+1)
0 = arg min

v̄∈Ωb

{
fvv(v̄, v̄ava(�))

}
, 
 = 0, 1, . . . (14)

where Ωb = {v̄|v̄ = 1 at ν̄ = 0},

fvv(v̄, v̄ava(�)) =
Nv+N

rec(�)
v∑

nv=1

wv
nv

∣∣∣vmod
nv

− vava(�)
nv

∣∣∣2 (15)

wv
nv

= 1/var
{
vmea
pq

}
is a weighting coefficient, which is the same as that in Eq. (9); Nv and N

rec(�)
v are

the numbers of visibility data in v̄ava(0) and v̄rec(�), respectively.
In this work, the first initial guess (v̄mea(0)) is derived from the simulated data on the GRAVITY

configuration, labeled as v̄mea(0)
G . The iteration process in Eq. (14) is continued until no more visibility

data can be recovered, and the results of the last iteration will be used as the optimal initial guess,
labeled as v̄opt

0 .

3.3. Optimal Solution

The optimal solution is obtained by minimizing an object function defined as

v̄opt = arg min
v̄∈Ωb

{
fvv(v̄, v̄mea(0)) + fvp(v̄, s̄mea) + fvc(v̄, β̄mea)

}
(16)

where

fvp(v̄, s̄mea) =
Np∑

np=1

wp
np

(smod
np

− smea
np

)2, fvc(v̄, β̄mea) =
Nc∑

nc=1

wc
nc

∣∣∣ejβmea
nc − ejβ

mod
nc

∣∣∣2
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are the object functions related to powerspectrum and phase-closure, respectively; Np and Nc are
the numbers of powerspectrum and phase-closure data, respectively; wp

np ’s and wc
nc

’s are weighting
coefficients [3], which are set to wp

np = var{smea
np

} and wc
nc

= var{βmea
nc

}, as in the conventional MIRA [6].
The modeled powerspectrum smod

np
and phase-closure βmod

nc
are computed as

smod
np

=
∣∣∣vmod

np

∣∣∣2 , βmod
nc

=
3∑

k=1

φmod
k,nc

where φmod
k,nc

is the kth phase component of the ncth phase-closure measurement.
The BFGS algorithm is then applied to solve Eq. (16) to obtain the convergent visibility distribution

v̄opt, with v̄opt
0 as the initial guess. The final image is then acquired by taking the two-dimensional inverse

Fourier transform of v̄opt as

x̄ = ¯̄F−1 · v̄opt (17)

At last, each image pixel is adjusted to have non-negative value as

xn =

{
xn, xn ≥ 0

0, xn < 0

The only empirical parameters needed in the VP-OII algorithm are the grid intervals Δνu and Δνv.
When applying the phase recovery technique to exploit more information embedded in the closure-phase
data, potential error may be induced to the recovered visibility data. A more cautious approach is taken
by using these recovered data to obtain an optimal initial guess v̄opt

0 , while v̄mea(0) is used to find the
optimal solution v̄opt by solving Eq. (16).

4. SIMULATIONS AND DISCUSSIONS

Figure 4 shows an image of LkHα 101 observed at wavelength of 550 nm, which covers 12 milli-arcsecond
(mas) along both axes. The LkHα 101 has the diameter of about 5.5 mas [17], and is located at the
right ascension of 4h30m14.4s, the declination of 35◦16′24′′, and at a distance of 700 parsec (pc) from
the Earth [17]. This image will be used as the reference image x̄ref for simulations, which is composed
of 256 × 256 pixels, with an angular resolution of 0.0469 mas/pixel.

Figure 5 shows the real part of the visibility data v̄ref , which is the Fourier transform of x̄ref shown in
Fig. 4. The grid intervals are Δνu,def = 1/(NgΔθu) and Δνv,def = 1/(NgΔθv), equivalent to 1.722×107λ
if Ng = 256.

Figure 4. Image of LkHα 101 at λ = 550 nm [17]. Figure 5. Real part of reference visibility data,
Re{v̄ref}, with Δνu,def = Δνv,def = 1.722 × 107λ
and Ng = 256.
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4.1. Initial Guess

Figure 6(a) shows the visibility data simulated with the GRAVITY configuration, which is centered
at (70.40479659◦W, 24.6279483◦S), by artificially setting the declination of LkHα 101 to −35◦16′24”,
making it observable to the GRAVITY configuration. The polychromatic data set are simulated with
the configurations of optical interferometric telescopes, NPOI, CHARA and GRAVITY. The geometrical
positions of telescopes, wavelengths and acquisition time are generated by using the ASPRO2 software.

The grid intervals are set to Δνu = Δνu,def/2 and Δνv = Δνv,def/2, which satisfy the general
requirement that Δνu,def/4 ≤ Δνu ≤ Δνu,def . Smaller grid intervals are preferred to update the initial
guess in Eq. (14) if the visibility changes significantly over the grid. However, choosing small grid
intervals may result in too many grid cells void of visibility data.

The initial guess will be optimized by using the visibility data shown in Fig. 6(a) as well as the
phase-closure data β̄mea and the powerspectrum data s̄mea simulated with the NPOI configuration. As
was mentioned, the GRAVITY configuration is capable of measuring the visibility data with phase,
while the NPOI can only measure the powerspectrum and the closure-phase data. Fig. 6(b) shows the
real part of the first initial guess Re{v̄(1)

0 }, which contains mostly the measured visibility data.
Figure 7(a) shows the powerspectrum data (s̄mea) simulated with the NPOI configuration. By

iteratively applying the phase recovery technique, additional visibility data are recovered as shown in
Fig. 7(b).

(a) (b)

Figure 6. (a) Real part of visibility data, Re{v̄mea(0)
G }, simulated with GRAVITY configuration over

wavelengths of 1.97272–2.42727 µm, in 11 channels [12]. (b) Real part of first initial guess, Re{v̄(1)
0 }.

(a) (b)

Figure 7. (a) Powerspectrum data (s̄mea) simulated with NPOI configuration over wavelengths of
0.58177–0.84822µm, in 9 channels. (b) Real part of additional visibility data acquired with phase
recovery technique.
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4.2. Accuracy of Modeled Phases

The phase error in applying the phase recovery technique is estimated by defining a deviation

ε =

√√√√ 1
N rec

v

Nrec
v∑

nv=1

(
φrec

nv
− φmea

nv

)2

where φrec
nv

and φmea
nv

are the recovered phase and the corresponding reference phase, respectively; and
N rec

v is the number of recovered visibility data. In this case, N rec
v = 336 (about 12.8%) additional

visibility data are acquired from 2,640 powerspectrum data, leading to ε = 1.37◦.

4.3. Reconstructed Visibility and Image

Figure 8(a) shows the real part of the optimal initial guess, Re
{
v̄opt
0

}
; and Fig. 8(b) shows the real part

of the final visibility distribution, v̄opt, by solving Eq. (16). Both v̄opt
0 and v̄opt contain more visibility

data than the original distribution shown in Fig. 6(b). The available visibility data shown in Fig. 6(b)
appear in the range of −3 ≤ ν/Δνv,def ≤ 3 and −4 ≤ νu/Δνu,def ≤ 4. As a comparison, the available
visibility data in both v̄opt

0 and v̄opt have been extended to the range of −6 ≤ ν/Δνv,def ≤ 6 and
−7 ≤ νu/Δνu,def ≤ 7, as shown in Figs. 8(a) and 8(b), respectively. The quality of the reconstructed
image is evaluated by defining a root-mean-square (rms) pixel-wise difference as [21]

δ = 106 ×
√√√√ N∑

n=1

xref
(
xn − xref

n

)2
ppm (18)

In this work, we do not translate the reconstructed image before comparing it to the reference image.
Figures 9(a) and 9(b) show the reconstructed images by using VP-OII and MIRA, respectively.

Table 1 lists the rms pixel-wise difference at different stages in three simulation scenarios. In the first
scenario, the phase recovery technique is applied to the GRAVITY simulated data. With VP-OII, the
rms pixel-wise difference of the first initial guess is 34.37 ppm, and those of the optimal initial guess and
the final result are 18.90 and 15.99 ppm, respectively. The optimization of initial guess via Eq. (14)
reduces most of the rms pixel-wise difference, and the optimization procedure via Eq. (16) improves
further.

In the second scenario, the interferometric data from CHARA over wavelengths of 1.47493–
1.75256µm in 8 channels are included to demonstrate the efficiency of the proposed algorithm when
more data become available. In the third scenario, MIRA is applied under the same condition as that in
the first scenario (both NPOI and GRAVITY simulated data are used). The rms pixel-wise difference
is 17.26 ppm, which is larger than that of the proposed VP-OII (15.99 ppm).

Figure 9(c) shows the reconstructed image by using the simulated data on NPOI, GRAVITY and
CHARA configurations. As listed in the second scenario of Table 1, the rms pixel-wise difference

(a) (b)

Figure 8. (a) Real part of optimal initial guess, Re{v̄opt
0 }. (b) Real part of final visibility data,

Re
{
v̄opt

}
.
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(a) (b)

(c) (d)

Figure 9. Reconstructed image by using (a) VP-OII and (b) MIRA. (c) Reconstructed image by using
simulated data on NPOI, GRAVITY and CHARA configurations. (d) Reconstructed image by solving
(16) with the original visibility data, without resorting to the phase recovery technique.

Table 1. RMS pixel-wise difference at different stages of visibility reconstruction.

method VP-OII MIRA
scenario 1 2 3

configuration GRAVITY, NPOI GRAVITY, NPOI, CHARA GRAVITY, NPOI
v̄mea(0) v̄

mea(0)
G v̄

mea(0)
G v̄

mea(0)
G

δ(v̄(1)
0 ) (ppm) 34.37 32.47

δ(v̄opt
0 ) (ppm) 18.90 17.87

δ(v̄opt) (ppm) 15.99 15.15 17.26
Nv 2,640 2,640 2,640
N ret

v 336 668
Np 3,456 4,084 3,456
Nc 2,484 7,152 2,484

is further reduced to 18.04 ppm. By including the data from the CHARA instrument, not only the
number of powerspectrum and closure-phase data are increased, the number of recovered phase data is
also increased. Specifically, the number of recovered phase data is increased from 336 to 668, that of
powerspectrum data from 3,456 to 7,152, and that of closure-phase data from 2,484 to 4,084.

4.4. Effects of Phase Recovery Technique

Figure 10 shows the reconstructed image by using the MIRA method, with only the GRAVITY
instrument data. The rms pixel-wise differences are 34.37 and 33.57 ppm by using VP-OII and MIRA,
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Figure 10. Reconstructed image by using MIRA method, with only GRAVITY instrument data.

respectively, based on the available uv-coverage shown in Fig. 6(a). The image reconstructed with
MIRA (in Fig. 10) appears more compact than that with VP-OII, shown in Fig. 9(d). Because the
VP-OII applies the inverse Fourier transform only after the modeled visibility data have converged,
while the MIRA refines the image model to match the data in the visibility domain at each iteration.
It appears that the MIRA performs better when the amount of visibility data is small.

By taking a closer look at Fig. 6(a), more visibility data are available in the directions around 1,
2, 7 and 8 o’clock, providing more information at higher spatial frequencies in these directions, hence
the reconstructed image in these directions becomes clearer and more compact. On the other hand, less
high spatial-frequency visibility data are available in the directions around 11 to 12 o’clock, making the
reconstructed image look blurred and extended in these direction.

4.5. Computational Efficiency

Table 2 lists the numbers of multiplication/division (M/D) operations required to implement MIRA and
VP-OII, respectively; where M is the total number of visibility data in the visibility-domain grid; TPR

is the number of iterations taken in the phase recovery process, TLS is the number of iterations taken
in the line search method of the BFGS algorithm, TMIRA is the number of iterations taken in MIRA,
TOB is the number of iterations taken in updating the object function in (16); and Bi is the number of
surrounding grid points used for interpolation. In the simulations, we choose Nv = 2, 640, Np = 3456,
Nc = 2484, N = 2562, M = 5, 000, TPR = 200, TLS = 10, TMIRA = 200, TOB = 200 and Bi = 4.
With these parameters, the numbers of M/D operations required to implement MIRA and VP-OII are
1.12 × 1011 and 4.89 × 108, respectively. The ratio of M/D operations is 230 : 1 in this case, and will
become larger if the number of visibility data or the image size is increased.

Figure 9(d) shows a reconstructed image obtained by solving Eq. (16) directly, without resorting

Table 2. Number of multiplication/division operations.

MIRA [6] VP-OII

process M/D process M/D

∇x̄fv NvN (per iteration) phase recovery 2TPR × [3BiNv + TLS(Bi + 2)Nv ]

∇x̄fp Np × N (per iteration) ∇v̄fv + ∇v̄fp + ∇v̄fc
6Bi(Nv + Np + Nc)

(per iteration)

∇x̄fc Nc × 3N (per iteration) line search
TLS(Bi + 2)(Nv + Np + Nc)

(per iteration)

line search
TLS(Nv + Np + 3Nc)

(per iteration)
¯̄F−1 M × N

total
TMIRA[(Nv + Np + 3Nc)N

+TLS(Nv + Np + 3Nc)]
total

M × N + [TPRNv

+TOB(Nv + Np + Nc)]

×[3Bi + TLS(Bi + 2)]
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to the phase recovery technique. The image looks poorer, which implies that the initial guess is critical
to the VP-OII method, and the phase recovery technique is capable of supplying additional visibility
data to improve the initial guess and make VP-OII work properly.

By replacing v̄mea(0) with v̄ava(L) in Eq. (16), the rms pixel-wise differences with the initial guesses
of v̄mea(0) and v̄ava(L) are 15.99 and 15.84 ppm, respectively, with NPOI/GRAVITY configurations
(first scenario in Table 1). The values of δ are 15.15 and 15.64 ppm by using v̄mea(0) and v̄ava(L),
respectively, as the initial guess, with NPOI/GRAVITY/CHARA configurations (second scenario in
Table 1). Although v̄ava(L) contains additional visibility data acquired with the phase recovery technique,
it is also contaminated by phase errors as the shaded area shown in Fig. 3 is expanded.

Table 3 lists the iteration number and CPU time taken by the MIRAs (exact and nfft) [6] and the
VP-OII method, respectively. The iteration numbers of both methods are close. The CPU time of the
nfft option is shorter than that of the exact option in MIRA. Yet the VP-OII algorithm takes much
shorter CPU time.

Table 3. Iteration number and CPU time of MIRA and VP-OII.

MIRA (exact) MIRA (nfft) VP-OII
iteration number 583 597 512

CPU time (second) 8,953 6,872 145
nfft: non-equispaced fast Fourier transform.

4.6. Effects of Noise

To study the effects of noise, a signal-to-noise ratio (SNR) is defined as [2]

SNR = 20 log10
‖v̄ref‖2

‖v̄mea − v̄ref‖2
dB (19)

Each visibility data is perturbed by noise as [22]∣∣vmea
nv

∣∣ =
∣∣∣vref

nv

∣∣∣ + Δva,nv , φmea
nv

= arg {vref
nv

} + Δφnv

where Δva,nv and Δφnv are independent zero-mean Gaussian noise additive to amplitude and phase,
respectively, with the magnitudes related as

var{Δva} = |vref |var{Δφ}
Figures 11(a) and 11(b) show the average and the standard deviation of δ, which are obtained over

100 realizations of simulated visibility data with NPOI, GRAVITY and CHARA configurations. The
standard deviation of δ is defined as

σ =

√√√√ 1
Nr

Nr∑
nr=1

(δnr − 〈δ〉)2 ppm

(a) (b)

Figure 11. Effects of SNR on (a) average rms pixel-wise difference (δ) and (b) standard deviation of
δ, over 100 realizations. ———: VP-OII, −−−: MIRA.
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Table 4. Performance with different channel numbers.

ch. no. of GRAVITY: 16,

ch. no. of NPOI: 16

ch. no. of GRAVITY: 11,

ch. no. of NPOI: 9

ch. no. of GRAVITY: 8,

ch. no. of NPOI: 7

ΔλG = 0.0303 µm,

ΔλN = 0.0178 µm

ΔλG = 0.045 µm,

ΔλN = 0.0333 µm

ΔλG = 0.0758 µm,

ΔλN = 0.0444 µm

Nrec 1,120 668 474

ε of VP-OII 1.46 1.39 1.41

δ of VP-OII 15.13 15.15 16.03

δ of MIRA 17.17 17.26 17.41

where 〈δ〉 is the average of δ over Nr realizations.
The rms pixel-wise difference of VP-OII is lower than that of MIRA at low SNR values, and

approaches the same level at high SNR values. The VP-OII optimizes an object function in the visibility
domain, as in Eq. (16). Most of the visibility data fall near the origin of the visibility plane, making
more effective filtering of noise at low SNR levels. The standard deviation of δ with VP-OII is also
lower than that with MIRA. These observations suggest that VP-OII is more resilient to noise than the
conventional MIRA.

4.7. Effect of Channel Number

The effect of channel number and wavelength spacing is also analyzed by simulations with the
configurations of GRAVITY and NPOI. Table 4 lists the performance with different channel numbers,
at uniform wavelength spacing. The minimum and maximum wavelengths of GRAVITY are λGmin =
1.97272 µm and λGmax = 2.42727 µm, respectively; and the minimum and maximum wavelengths of
NPOI are λN min = 0.58177 µm and λNmax = 0.84822 µm, respectively. The number of recovered phases
is larger when more channels are used. The phase errors, ε, are similar in these three cases. The rms
pixel-wise difference is smaller when more channels are used with either VP-OII or MIRA. However,
limited improvement (15.15 to 15.13) is observed by increasing the channel number from 11 to 16 in
GRAVITY and from 9 to 16 in NPOI, because further increase of channel number no longer helps to
extend the number of visibility data.

5. CONCLUSION

A VP-OII method is proposed to reconstruct an image by minimizing an object function in the visibility
domain. A phase recovery technique is also proposed to extract additional information embedded in
the closure-phase data. The initial guess is optimized first before modeling the visibility distribution of
the image. The VP-OII method is sensitive to the initial guess, and the phase recovery technique can
supply additional visibility data to optimize the initial guess. Compared with the conventional MIRA,
the VP-OII method does not require any prior function, it requires only fewer tuning parameters, takes
much shorter computational time and much less memory, and is more resilient to noise.
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