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Abstract—(Aim) Pathological brain detection (PBD) systems aim to assist and even replace
neuroradiologists to make decisions for patients. This review offers a comprehensive and quantitative
comparison for PBD systems by artificial intelligence in magnetic resonance imaging (MRI) scanning.
(Method) We first investigated four categories of brain diseases, including neoplastic disease,
neurodegenerative disease, cerebrovascular disease, and inflammation. Next, we introduced important
MRI techniques, such as the shimming, water and fat suppression, and three advanced imaging
modalities (functional MRI, diffusion tensor imaging, and magnetic resonance spectroscopic imaging).
Then, we discussed four image preprocessing techniques (image denoising, slice selection, brain
extraction, spatial normalization, and intensity normalization), seven feature representation techniques
(shape, moment, wavelet, statistics, entropy, gray level co-occurrence matrix, and Fourier transform),
and two dimension reduction techniques (feature selection and feature extraction). Afterwards, we
studied classification related methods: six learning models (decision tree, extreme learning machine,
k-nearest neighbors, naive Bayes classifier, support vector machine, feed-forward neural network),
five kernel functions (linear, homogeneous and inhomogeneous polynomial, radial basis function, and
sigmoid), and three types of optimization methods (evolutionary algorithm, stochastic optimization, and
swarm intelligence). (Results) We introduced three benchmark datasets and used K-fold stratified cross
validation to avoid overfitting. We presented a detailed quantitative comparison among 44 state-of-the-
art PBD algorithms and discussed their advantages and limitations. (Discussions) Artificial intelligence
is now making stride in the PBD field and enjoys a fair amount of success. In the future, semi-supervised
learning and transfer learning techniques may be potential breakthroughs to develop PBD systems.

1. INTRODUCTION

The magnetic resonance imaging (MRI) is the most popular method for brains, since it provides clearer
soft tissue details than traditional neuroimaging techniques. Nevertheless, the manual interpretation
on MR images is tedious due to the large amount of imaging data, with the professional name of “curse
of dimensionality” [1]. To solve the problem, the pathological brain detection (PBD) was proposed in
the last decade [2]. It becomes a computer-aided diagnosis (CAD) system and focuses on MR images.
The aim of PBD is to help neuroradiologists to make decisions based on brain images.
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At present, two types of PBD systems exist. Type I is aimed for detecting all types of brain
diseases, and its detection rate can be improved gradually. Type II is aimed for detecting each specific
brain disease and then integrates all these systems together. Both types of systems are of hot research
topics.

The development of PBD can be divided into three stages: From 1990s, based on the knowledge and
experiences obtained from the neuroradiologists [3], computer scientists developed PBD by the so-called
“knowledge-based systems” or “expert systems” techniques [4]. The employed features are commonly
human understandable, such as cortical thickness, area of particular brain tissue, etc. Ref. [3] developed
an expert system for differential diagnosis of acute stroke. [5] presented an expert system “Focus” for
locating the acute neurologic events. [6] developed the “EPEXS” for evoked potential analysis and
interpretation. [7] compared expert systems with human expertise, and at an abstract level proved that
they complemented each other. [8] developed an expert system that detected cerebral blood flow (CBF)
deficits in neuropsychiatric disorders.

Later, computer scientists realized mathematical features (shape, texture, statistical, etc.) can also
achieve equivalent or even better performances than human-understandable features. Therefore, scholars
tend to add advanced image features such as wavelets and gray-level occurrence matrix (GLCM). [9]
used wavelet compression technique to detect brain lesions. [10] used 3D wavelet representation for
tissue segmentation. [11] employed GLCM to lateralize seizure focus in temporal lobe epilepsy (TLE)
patients with normal volumetric MRI.

Moreover, the successes of pattern recognition (PR) in other fields also suggest the scholars to
use PR techniques to detect pathological brains. PR systems with labeled training data are called
“supervised learning (SL)” [12], and those with no labeled data are called “unsupervised learning” [13].
SL is commonly used in PBD, since neuroradiologists can label the data.

Recently, various optimization techniques have also been proposed and applied to train the
classifier to increase the detection performance. Traditional classifier training was gradient descent
based methods [14]; nevertheless, the complicated optimization surfaces and discretized version of the
problem make gradient-based methods suffer from falling into local best points and basins. Hence,
new meta-heuristic optimization methods were proposed. [15] proposed ant colony optimization (ACO)
algorithm based on ant colony. [16] proposed particle swarm optimization (PSO) algorithm based on
bird flocking. Besides, differential evolution (DE) [17], artificial bee colony [18], glowworm swarm
optimization (GSO) [19], and many excellent optimization techniques were proposed.

Figure 1 shows a block diagram of developing a PBD by AI in MRI. Roughly, we can divide
the process into eight steps: diagnosis, MRI techniques, image preprocessing, feature representation,
dimension reduction, classification, kernel, and optimization methods. In what follows, we will expatiate
each block.

Figure 2 shows the curve of related publications every year. The results show that the researches
on this topic are increasing apparently and steadily over time. Moreover, this picture also validates
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Figure 1. Block diagram of developing a PBD.
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Figure 2. Publications versus year.
Table 1. Four categories of brain diseases.
Category Common diseases
Neoplastic disease glioma, metastatic bronchogenic carcinoma, meningioma, sarcoma,

astrocytoma, oligodendroglioma, metastatic adenocarcinoma,

Neurodegeneration Parkinson’s disease, Alzheimer’s disease, Huntington’s disease, motor
neuron disease (amyotrophic lateral sclerosis), Pick’s disease, cerebral
calcinosis, Batten disease, prion disease, spinocerebellar ataxia,
Friedreich’s ataxia

Cerebrovascular disease cerebral hemorrhage, acute stroke, hypertensive encephalopathy, multiple
embolic infarction, subacute stroke, vascular dementia, chronic subdural
hematoma, cavernous angioma, subarachnoid hemorrhage, fatal stroke,
transient ischemic attack

Inflammation encephalitis, cerebral Toxoplasmosis, multiple sclerosis, abscess, Lyme
encephalopathy, AIDS dementia, Herpes encephalitis, Creutzfeldt-Jakob
disease, meningitis, vasculitis

that the AI applied to PBD receives the attention of scholars, and it will attract more scholars to
participate in this field. This work aims to give a comprehensive review on PBD by AI in MRI
technique. In Section 2, we categorize and present common brain diseases. Section 3 gives principles
of data acquisition. Section 4 offers the preprocessing techniques, summarizes the image features, and
discusses the dimension reduction techniques. Section 5 introduces the classifiers, kernel methods and
training methods. Section 6 compares 44 state-of-the-art PBD methods and gives future directions. We
implemented this survey based on literature in Web of Science Core Collection, IEEE Explorer, and
Scopus.

2. BRAIN DISEASES

A mass of brain diseases exist. Roughly, we can divide them into four categories.

Neoplastic disease: First is neoplastic disease (also called tumor). The primary neoplastic disease
starts in brain and remains therein [20], while the secondary starts elsewhere and then travels to the
brain [21]. Benign tumors do not have cancer cells, rarely spread, and may cause problems if pressing
certain brain areas. Malignant tumors have cancer cells and invade healthy tissues nearby.
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Four grades of brain tumors are listed in Table 2. Grade I tumors are rare in adults and associated
with long-term survival. Grade II tumors sometimes spread into nearby tissues and may come back as
a higher-grade tumor. Grade III and IV tumors actively reproduce abnormal cells. Grade IV tumors
are extremely dangerous: they form new blood vessels to maintain rapid growth and contain necrosis in
their center. Effective treatments include surgery [22], radiation therapy [23], chemotherapy [24], and
combined therapies [25].

Neurodegeneration: The second category is neurodegeneration, viz., the progressive loss (even
death) in structure or function of neurons [26]. Neurons normally do not reproduce, so they cannot be
updated after being damaged [27]. Neurodegeneration diseases are incurable and lead to progressive
degeneration. They affect many daily activities and structures: muscle [28], movement [29], balance [30],
talking, heart function [31], sleep [32], etc. It also causes problems in mental functioning [33].

Cerebrovascular Disease: The third category is cerebrovascular disease. It is a severe medical
condition, caused by affecting blood supply to the brain. Globally, the cardiovascular disease is

Table 2. Four grades of brain tumors.

Grow speed Look under a microscope

Grade 1 slow almost normal
Grade IT  relatively slow slightly abnormal
Grade IIT relatively fast abnormal

Grade IV fast very abnormal

(d)




Progress In Electromagnetics Research, Vol. 156, 2016 109

Figure 3. Illustration of typical brain diseases in MRI view. (a) Healthy brain. (b) Glioma. (c)
Meningioma. (d) Metastatic adenocarcinoma. (e) Metastatic Bronchogenic Carcinoma. (f) Sarcoma.
(g) Alzheimer’s disease. (h) Cerebral calcinosis. (i) Huntington’s disease. (j) Motor Neuron disease.
(k) Pick’s disease. (1) Arteriovenous malformation. (m) Cavernous angioma. (n) Cerebral hemorrhage.
(o) Chronic subdural hematoma. (p) Hypertensive encephalopathy. (q) Multiple embolic infarctions.
(r) Vascular dementia. (s) Acute stroke. (t) Subacute stroke. (u) AIDS dementia. (v) Cerebral
Toxoplasmosis. (w) Creutzfeldt-Jakob disease. (x) Herpes Encephalitis. (y) Lyme encephalopathy. (z)
Multiple sclerosis.

responsible for more deaths than any other diseases. Four common cerebrovascular diseases are
introduced: (i) A stroke happens when the blood supply is blocked or interrupted by a clot, then
parts of the brain die due to cerebral infarction [34]. (ii) A transient ischemic attack (TIA) is caused
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by temporary blood disruption [35]. It is also called a “mini-stroke” with symptoms resolved within
24 hours [36]. (iii) Subarachnoid hemorrhage (SAH) happens when blood leaks from arteries, located
underneath the arachnoid, to the brain surface [37]. (iv) Vascular dementia is caused by brain cell
damage due to a complex interaction of cerebrovascular diseases [38].

Inflammation: Finally, the fourth category is the brain inflammatory diseases. We all know
that the brain is protected by calvarium, dura, and blood-brain barrier (BBB) [39]. The cerebral
tissue is relatively resistant to invading infections. Nevertheless, the brain or spinal cord can be
inflamed, leading to swelling and irritation of tissues or vessels. The inflammatory diseases include
abscess [40], meningitis [41], encephalitis [42], and vasculitis [43]. Inflammatory control [43] is first used
to prevent inflammation-induced organ destruction. Then, some medications are prescribed for symptom
control [44]. Finally, side-effect control is necessary since the treatments may bring in uncomfortable
side effects.

Figure 3 illustrates pictures of some typical brain diseases. Figure 3(a) is a healthy brain.
Figures 3(b)—(f) show several brain tumor samples. Figures 3(g)—(k) show neurodegenerative diseases.
Figures 3(1)-(t) show cerebrovascular diseases. Figures 3(u)—(z) show inflammatory brains. All the
images were downloaded from the “The Whole Brain Atlas”.

3. MRI

Magnetic resonance imaging (MRI) uses both magnetic field and pulses, in order to generate pictures of
brain anatomy. Different tissues make direct contrasts, due to their different relaxation properties [45]
of the hydrogen atoms therein.

MRI is safe and painless. It does not involve radiation. Nevertheless, patients with heart
pacemakers [46], cochlear implants [47], metal implants [48,49] cannot be scanned, because of the
extremely high strength magnets. This is called projectile (or missile) effect [50], referring to the
dangerous ability of MRI scanner to attract ferromagnetic iron-based materials. The powerful magnet
can also erase information from storage devices, such as ID badges, cell phones, subway cards, credit
cards, flash drives, etc.

3.1. Shimming

Shimming is to correct the inhomogeneity of magnetic field produced by the main magnet [51]. The
inhomogeneity may arise from both the imperfect of magnet and the presence of external objects (such
as brain) [52]. In active shimming, currents directed through dedicated coils are used to improve
homogeneity [53]. In passive shimming, small pieces of sheet metal are inserted within the scanner
bore [54]. Active shim coils can be either superconducting or resistive [55]. Both active and passive
shimmings are controlled by specialized circuitry and need their own power supply.

3.2. Water and Fat Suppression

Hydrogen atoms can generate a detectable radiofrequency (RF) signal, and they are abundant in
both water and fat in human body. To balance the image contrast, water suppression [56] and fat
suppression [57, 58| are necessary in some particular MRI scans.

Water suppression can be implemented by presaturation [59], flip-back [60], and “jump and
return” [61]. Fat suppression is based on that hydrogen nuclei in fat tissues have different values for
MRI-related parameters [62]. Two types of fat suppression techniques exist: (i) Relaxation dependent
technique, such as short Tlinversion recovery (STIR) [63]; (i) Chemical shift-dependent techniques,
including Dixon [64], water selective excitation [65], spectral fat saturation [66], and spectrally adiabatic
inversion recovery (SPAIR) [67]. The comparisons of above fat suppression methods are listed in Table 3.

3.3. Other Modalities

Figures 4(a)—(c) show the MR slices in coronal, axial, and sagittal directions, respectively. In addition,
three advanced imaging modalities are introduced below:
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Table 3. Comparison of fat suppression techniques.

111

Technique Advantage

Disadvantage

STIR Insensitive to
Bo inhomogeneity

Dixon Insensitive to By
and B inhomogeneity

Water selective excitation Insensitive to B; inhomogeneity

spectral fat saturation Shorter TR;
Tissue contrast preserved

SPAIR Insensitive to B; inhomogeneity;

Tissue contrast preserved

Increased minimal TR

and total measurement time;
Tissue contrast affected
Minimal TR increased

Increased min TE, TR

and total measurement time
Sensitive to By

and B; inhomogeneity
Increased minimal TR

(Bp = A constant and homogeneous magnetic field to polarize spins; By = An RF magnetic field
perpendicular to By; TE = echo time; TR = repetition time)
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Figure 4. Ilustration of MRI scans. (a) Coronal. (b) Axial. (c) Sagittal. (d) fMRI. (e) DTL. (f)

Metabolic peaks at one voxel in MRSI.
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fMRI: Functional MRI (fMRI) is used to measure the brain activity [68], which responds to either
external stimuli or passive activity in a resting stage, as shown in Figure 4(d). It is based on the blood
oxygen level dependent (BOLD) contrast [69], by imaging the changes in blood flow related to energy
used by cells in the brain [70].

DTT: Diffusion tensor imaging (DTI) is another advanced neuroimaging technique, which measures
the diffusion of water molecules within the brain [71], so as to produce neural tract images [72]. Each
voxel in DTI is calculated from a vector or matrix from more than six different diffusion weighted
acquisitions (See Figure 4(e)). The fiber directions are calculated from DTI datausing particular
algorithms [73].

MRSI: Magnetic resonance spectroscopic imaging (MRSI) measures the levels of different
metabolites (See Figure 4(f)) in any position within the brain [74]. Two simpler techniques are single
voxel spectroscopy (SVS) [75] and chemical shift imaging (CSI) [76].

Clinically, MRSI can detect metabolic changes in strokes [77], autism [78], brain tumors [79],
multiple sclerosis [80], seizure [81], depression [82], Parkinson’s disease [83], Kimura disease [84], etc.
Table 4 lists the identifiable metabolites (N-acetyl aspartate, choline, creatine, lipid, lactate, myo-
inositol, glutamate and glutamine), and gives their peak positions and indications of change. The peaks
are measures in parts per million (ppm). Note that the lipid spectrum is easily contaminated, because
of the fat located in the scalp and underneath the skull.

Table 4. Metabolites with unique characteristics in MRSI.

Metabolite Position Indications
N-acetyl Aspartate Major peak Its decrease suggests loss or damage to
at 2.02 ppm neuronal tissue
choline Major peak Its increase suggests an increase in membrane
at 3.2 ppm breakdown or cell production
creatine Major peak Its decrease may suggest tissue death or major cell death.
at 3.0 ppm Its increase could be from cranialcerebral trauma.
lipid Major aliphatic peaks Its increase suggests necrosis.
in 0.9-1.5 ppm
lactate A doublet Its presence suggests glycolysis in an oxygen deficient
at 1.33 ppm environment, which may arise from ischemia,
hypoxia, mitochondrial disorders, and tumors.
myo-inositol Major peak Tts increase suggests AD, dementia, and HIV.
at 3.56 ppm

Glutamate & Glutamine

Resonance peaks

in 2.2-2.4 ppm

Its increase may suggest hyperammonemia

or hepatic encephalopathy.

4. IMAGE FEATURES

4.1. Image Preprocessing

Image Denoising: Some advanced image denoising methods have been proposed and applied to
remove Rician noises and increase signal-to-noise ratio (SNR) in brain MR images [85]. The denoising
algorithms should be edge preserving [86] and cannot blur important lesion information. [87] used an
enhanced non-local means (NLM) algorithm. [88] explored the image space for each patch using rough
set theory (RST). [89] proposed a pre-smoothing NLM filter. [90] used RST based bilateral filter (BF)
to denoise brain images. [91] also used BF to eliminate noises. Parameters of BF are optimized by
genetic algorithm (GA).

Slice Selection: In PBD systems, each voxel in a volumetric image can be regarded as a feature.
Therefore, the slice selection is used to select where the lesion or abnormal evidence is located.
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Slice selection was carried out either by neuroradiologists [92], or by hardware encoding [93], or by
algorithms [94]. Note that the slice selection is not necessary, since powerful computers are becoming
cheaper than ever before.

Brain Extraction: Next, it is necessary to remove the extra non-brain tissues (such as fat, skin,
muscle, neck, tongue, aponeurosis, meninges, periosteum, pharynx, eye balls, etc.) from an MR image
of the whole head, since they are obstacles for automatic analysis [95]. Those non-brain tissues may
decrease the detection performance of brain diseases.

Skull stripping methods were developed to solve this problem. [96] presented the brain extraction
tool (BET) in the FMRIB software library (FSL). [97] proposed a study-specific template selection
strategy. [98] developed a multispectral adaptive region growing algorithm for axial brain extraction.
[99] introduced concepts from artificial life, in order to govern a mass of deformable models. Its method
had the least Hausdorff distance error with slightly less brain voxel. [100] proposed a robust skull
stripping method on the basis of two irrational masks with sizes of 3 x 3 and 5 x 5, respectively. [101]
developed a deep MRI brain extraction tool via 3D convolutional neural network (CNN). [102] used
linear combination of discrete Gaussians (LCDG) and Markov-Gibbs random field (MGRF') models to
develop an infant brain extraction tool.

Spatial Normalization: Afterwards, spatial normalization (i.e., spatial registration) is carried
out, which reshapes a given brain image to a template image (i.e., reference image) [103]. Two steps
are included: (i) estimation of warp field and (ii) application of warp field with resampling [104].

Usually the brain images are normalized to Montreal neurological institute (MNI) space. The
FMRIB’s linear image registration tool (FLIRT) [105] and FMRIB’s nonlinear image registration tool
(FNIRT) are excellent software that can accomplish this goal. The image processing toolbox in Matlab
provides registration functions such as “imregister”, “imregtform”, “imregdemons”, etc.

Scholars have developed more advanced spatial normalization methods: [106] proposed anatomical
global spatial normalization methods, in order to scale high-resolution brains to control, without altering
mean sizes of the brain structure. [107] introduced specialized templates, which applied normalization
algorithms to stroke-aged subjects. [108] introduced an online spatial normalization method for real-
time fMRI. [109] proposed a multistage for implementing normalization.

Intensity Normalization: Intensity normalization was used to match MR image intensities
between MRI scans, so as to improve image compatibility and facilitate comparability. Table 5 shows five
classical intensity normalization methods: intensity scaling [110], histogram stretching [111], histogram
equalization [112], histogram normalization [113], Gaussian kernel normalization [113].

Table 5. Five intensity normalization methods.

Method Equation

Intensity scaling g(z,y) = %ﬂ}flm

Histogram stretching g(x,y) = %

Histogram equalization g(z,y) = C(f(x,y)) X (fmax — fmin) + fmin
Histogram normalization g(x,y) = % X (f(z,y) = fmin) + fri
Gaussian kernel normalization g(z,y) = f@y)=my

of

(f represents the original image, ¢ the intensity normalized image, f; the mean value of homogeneous
high intensity ROI, fp; the mean value of homogeneous low intensity ROI, fui, the minimum
grayscale value, fpnax the maximum grayscale value, C' the normalized cumulative histogram, m the
mean of original image, and o the stand deviation of original image)

4.2. Feature Representation

Computer scientists extract shape, moment, wavelet, statistics, entropy, GLCM, and Fourier features.
Table 6 shows the common features used in brain images.
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Table 6. Brain image features.

Type

Variants

Shape
Moment

Wavelet

Statistics

Entropy

GLCM

Fourier

perimeter [114], area [115], eccentricity [116], distance [117], diameter [118],
orientation [119], length [120], thickness [121],

central moment [122], Hu moment [123], Zernike moment [124], pseudo Zernike
moment [125], statistical moment [126],

discrete wavelet transform [127], stationary wavelet transform [128], Legendre
wavelet transform (LWT, also called spherical wavelet transform) [129], discrete
wavelet packet transform [130], Gabor wavelet transform [131]; dual-tree
complex wavelet transform [132], wavelet-space correlation [133],

mean [134], variance [135], skewness [136], kurtosis [137], uniformity [138],
Shannon entropy [139], wavelet entropy [140], Tsallis entropy [141], Renyi
entropy [142], multiscale entropy [143], permutation entropy [144], mutual
information [145], relative wavelet entropy [146],

Matlab generated features (contrast, correlation, energy, homogeneity) [147],
R generated features (mean, variance, homogeneity, contrast, dissimilarity,
entropy, second moment, correlation) [148], Haralick features (angular second

moment, contrast, correlation, sum of squared variances, inverse difference moment,

sum average, sum variance, sum entropy, entropy, difference variance, difference
entropy, Information measures of correlation 1 & 2, and maximal

correlation coefficient) [149],

Fourier transform [150], fractional Fourier transform [151], Taylor-Fourier
transform [152], fast Fourier transform [153], non-uniform fast Fourier
transform [152], sine transform [154], cosine transform [155],

Shape: The shape features are extracted over the lobes (frontal lobe, parietal lobe, occipital lobe,
temporal lobe, and limbic lobe), brain stem (medullar, pons, and midbrain) [156], diencephalon [157],
cerebellum [158], ventricles (lateral ventricles, third ventricle, fourth ventricle), tracts [159], vessels
(artery and vein) [160], and even the whole brain.

Moment: The image moment is a weighted average of gray intensities of image pixels [161].
Supposing that I represents the image, the raw moments M are defined as

M;; = sziyjf(xay)
Ty

where z and y denote the spatial coordinates. The central moments p are defined as

Mij = Z Z (- Hx)i (y— Hy)j I(x,y)
r oy

The central moments are translation invariant [162]. Scale invariants can be obtained by

i = i, j
2V 1+ﬂ
M((),o )

(1)

(2)

(3)

More advanced image moments are offered. For example, Hu moments [163] are rotation invariant.
Zernike moments [164] are defined over the unit circle as

Zis = LSSV ) )
Ty

s

(4)
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where 22 + 92 <1,0< j <4, i—1is even. V is called the Zernike polynomial of degree i and angular
dependence j.

Wavelet: The wavelet features are based on the discrete wavelet transform (DWT) [165] and its
variants. DW'T of a signal s is calculated by passing through low-pass filter [ and high-pass filter h as:

L= (sx0)]2 (5)
H = (sxh)|2 (6)

where L and H represent the low- and high-pass coefficients; * is the convolution operator; | is the
subsampling operator. For a brain image, the DWT can be carried out along z-axis and y-axis in
sequence.

Variants of DWT were proposed. For example, the stationary wavelet transform (SWT) overcame
the lack of the translation-invariance of DWT [166]. The dual-tree complex wavelet transform (DTCWT)
extended the real-value to complex-value and used two decomposition trees [167]. Discrete wavelet
packet transform (DWPT) decomposed detail subbands at each level to create a full decomposition
tree [168]. The most disadvantage of wavelet features is how to select the optimal wavelet family and
how to determine the optimal decomposition level.

Statistics: The statistical measures are based on spatial pixels. Suppose the pixels {x} as the
possible values of a discrete random variable X associated with a particular probability distribution P,
then we can define common statistical measures including mean, variance, standard deviation, median,
skewness, and kurtosis. Table 7 shows the formula and physical meanings of those measures.

Table 7. Statistical measures.

Measure Formula Meaning

mean uw=E(z) expectation of central tendency

variance V=E|(=z- u)g] expectation of squared deviation from the mean
standard deviation o = \/m variation of the dataset

median m: P(x <m)=P(z >m)=3 The value separating the higher half from the lower half
skewness E (%)3 asymmetry of probability function from the mean
kurtosis % tailedness of the probability function

(E represents the expected value operator)

Entropy: The entropy is originally a statistical measure for thermodynamics, and now it has
been extended to “Shannon entropy” in information theory [169]. In this context, it measures the
unpredictability of information contents. The symbols are defined the same as those in statistics, and
the Shannon entropy H is defined as

H(X) = E[-log,(P(X))] = —ZP(xi)long(xi) (7)

here the unit of entropy is bit, nat, and hartley [170] for b = 2, e, and 10, respectively.
Scholars have proposed variants of entropy. The Renyi entropy [171] of order « is defined as

- log (Z P%)) ®)

where H,, represents the Renyi entropy, with & > 0 and a # 1 [172]. The limiting value of H, as o — 1
is the Shannon entropy.

Tsallis entropy is more suitable than Shannon entropy in non-extensive system and long-range
interactions [173]. Tsallis entropy is defined as

Hr(X) = — (1 - Zp%:ci)) o)

Ho(X) =
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where ¢ is the entropic index. In the limit as ¢ — 1, the Tsallis entropy converts to Shannon
entropy [174].

GLCM: Gray-level co-occurrence matrix (GLCM) is defined to be distribution of co-occurring
values at a given offset over a brain image [175]. Supposing that the image is represented as I, the offset
is (Az, Ay), then the GLCM of the image is defined as

. 1 if I(z,y) =i&l(x+ Az,y + Ay) =4
GAac,Ay(Za]) = Z Z { ( ) ( ) (10)
z oy

0 otherwise

where G is the co-occurrence matrix, and ¢ and j are the image intensity values. The offset makes
GLCM sensitive to rotation [176], hence, the offsets in practice are chosen as 0, 45, 90, and 135 degrees
at the same distance to achieve rotational invariance [177].

Three famous implementation methods are offered: (i) On the basis of Matlab platform, we can
use the command “graycomatrix” to create GLCM from an image and use “graycoprops” to extract
four properties as: contrast, correlation, energy, and homogeneity from the GLCM [178]. (ii) In R
language, the “glem” package [148] can obtain nine features as mean, variance, homogeneity, contrast,
dissimilarity, entropy, second moment, and correlation. (iii) [179] presented total fourteen statistics
with the intent of describing the texture of the image.

Fourier: Fourier transform (FT) decomposes a signal into the frequencies that make it up. For
brain images, discrete Fourier transform (DFT) is normally used and converts the image into a finite
combination of complex sinusoids order by frequencies. Supposing that signal X is composed of N

complex numbers of [zg, x1, ..., xn—1], the DFT is defined as
N-1 .
2mwikn
DFT : Xk—zoxnxexp<— ~ > (11)
n=

The fast Fourier transform (FFT) reduces the computing complexity in DFT of O(N?) to
O(N log N) [180].

In some conditions, sines and cosines are used to replace complex numbers, yielding the discrete
sine transform (DST) and discrete cosine transform (DCT) with formulations below:

N-1

DST: X; = nz;) T, X sin [NZ S+ 1)k + 1)] (12)
N-1 . 1

DCT: X, = ;) Ly X COS [N <n+ 5) k] (13)

Fractional Fourier transform (FRFT) [151] introduces a new angle parameter «, which represents
the rotational angle in the time-frequency domain. The a-angle transformation of signal x(¢) is:

o0
Xo(u) = / Kot u)a(t)dt (14)
—0o0
where u represents the frequency and K the FRFT transformation kernel as
Ko(t,u) = V1 —icota x exp (im (t* cot a — 2ut csc o + u® cot ) ) (15)

where i is the imaginary unit. The three discrete versions of FRFT include weighted-type [181], sampling
type [182], and eigendecomposition type [183].

4.3. Dimension Reduction

The feature number may be too large, so dimensionality reduction (DR) is necessary to reduce the
feature number. We divide DR into two categories: feature selection and feature reduction.

Feature Selection: Feature selection is aimed to find a subset of original features. Three types
of feature selection methods exist based on how the selection algorithm and the model building are
combined. Figure 5 shows the three types: (i) The filter methods [184] analyze the intrinsic properties



Progress In Electromagnetics Research, Vol. 156, 2016 117

iginal fi
Original features Original features

Original features

Importance score
S & Generate a subset

! |
|
|
| : : :
| Generate a subset | | |
| | . |
lecting th |
Selecting the best ' | Selecting the | I
| | best subset | .
' I ! Learning algorithm | Selecting the
| Learning algorithm | : 9a9 | best subset
Learning algorithm | I | I
e 1 | |
|
P Foromance
Perf |
________________ !
(@) (b) (c)

Figure 5. Three types of feature selection. (a) Filter. (b) Wrapper. (¢) Embedded.

of the features, while neglecting the classifier. They first evaluate each individual feature, ignoring
their interactions. Then, they rank the individual features and choose a subset. (ii) The wrapper
methods [185] evaluate subsets of features and detect their potential interactions. While the number
of observations is insufficient, the risk of overfitting increases. (iii) The embedded methods [186]
combine the advantages of both filters and wrappers. The learning algorithms take full use of the
selection algorithm, hence, their disadvantage is to determine the selection criterion and search algorithm
beforehand. Table 8 lists their advantages and disadvantages.

Table 8. Comparison of feature selection methods.

Type Advantages Disadvantages
Filter fast execution; robust to overfitting may select redundant variables
Wrapper high accuracy slow execution; overfitting

Embedded combination of filters and wrappers know preliminary the selection procedure

Feature Extraction: Feature extraction transforms original features into a reduced set of features.
The transformation can be either linear or nonlinear. The main linear technique is principal component
analysis (PCA) [187], which maps original features to low-dimensional space in the way that the variance
of transformed feature is maximized [188]. [189] is an extension of PCA, and it is capable of constructing
nonlinear mappings.

Some nonlinear methods can be viewed as defining a graph-based kernel for PCA. Those methods
include Laplacian eigenmap [190], Isomap [191], locally linear embedding (LLE) [192], etc. These
techniques generate a low-dimensional transformed feature via a cost function and retains the local
properties of original feature.

Semidefinite embedding (SDE) [193] learns the kernel using semidefinite programming instead of
using fixed kernels. It first creates a neighborhood graph, where each input feature is connected with
its k-nearest input features, and all k-nearest neighbors are fully connected with each other. Next,
the semidefinite programming [194] aims to find an inner product matrix that maximizes the pairwise
distances between any two inputs that are not connected.

Autoencoder is a feed-forward non-recurrent neural network to learn a representation for a set of
features [195]. The output layer of autoencoder has the same number of nodes as in the input layer [196].
Instead of being trained to target value in the traditional neural network, autoencoder is trained
to reconstruct its own input features [197]. Therefore, autoencoders can be used for dimensionality
reduction.
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5. CLASSIFIERS

In the classification stage, the supervised learning (SL) techniques are commonly employed. Each
observation is labeled (i.e., associated with a target value), and the pair is submitted into the classifier.

5.1. Predesign

Five major points need to be predesigned before training:

(1) Dimensionality reduction: The brain scanners always acquire more redundant features than
needed, which confuses the learning algorithm. We need to use the “dimensionality reduction (DR)”
techniques mentioned in Section 4.3 to remove redundant features, so as to improve the classification
performance.

(2) Tradeoff between bias and variance: The classification performance is related to both bias
and variance [198] of the learning algorithm over several given datasets. A learning algorithm with low
bias should be versatile to other datasets [199]. Hence, a good learning algorithm should balance the
bias and variance automatically.

(3) Data amount and classifier complexity: If the classifier is complicated, then it is learnable
from an exceptionally large dataset with low bias and high variance. In contrast, a simple classifier is
learnable from a small training data with high bias and low variance. Therefore, the learning algorithm
should adjust itself, taking into consideration of both the data amount and structural complexity [200].

(4) Class-imbalance problem: It is easy to obtain brain images from healthy controls, but it is
quite difficult to acquire MR images from patients, particularly those disobedient patients. A medical
diagnosis dataset often contains rarely positive observations and numerous negative ones [201]. This
will lead to low sensitivity and high specificity. Several techniques can be used to alleviate the class
imbalance problem, such as resampling [202], cost-sensitive boosting [203], cost sensitive learning [204],
ensemble [205], etc.

(5) Noises in targets: The targets may be incorrect, since neuroradiologists may mislabel the
brain images. This gives us a suggestion that the learning algorithm does not need to exactly match
the training data [206]. Those noises in targets can be modeled as deterministic noise [207] and can
be alleviated by “overfitting prevention” techniques. In practice, it is necessary to detect and remove
mislabeled brain images [208].

Table 9. Six learning models.

Basic Model Extension

DT ID3 [209], C4.5 [210], Seeb [211], incremental DT [212], alternating DT [213],
neuro-fuzzy DT [214],
ELM constrained ELM [215], optimized pruning ELM [216], state preserving ELM [217],

weighted ELM [218], robust ELM [219], online sequential ELM [220], cluster
regularized ELM [221], kernel ELM [222],

FNN local coupled FNN [223], partially connected FNN [224], wavelet FNN [225], hybrid
double FNN [226], time-lagged FNN [227], weight initialization FNN [22§],

kNN Evidential editing kNN [229], coupled kNN [230], integrated kNN [231], adaptive
KNN [232], KNN++ [233], pairwise kNN [234],

NBC Augmented semi NBC [235], hierarchical spatio-temporal NBC [236], weighted
NBC [237], tree-augmented NBC [23§],

SVM kernel SVM [239], support vector clustering [240], transductive SVM [241],

least-square SVM [242], proximal SVM [243], twin SVM [244], generalized eigenvalue
proximal SVM [245], fuzzy SVM [246],
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5.2. Learning Models

The most widely used learning models and their extensions are listed in Table 9, including the decision
tree (DT), extreme learning machine (ELM), k-nearest neighbors (kNN), naive Bayes classifier (NBC),
support vector machine (SVM), and feed-forward neural network (FNN).

Besides, some mixture models are proposed, which combine more than two basic learning models,
such as inclined local naive Bayes nearest neighbor [247], support vector machine decision tree [248],
etc. Those mixture models try to take the advantages of both basic learning models, and thus they
often perform better than individual learning model.

5.3. Kernel Methods

Kernel methods use kernel functions to map original input features into high-dimensional feature
space [249]. The advantage is that it does not need to compute the feature explicitly in high-dimensional
space, but rather computes the inner products among all pairs of data in original feature space [250].
Popular kernel functions are listed in Table 10.

Table 10. Five popular kernel functions.

Name Function Parameter
Linear K(z,y) =Ty

Homogeneous Polynomial (HPOL) K (z,y) = (xTy)d d>0
Inhomogeneous Polynomial (IPOL) K(z,y) = (z7y + c)d c>0,d>0
Radial basis function (RBF) K(x,y) =exp (—’Y |z — y||2) 2

Sigmoid K(z,y) = tanh (chy + d) c, d

5.4. Optimization

The training of a learning model is an optimization problem. Traditional gradient descent based methods
may fall into local optima, hence, global optimization methods [251] are employed for classifier training as

Genetic algorithm
Genetic programming
i
algorithm Evolutionary programming
Biogeography-based optimization
Differential evolution

Simulated annealing
Gilobal Stochastic ;
Ant colony optimization

Particle swarm optimization

Swarm o
intelligence Artificial bee colony
Glowworm swarm optimization
Firefly algorithm

Figure 6. Global optimization algorithms.
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they are aimed for finding all optimal points. Figure 6 shows three main categories of global optimization
methods: evolutionary algorithm (EA), Stochastic optimization (SO), and swarm intelligence (SI).

Evolutionary algorithm: EA uses mechanism inspired by biological evolution [252]. It uses
reproduction, mutation, recombination, selection, and other evolution-related operators [253]. The
candidates for solutions are individuals in a population and are measured by fitness function.

The population evolution occurs every iteration in the way that the candidates get closer to the
global optimal point. EA includes genetic algorithm (GA) [254], differential evolution (DE) [255],
genetic programming [256], evolutionary strategy, etc. The biogeography-based optimization (BBO)
method [257] is a new EA method that mimics the evolution of distribution of biological species along
time and space [258, 259].

Stochastic optimization: SO uses random variables with random iterates to accelerate
search [260]. It can solve both stochastic optimization problems and deterministic optimization
problems. The injected randomness can guarantee the search less sensitive to modeling errors and
escape from local minima points [261]. The common SO methods include simulated annealing (SA) [262],
quantum annealing (QA) [263], random search, etc.

Swarm intelligence: SI investigates the collective behavior of decentralized and self-organized
systems [264]. Narrowly speaking, SI refers to a series of optimization algorithms that mimics the
nature SI systems: bacterial growth, fish schooling, ant colony, bird flocking, and animal herding. The
two famous SI algorithms are ant colony optimization (ACO) [265] and particle swarm optimization
(PSO) [266]. Other popular SI algorithms include artificial bee colony (ABC) [267], firefly algorithm
(FA) [268], and glowworm swarm optimization.

6. CURRENT PBD SYSTEMS

6.1. Benchmark

Commonly used datasets can be downloaded from the homepage of “the whole brain atlas” from Harvard
Medical School. No more than five slices are selected from each subject (pathological or healthy). The
slices selected from patients should cover the lesions by confirmation of three radiologists with over ten
years of experiences. The slices from healthy subjects are selected at random from the same range of
patient slices.

Three benchmark datasets (DI, DII, and DIII) are generated based on collection of above images.
The former two datasets (DI& DII) contain seven types of diseases. DI consists of 66 images, and DII
consists of 160 images. The largest dataset DIII contains 11 types of diseases and 255 images. Note
that the images in the Harvard Medical School website are mainly for didactic use, and it only collects
those patients with prominent abnormal features from healthy brains. Hence, the performance over the
datasets only reflects the algorithm performance in ideal conditions and cannot reflect the algorithm
performance in real-world scenario where the scanned images are usually of poor quality.

6.2. Statistical Analysis

K-fold stratified cross validation (SCV) is commonly used. Compared to standard cross validation, the
stratification rearranges the data so that each fold is a full representative of the whole dataset. Usually,
three benchmark datasets are divided in the way of Table 11. To further reduce the randomness, we

Table 11. SCV setting.

K Training Validation Total

H P H P H P

DI 6 15 40 3 8 18 48
DII 5 16 112 4 28 20 140
DIII 5 28 176 7 44 35 220

(K represents the number of fold, H = Healthy, P = Pathological)

Dataset
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Table 12. Comparison of state-of-the-art PBD systems.

Approach Feature DR F.N. Classifier Opt. Met. R.N. DI DII DIII
DWT 4761 SOM 5 94.00 93.17 91.65

[269] DWT 4761 SVM 5 96.15 95.38  94.05
DWT 4761 SVM + IPOL 5 98.00 97.15  96.37

DWT 4761 SVM + RBF 5 98.00 9733 96.18

[270] DWT PCA 7 FNN 5 97.00  96.98 95.29
DWT PCA 7 kNN 5 98.00 9754  96.79

[271] DWT PCA 19 FNN SCG 5 100.00  99.27  98.82
272] DWT PCA 19 SVM 5 96.01 95.00 94.29
DWT PCA 19 SVM + RBF 5 100.00  99.38  98.82

[273] WE SWP 3 PNN 5 100.00  99.88  98.90
[274] RT PCA 9 LS-SVM 5 100.00  100.00 99.39
[275] DWTE 16 GEPSVM 10 100.00 100.00 99.33
DWTE 16 ~ GEPSVM + RBF 10 100.00  100.00 99.53

[276] WE 7 NBC 10 92.58  91.87 90.51
SWT PCA 7 FNN TABAP 10 100.00  99.44  99.18

[277] SWT PCA 7 FNN ABC-SPSO 10 100.00  99.75  99.02
SWT PCA 7 FNN HPA 10 100.00 100.00 99.45

[278] WE 6 FNN HBP 10 100.00  100.00 99.49
[279] WE + HMI 14 GEPSVM 10 100.00  99.56  98.63
WE + HMI 14  GEPSVM + RBF 10 100.00 100.00 99.45

[280] SWT PCA 7 GEPSVM 10 100.00  99.62  99.02
SWT PCA 7 GEPSVM + RBF 10 100.00 100.00 99.41

WPSE 16 SVM 10 98.64  97.12 97.02

[281] WPTE 16 SVM 10 99.09 9894 98.39
WPSE 16 FSVM 10 99.85 99.69 98.94

WPTE 16 FSVM 10 100.00 100.00 99.49

FRFE WTT 12 NBC 10 97.12 95.94  95.69

[282] FRFE WTT 12 SVM 10 100.00  99.69  98.98
FRFE WTT 12 GEPSVM 10 100.00  100.00 99.18

FRFE WTT 12 TSVM 10 100.00 100.00 99.57

[165] DWT PPCA 13 ADBRF 5 100.00 99.30 98.44
DWT PPCA 13 ADBRF 5 100.00 100.00 99.53

[283] SWE 6 FNN HBP 10 100.00 100.00 99.53
SWT PCA 7 SVM + HPOL 10 100.00 99.56  98.51

[284] SWT PCA 7 SVM + IPOL 10 100.00  99.69  98.55
SWT PCA 7 SVM + RBF 10 100.00  99.69  99.06

DTCWT VE 12 SVM 10 100.00  99.69  98.43

[285] DTCWT VE 12 GEPSVM 10 100.00  99.75  99.25
DTCWT VE 12 TSVM 10 100.00  100.00 99.57

[286] WE 2 PNN BPSO-MT 10 100.00 100.00 99.53
[287] FRFE 12 MLP ARCBBO 10 99.85 98.38  97.02
FRFE 12 DP-MLP ARCBBO 10 100.00 99.19 98.24

FRFE 12 BDB-MLP ARCBBO 10 100.00 99.31  98.12

FRFE 12 KC-MLP ARCBBO 10 100.00  99.75  99.53

(All methods here are of Type 1, i.e., for all brain diseases detection)
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tend to run the K-fold SCV more than once. Traditionally, the K-fold SCV ran five times. In recent
years, a ten-time repetition can give more accurate results than a five-time repetition.

6.3. Quantitative Comparison

We compare 44 state-of-the-art PBD systems in this survey and present the results in Table 12. The first
column lists the author and year. The second column lists the names of employed features. The third
column lists the dimension reduction (DR) technique. The four column lists the number of features
submitted to classifier. The fifth column lists the classifier model. The sixth column presents the
optimization method. The seventh column presents the run times. The final three columns show the
accuracy over three benchmark datasets. To save the space, the names of all algorithms are abbreviated,
and the full meanings can be found in Table Al.

From Table 12, we can observe that all 44 approaches follow the scheme described in this survey.
Besides, the DI dataset is too small, so that nearly all algorithms achieve exact detection. The DII
dataset contains 160 brain images of 7 diseases, and several algorithms achieve perfect classification.
The largest DIII dataset contains 255 brain images with 11 diseases, and no algorithm can detect the
pathological brains perfectly. The best algorithms for DIII till now are FRFT + WTT + TSVM [282]
and DTCWT + VE + TSVM [285] with a detection accuracy of 99.57%.

6.4. Future Researches

In the hospitals, we have a small number of labeled brain images and a large number of unlabeled
brain images. When creating the PBD systems, we usually discard the unlabeled brain images and
merely make use of the labeled brain images. Nevertheless, scholars have found unlabeled data used
with labeled data can produce significant improvement [288]. The semi-supervised learning (SSL) is a
mixture of unsupervised learning and supervised learning [289]. It can make full use of both labeled
data and unlabeled data [290]. Therefore, the SSL technique may be practical in PBD situations.

In another situation, we may have some successful detection systems (such as an AD detection
system) before developing a PBD system. Can the AD detection system help us generate the PBD
system? This can be answered by the “transfer learning” technique [291,292], which is based on the
idea that it would be easier to learn to speak Japanese having already learned to speak Chinese.
Transfer learning can apply the knowledge gained while developing the AD detection system, to the
related problem of generating a PBD system.

The Al techniques in MR images can also be applied to computed tomography (CT) [293,294],
positron emission tomography (PET), single-photon emission computerized tomography (SPECT),
confocal laser scanning microscopy (CLSM) [295], etc.  Besides, advanced optimization may
augment the classification performance. We will test the adaptive chaotic PSO [296], water drop
algorithm [297], bacterial chemotaxis optimization (BCO) [298], grey wolf optimization [299], social
spider optimization [300], etc.

In all, this survey gives the latest AI techniques in PBD systems and offers a quantitative
comparison. We expect that the readers are awakened with intense interest in this field.

APPENDIX A.

Table A1l. Acronym list.

Acronym Definition

3D three dimensional

ABC artificial bee colony
ABC-SPSO ABC with Standard PSO
ACO ant colony optimization

AD Alzheimer’s disease




Progress In Electromagnetics Research, Vol. 156, 2016 123

ADBRF AdaBoost with random forest

Al artificial intelligence

AIDS acquired immune deficiency syndrome
ARCBBO adaptive real-coded BBO

BBB blood-brain barrier

BBO biogeography-based optimization
BCO bacterial chemotaxis optimization
BDB Bayesian detection boundary

BET brain extraction tool

BF bilateral filter

BOLD blood oxygen level dependent
BPSO-MT binary PSO with mutation and TVAC
CAD computer-aided diagnosis

CBF cerebral blood flow

CLSM confocal laser scanning microscopy
CNN convolutional neural network

CSI chemical shift imaging

CcT computed tomography (CT)

DCT discrete cosine transform

DE differential evolution

DFT discrete Fourier transform

DP dynamic pruning

DR dimensionality reduction

DST discrete sine transform

DT decision tree

DTCWT dual-tree complex wavelet transform
DTI diffusion tensor imaging

DWPT discrete wavelet packet transform
DWT discrete wavelet transform

DWTE discrete wavelet Tsallis entropy

EA evolutionary algorithm

ELM extreme learning machine

FA firefly algorithm

FFT fast Fourier transform

FLIRT FMRIB’s linear image registration tool
fMRI functional MRI

FNIRT FMRIB’s nonlinear image registration tool
FNN feed-forward neural network

FRFE fractional Fourier entropy

FRFT fractional Fourier transform

FSL FMRIB software library

FSVM fuzzy SVM

FT Fourier transform
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GA
GEPSVM
GLCM
GSO
HBP
HIV
HMI
HPA
HPOL
IABAP
D
IPOL
KC
kNN
LCDG
LLE
LS
LWT
MGRF
MLP
MNI
MR
MRI
MRSI
NBC
NLM
PBD
PCA
PET
PNN
PPCA
ppm
PR
PSO
QA
RBF
ROI
RST
RT
SA
SAH
SCG
SCV

genetic algorithm

generalized eigenvalue proximal SVM
gray-level co-occurrence matrix
glowworm swarm optimization
Hybridization of BBO and PSO
human immunodeficiency virus
Hu moment invariant
hybridization of PSO and ABC
homogeneous polynomial
Integrated algorithm based on ABC and PSO
identification

inhomogeneous polynomial
Kappa coefficient

k-nearest neighbors

linear combination of discrete Gaussians
locally linear embedding

least square

Legendre wavelet transform
Markov-Gibbs random field
multi-layer Perceptron
Montreal neurological institute
magnetic resonance

magnetic resonance imaging
magnetic resonance spectroscopic imaging
naive Bayes classifier

non-local means

pathological brain detection
principal component analysis
positron emission tomography
probabilistic neural network
Probabilistic PCA

parts per million

pattern recognition

particle swarm optimization
quantum annealing

radial basis function

region of interest

rough set theory

Ripplet transform

simulated annealing
subarachnoid hemorrhage
scaled conjugate gradient
stratified cross validation
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SDE semidefinite embedding

SI swarm intelligence

SL supervised learning
SNR signal-to-noise ratio
SO stochastic optimization

SOM self-organizing map
SPAIR  spectrally adiabatic inversion recovery
SPECT single-photon emission computerized tomography

SSL semi-supervised learning
STIR short T1 inversion recovery
SVM support vector machine
SVS single voxel spectroscopy

SWE stationary wavelet entropy
SWP spider web plot

SWT stationary wavelet transform
TE echo time

TIA transient ischemic attack
TLE temporal lobe epilepsy

TR repetition time

TSVM  twin SVM

TVAC  time-varying acceleration coefficient
VE variance and entropy

WE wavelet entropy

WPSE  wavelet packet Shannon entropy
WPTE  wavelet packet Tsallis entropy
WTT Welch’s t-test
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