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Multi-Beam Ring Antenna Arrays Synthesis by the Application
of Adaptive Particle Swarm Optimization

Hichem Chaker1, *, Mehadji Abri2, and Hadjira Abri Badaoui3

Abstract—This paper describes the original results obtained in the field of multi-beam annular ring
antenna array pattern synthesis for the modes TM11 and TM12, by applying an iterative algorithm
for phased arrays, which is able to produce low side-lobe levels patterns with multiple prescribed main
lobes. The ring antenna analysis builds on the modified cavity model; this letter permits to take
account of the fringing field effects by virtue of the dynamic permittivity. The proposed method is
based on the adaptive particle swarm optimization algorithm. This solution is characterized by its
simple implementation and a reduced computational time to achieve the desired radiation patterns.
These advantages make the presented algorithm suitable for a wide range of communication systems.
The original results obtained in the field of antenna array pattern synthesis are presented to illustrate
the performance of the proposed method.

1. INTRODUCTION

Recently, antenna arrays have become a fundamental element in modern communication systems due to
the thorough technological advances in this domain and the fast growing demand [1–4]. The ring printed
antennas are well known for their multiband abilities and advantageous characteristics. They are used
in communication systems, and several structures have been recently proposed in the literature [5].
Much attention has been given to the annular ring when it is used in its fundamental TM11 mode [6].
This printed antenna is smaller than its rectangular or circular counterparts. The annular ring may
be a broadband antenna when operated near the TM12 resonance [7]. It has been established that the
structure is a good resonator (with very little radiation) for TM1m modes (m odd), and a good radiator
for TM1m modes (m even) [8]. As reported in the literature, the new meta-heuristic methods have
found application in a great number of communication systems; they have increased the involvement of
the research community in the synthesis of micro-strip antenna arrays. The literature counts a number
of synthesis methods, such as Modified Spider Monkey Optimization [9], Artificial Neural Network
Algorithm [10], Grey Wolf Optimization [11], to name but a few. The algorithms employed ought to
produce radiation models with multiple main lobes to the selected directions and for certain practical
applications, they should be able to carry out the synthesis by acting on the two parameters, i.e., the
amplitudes and phases of excitations for both modes TM11 and TM12. A great number of amplitude-
phase techniques exist. The solutions that can give patterns with multiple main lobes are usually
formulated for arrays having a square radiator [12, 13].

An efficient method for the pattern synthesis of linear and planar multibeam annular ring antenna
arrays is presented in this paper. A multibeam pattern is realized by determining the excitation
magnitude and phase of each array element, for the two modes TM11 and TM12. The method suggested
in the present work is based on the adaptive particle swarm optimization, and the linear and planar
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antenna array synthesis was modeled as a mono-objective optimization problem. The advantage of the
adaptive particle swarm optimization algorithm over other existing algorithms lies in the pseudo code
of APSO which generates new fresh particles after a number of iteration cycles to increase diversity
of solutions. This helps prevent revisiting the same solutions for several times; it also provides better
searching ability. In contrast to recent evolutionary algorithms, the particle swarm optimization is a
simple method that comprises a combination of local and global search features. It therefore furnishes
fast convergence [3, 14–17]. As such, this paper presents the application of an improved version of the
particle swarm optimization algorithm, labeled the adaptive particle swarm optimizer with the aim of
synthesizing linear and planar multi beams annular ring antenna array patterns for the TM11 and TM12

modes. To check the validity of the technique, a number of illustrative examples are simulated, and
multi-beam patterns are demonstrated.

In terms of organization, the paper is structured in four sections. Section 2 presents the theoretical
formulation and the basic equations to model the antennas array. Overviews of the adaptive particle
swarm optimization algorithm are described in Section 3. Section 4 is a space where the results of the
synthesis process are portrayed. Section 5 yields conclusions of the case study.

2. THEORETICAL CONSIDERATIONS

The present paper goes around the application of an annular-ring microstrip antenna to TM11 and
TM12 modes at the resonance frequencies 0.6 GHz and 2.6 GHz, respectively. Figure 1, sketched below,
shows the employed annular ring in the reference plane xyz. The antenna is energized via a coaxial
probe at a distance ρ0.

 x 

y 
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r2 

z 

Hs 

ρ0  

Coaxial probe 

Figure 1. Geometry of an annular ring microstrip antenna.

An array antenna can be defined as a collection of individual elements in which the location and
feeding are properly selected such that to enforce a desired far field pattern. Usually, array antennas
are used when it is important to have a directive beam [18]. The far field annular ring antenna in the
plane is expressed by the Equations (1) and (2) [19–21].

Eθ = −jn E0e
−jK0HS

2r

{
r2eqAn(K0r2eq sin θ)Fnm(r2eq)
−r1eqAn(K0r1eq sin θ)Fnm(r1eq)

}
cos(nϕ) (1)

Eϕ = −jn E0e
−jK0HS

2r

{
r2eqBn(K0r2eq sin θ)Fnm(r2eq)
−r1eqBn(K0r1eq sin θ)Fnm(r1eq)

}
sin(nϕ) cos(θ) (2)

An (ρ) = Jn−1 (ρ) − Jn+1 (ρ) (3)
Bn (ρ) = Jn−1 (ρ) + Jn+1 (ρ) (4)

Fnm (ρ) = Jn (Knmρ)Y ′
n (Knmr1) − J ′

n (Knmr1)Yn (Knmρ) (5)

K0 is the wave number, and Knm corresponds to the roots of the characteristic equation defined
in (6). Jn and Yn refer to the Bessel and Newman functions of the first kind and n order, respectively.
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Their respective first derivatives Knm is the resonant wave numbers. The boundary conditions for
ρ = r2. The dispersion equation for the resonance modes is written as follows:

J ′
n (Knmr2)Y ′

n (Knmr1) − J ′
n (Knmr1) Y ′

n (Knmr2) = 0 (6)
To take account of the fringing fields along the ring edges, it is necessary to replace the ring internal

and external rays by their equivalent values r1eq and r2eq.

r1eq =
r1 + r2 − weff (f)

2
(7)

r2eq =
r1 + r2 + weff (f)

2
(8)

weff (f) = (r2 − r1) +
weff (0) − (r2 − r1)

1 +
(

f
fp

)2 (9)

fp =
c0

weff (0)√εeff
(10)

c0 is the light speed in the vacuum, as shown below:
weff (0) = C0HSη0c0 (11)

C0 is identified with C for εr = 1. The effective permittivity is defined as: εeff = C
C0

.
C refers to the dynamic capacity resulting from the effect edges. It is determined by the dyadic

green function as shown below:
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L = r2 − r1 and β = 2π
λ0

√
εr.

The far field radiated in free space from a linear array (1-D), composed of N identical sources of
the directivity diagram 	f(θ, ϕ), each one localized at position xi can be written as:

F1D(θ) =
N∑

n=1

f(θ)an cos[K0xn cos(θ) + ∅n] (15)

θ is the angular direction. an and ∅n represent the excitation amplitude and phase of each element
complex weight, which has to be determined in case complex synthesis is considered. It should be
mentioned that the mutual coupling effect between the elements was neglected in this paper. Also, the
distance between adjacent elements was fixed Δx = Δy = 0.5λ. Figure 2 depicts the geometry of the
linear annular ring antennas array.

For the planar array case, the directivity pattern F (θ, ϕ) is a function of the two direction angles
θ and ϕ. If ϕ is fixed, the pattern F (θ, ϕ) could be conformed in the E plane or H plane. We are
interested in the synthesis of linear arrays in the plane ϕ = 0◦. An antenna array, which consists of
M rows and N columns of elements, arranged along a rectangular grid in the xoy plane, is shown in
Figure 3. The array has an element spacing of Δx in the x-direction and Δy in the y-direction. The
far field can be expressed as follows:

F (θ, ϕ) = f(θ, ϕ)
Nx∑

m=1

Ny∑
n=1

WmnejK0 sin θ(Xm cos ϕ+Yn sin ϕ) (16)

Wmn = Wm × Wn (17)
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Figure 2. Linear ring antennas array.

Figure 3. Element layout of uniform planar array.

where Wmn is the 2-D weight distribution of the array.
The elements amplitudes am and phases ∅m are related by the complex excitation weight wm =

ame−j∅m according to Ox direction and the elements amplitudes an and phases ∅n are related by the
complex excitation weight wn = ane−j∅n according to Oy direction.

The array factor in dB is given by:

P (θ, ϕ) = 20Log(F (θ, ϕ)normalized ) (18)

The mathematical statement of the optimization process is:

Find max f(v) → vopt (19)

where f(v) is the objective function of parameter variables v, and vopt is the optimal vector of solutions
(a1, a2, . . . , aN ) in the case of the amplitude synthesis; it is equal to (a1, a2, . . . , aN , ∅1, ∅2, . . . , ∅N )
in the case of amplitude phase synthesis.

The optimization process can be modeled by minimizing the difference between the desired and
calculated patterns. Mathematically, the optimization problem can be written as:

f = Max −
π∫∫
0

|Fd(θ, ϕ) − F (θ, ϕ)|dθdϕ (20)

Fd(θ, ϕ) represents the desired pattern, and F (θ, ϕ) refers to the calculated pattern.
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3. ADAPTIVE PARTICLE SWARM ALGORITHM

Modern heuristic algorithms are considered as practical tools for nonlinear optimization problems, which
do not require the objective function to be differentiable or continuous.

A modified version of the standard PSO was employed for the optimal design of linear and planar
arrays. The blessing of the adaptive particle swarm optimization (hereafter APSO) algorithm over other
algorithms is a question of the pseudo code of APSO which generates fresh particles after a number
of iteration cycles. This is of paramount importance as it avoids revisiting the same solution, and it
offers a better probing ability. The particle swarm optimization algorithm, as discussed by Xiao [22],
is an evolutionary computation technique, which is inspired by social behavior of swarms. PSO is
similar to the other evolutionary algorithms, i.e., the system is initialized with a population of random
solutions. Each solution or particle flies in a D-dimensional space with a dynamically adjusted speed. It
is important to take into account the best position of the particle and the best positions of the particles
of the neighborhood. The location of the ith particle is represented as Xi = (xi1, . . . , xid, . . . , xiD). The
best previous position (which gives the best fitness value) of the ith particle is recorded and represented
as Pi = (pi1, . . . , pid, . . . , piD), which is also called pbest. The index of the best pbest among all the
particles is represented by the symbol g. The location Pg is also called gbest. The velocity of the ith
particle is represented as Vi = (vi1, . . . , vid, . . . , viD). The particle swarm optimization consists of, at
each time step, changing the velocity and location of each particle toward its pbest and gbest locations
according to Equations (21) and (22), respectively:

Vid = w × Vid + C1 × rand() × (pid − xid) + C2 × rand() × (pgd − xid) (21)
xid = xid + Vi (22)

w is the inertia weight, C1 and C2 the acceleration constants, as discussed by Eberhart and Shi [23],
and rand () is a uniform random function in the range [0, 1]. In Equation (21), the first addend
represents the inertia of the previous velocity; the second addend is the cognition addend, which
represents the private thinking by itself, and the third addend is the social addend, which represents
the cooperation among the particles, as discussed by Kennedy [24, 25]. Vi is clamped to a maximum
velocity Vmax = (vmax,1, . . . , vmax,d, . . . vmax,D). Vmax determines the resolution with which regions
between the present and the target position are searched, as discussed by Eberhart and Shi [23] Instead
of specifying a starting point for the algorithm, we defined the limits of the input variables that the
optimizer is allowed to search within prior to calling the optimizer in the objects Lb and Ub, which
stand for lower-bound and upper-bound, respectively: Lb = [0, 0], Ub = [1, 2π].

The process for the implementation of PSO is as follows:
a). Set the current iteration generation Gc = 1. Initialize a population which includes m

particles. The ith particle has a random position in a specified space. For the dth dimension of
Vi, vid = rand2() × vmax,d, where rand2() is a random value in the range [−1, 1];

b). Evaluate the fitness of each particle;
c). Compare the evaluated fitness value of each particle with its pbest. If the current value is better

than pbest, then set the current location as the pbest location. Furthermore, if the current value is
better than gbest, then reset gbest to the current index in the particle array;

d). Change the velocity and location of the particle according to the Equations (21) and (22),
respectively;

e). Gc = Gc + 1, loop to step b) until a stop criterion is met. Usually a sufficiently good fitness
value or Gc achieves a predefined maximum generation Gmax.

Figure 4 shows a flowchart diagram of the main steps of the particle swarm optimization algorithm.
The particle swarm optimization (PSO) includes the following parameters: number of particles m,

inertia weight w, acceleration constants C1 and C2, maximum velocity Vmax. During the evolution
process, the swarm might undergo an undesired diversity loss. Some particles became inactive.
Therefore, they lost both the global and the local search capabilities in the next generations. A loss
of such a type translates that the particle will only be flying within a small space. This occurs when
the particle’s location and pbest are close to gbest (if the gbest has not significant changes) and when
its velocity is close to zero for all dimensions. In sum, the loss means that the possible flying cannot
lead to a perceptible effect on its fitness. On the ground of the theory of self-organization postulated by
Nicolis [26] advances that if the system is going to be in equilibrium, the evolution process will stagnate.
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Figure 4. Flow-chart of the PSO algorithm.

If gbest is located at a local optimum, then the swarm will become premature convergence as all the
particles become inactive. To stimulate the swarm with sustainable development, the inactive particle
should adaptively be substituted by a fresh particle so as to keep the non-linear relations of feedback in
Equation (21) efficient by maintaining the social diversity of the swarm. However, it is hard to identify
the inactive particles, since the local search capability of a particle is highly depending on the specific
location in the complex fitness landscape for different problems. Fortunately, the required precision
of the fitness value is easily found from the fitness function The adaptive PSO is executed to replace
the inactive particles by substituting step d) of the standard PSO process, by the pseudo code of the
adaptive PSO that is shown in Figure 5.
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Figure 5. Inserted pseudo code of adaptive PSO.

Fi is the fitness of the ith particle, Fgbest is the fitness of gbest, ΔFi = f(Fi, Fgbest ), f(x) is an
error function, ε a predefined critical constant, depending on the required precision. Tc is the count
constant. The replace () function is used to replace the ith particle, where Xi and Vi are reinitialized
using the process in step a) of standard PSO, and its pbest is equal to Xi. The array similar Count[i]
is employed to store the counts which successively satisfy the condition |ΔFi| < ε for the ith particle
which is not gbest. The inactive particle naturally satisfies the replace condition; however, if the particle
is not inactive, it has less chance to be replaced as Tc increases. For adaptive particle swarm optimizer
(APSO), ΔF i is set as a relative error function, which is (Fi − Fgbest )/Min(abs(Fi), abs(Fgbest )), where
abs(x) is the absolute value of x, Min(x 1, x2) the minimum value between x1 and x2. The critical
constant ε is set to 0.0001, and the count constant Tc to 3. For the problem at hand, the number of
dimensions is equal to twice the number of antenna elements, because both the amplitude and the phase
of each parameter must be specified by the PSO. A swarm of 40 particles was used. The algorithm
parameters C1 and C2 specify the relative weight that the global best position has versus the particle’s
own best. Empirical testing has found that 0.5 is a reasonable value for both C1 and C2. Linear velocity
damping was applied with the upper limit equal to 0.9. Velocity damping improves the convergence
behavior of the particle swarm by gradually increasing the relative emphasis of the global and own best
positions on a particle’s velocity. The upper limit of the inertia weight is 0.9 and the lower limit is 0.4.

4. NUMERICAL RESULTS

The synthesis technique, presented in this section, aims at optimizing a multibeam linear uniform array
so that its main lobes occur exactly at certain specific angles, with maximum tolerance on the sidelobe
levels using, complex weight excitations. The method has been used to design six uniform arrays for
two modes TM11 and TM12. Some numerical results of the optimized design of multibeam antenna
arrays are reported in this paper. The simulation runs on an HP i5 laptop with a RAM of 4 GB. The
algorithm of adaptive particle swarm optimization is implemented using Matlab code.

The antenna characteristics are as follows: εr = 2.32; Hs = 1.59 mm; r1=35 mm; r2 = 70 mm The
case of an array with 12 elements and 0.5λ spacing is introduced. This array is supposed to generate
two beams directed at the two angles 20◦ and −20◦, for the two modes TM11 and TM12, respectively.
The requirements of the sector beam pattern with sidelobe levels are below than −20 dB, with two main
beams directed toward the angles 20◦ and −20◦ as portrayed in Figures 6(a) and 6(b). Both figures
show the normalized output pattern in dB, and the relative amplitudes of the two beams which are
equal to unity for both modes. The maximum side-lobes levels are equal to −17.09 dB and −18.06 dB
for the TM11 and TM12 modes respectively. For the design results of amplitude-phase synthesis, the
adaptive particle swarm optimizer is run for 79 iterations and 155 iterations for the modes TM11 and
TM12; the CPU time is 10.64 and 20.87 minutes respectively, as demonstrated in Figures 7(a) and 7(b).
The distribution of the amplitude and phase excitation law of the radiating elements in the periodic
array is shown in Table 1.
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Figure 6. Simulation synthesis results. (a) Normalized pattern for TM11 Mode excitation. (b)
Normalized pattern for TM12 mode excitation. The dashed lines are the desired sector beam patterns
which have prescribed sidelobe levels below than −20 dB and with two main beams directed toward the
angles 20◦ and −20◦.
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Figure 7. (a) The convergence curve TM11. (b) The convergence curve TM12.
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Figure 8. Simulation synthesis results. (a) Normalized pattern for TM11 Mode excitation. (b)
Normalized pattern for TM12 mode excitation. The dashed lines are the desired sector beam patterns
which have prescribed sidelobe levels below than −20 dB with two main beams directed toward the
angles 0◦ and 20◦.

The second example belongs to the synthesis of a 12 radiators linear array, where the amplitudes
and phases are modified. The adaptive particle swarm optimization is able to produce patterns with
two prescribed main lobes, at around 0◦ and 20◦ for both modes TM11 and TM12, while limiting the
side-lobes level. The requirements of the sector beam pattern are shown in Figure 8. The amplitude-
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Figure 9. (a) The convergence curve TM11. (b) The convergence curve TM12.
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Figure 10. Simulation synthesis results. (a) Normalized pattern for TM11 Mode excitation. (b)
Normalized pattern for TM12 mode excitation. The dashed lines are the desired sector beam pattern
which have prescribed sidelobe levels below than −20 dB with three main beams directed toward the
angles −30◦, 0◦ and 20◦.

phase synthesis gave the maximum side-lobe levels of 18 dB and −19.50 dB, for the two modes TM11

and TM12 respectively. The adaptive particle swarm optimization was run for 100 iterations for the two
modes as shown in Figure 9, with an initial population of 40 particles; the required execution time is
5.79 and 8.89 minutes for the TM11 and TM12 respectively. The optimized excitation magnitudes and
phases of the array elements are shown in Table 1.

The third numerical example refers to the same array and is obtained by imposing three maxima
along the desired directions. It can be noticed that, when the proposed algorithm is used, the beams
can be oriented exactly in the required directions. The applied method yielded the patterns shown in
Figures 1(a) and (b), for TM11 and TM12 modes, respectively. The requirements of such sector beam
pattern are graphically presented in Figure 10. After 100 and 220 iterations, the fitness value reached
its maximum and the optimization process ended due to meeting the design goal for both modes TM11

and TM12 the exact execution time is 14.01 and 30.82 minute respectively. The fitness convergence
curves are presented in Figures 11(a) and (b). The synthesis results obtained for the two modes TM11

and TM12 are depicted in Table 1.
Table 1 shows the optimized element excitations for all linear antenna array designs discussed

above.
Our proposed method can be extended to the planar antenna array which consists of 10 × 10

annular ring antennas equally spaced by 0.5λ along the directions Ox and Oy. The synthesis objective
was to obtain a pattern with two narrow beams in the desired directions for the modes TM11 and
TM12 in the principal plane (E-plane ϕ = 0◦) by acting on the amplitudes and phases of sources while
achieving a minimum peak sidelobe levels. Satisfactory results were obtained and multibeam patterns
were achieved and plotted in the polar coordinate system, as shown in Figures 12(a) and (b). The
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Figure 11. (a) The convergence curve TM11. (b) The convergence curve TM12.
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Figure 12. (a) Normalized pattern TM11. (b) Normalized pattern TM12. The dashed lines are the
desired sector beam pattern which have prescribed sidelobe levels below than −20 dB with two main
beams directed toward the angles 0◦ and 20◦.

Table 1. Optimized excitations obtained with APSO for linear arrays.

Figure 6 Figure 8 Figure 10 
 

N° 
TM11 TM12 TM11 TM12 TM11 TM12 

Ampl 
(Volt) 

Phase 
(Rad) 

Ampl 
(Volt) 

Phase 
(Rad) 

Ampl 
(Volt) 

Phase 
(Rad) 

Ampl 
(Volt) 

Phase 
(Rad) 

Ampl 
(Volt) 

Phase 
(Rad) 

Ampl 
(Volt) 

Phase 
(Rad) 

1 0.2814 1.5321 0.4795 3.7084 0.1172 2.2310    0.2201 2.7581 0.0073 2.4007 0.1547 2.0456 
2 0.5192 1.4963 0.5666 3.6196 0.2183 1.8209    0.2761 1.4984 0.0706     2.4494 0.3306 4.8580 
3 0.0628 5.1279 0.9796 0.5862 0.1025 4.9695 0.2839     5.2853     0.3766     3.2325 0.3693 6.1627 
4 0.7214 4.7912 0.9075 0.9202 0.5698 3.6570    0.5143 4.6853     0.8339     3.8514 0.5590 1.8092 
5 0.6692 4.8370 0.3934 3.5280 0.9016 3.1761    0.7953 4.1869     0.3684 3.4844 0.8317 3.0304 
6 0.0722 2.3679 0.8283 4.4429 0.9974 2.5947    0.6662 3.4443     0.6434 2.1487 0.2994 3.7045 
7 0.7842 1.7826 0.4545 4.1771 0.6872 2.2393    0.6900 3.0203     0.7342 2.5638 0.5487 0.4598 
8 0.5393 1.9761 0.1492 3.1116 0.2607 1.4994    0.1721 5.4527     0.5271     4.8216 0.5377 1.2848 
9 0.1288 4.7838 0.6615 0.7736 0.6661 4.3732    0.5743 6.0291     0.7721 5.2835     0.5047 3.5016 

10 0.4977 5.1351 0.6034 1.5027 0.8003 4.0110    0.7458     4.8610     0.3017 3.8874 0.7383 3.7786 
11 0.3584 5.3536 0.2782 3.7525 0.8521 3.4245    0.8896     4.3904     0.8238     3.4586 0.2953 2.6360 
12 0.0829 2.4152 0.3365 4.7316 0.6125 2.9748 0.3209 3.5256 0.3704 3.7639 0.3482 1.7061 
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Figure 13. (a) The convergence curve TM11. (b) The convergence curve TM12.

Table 2. Optimized excitations obtained with APSO for planar array.

 

 

 

 

 

Figure 12 (a) Figure 12 (b) 

 
N° 

TM11 TM12 
Amp.Ox 

(Volt) 
Amp.Oy 

(Volt) 
Phase.Ox 

(Rad) 
Phase.Oy 

(Rad) 
Amp.Ox 

(Volt) 
Amp.Oy 

(Volt) 
Phase.Ox 

(Rad) 
Phase.Oy 

(Rad) 
1 0.3604 0.7314 4.0940 3.1520 0.6070 0.2450 2.4543 1.5120 
2 0.6551 0.6374 3.6752 4.0978 0.9297 0.2423 1.7174 4.2740 
3 0.7987     0.3496 2.9905 3.0617 0.5070 0.6524 0.7058 2.3789 
4 0.5570 0.7053 2.8384 2.1905 0.2072 0.3348 0.6830 2.2938 
5 0.1523 0.6106 2.3925 1.5310 0.1606 0.6216 3.3935 3.5386 
6 0.3387 0.4968 5.1595 3.9306 0.5374 0.4853 3.4524 1.9370 
7 0.7194 0.3309 4.3831 1.6232 0.9036 0.6509 2.7330 3.4076 
8 0.7426 0.5672 3.9702 2.9599 0.6907 0.4821 1.6403 2.8137 
9 0.5846 0.2113 3.5105 2.5016 0.3776 0.9998 0.7967 2.4105 

10 0.2120 0.4651 3.2002 4.3735 0.2634 0.3771 3.9290 3.6162 

Table 3. CPU execution time and iteration value at convergence of the APSO algorithm.

Figure 6 Figure 8 Figure 10 Figure 12

TM11 TM12 TM11 TM12 TM11 TM12 TM11 TM12

CPU

Execution

times (min.)

10.64 20.87 5.79 8.89 14.01 30.82 27.31 28.60

Iteration

value at

Convergence

79 155 43 66 100 220 191 200

excitation amplitudes and phases of the elements for TM11 and TM12 are shown in Table 2. For the
design specifications, the modified particle swarm optimization method is run for 191 and 200 iterations,
for TM11 and TM12 modes as reported in Figures 13(a) and (b), respectively. The execution time is
equal to 27.31 minutes for TM11 and 28.60 minutes for TM12.

The synthesis examples show the principal characteristics of the suggested method. These arrays
meet strict demands, especially in terms of maximum directivity to be guaranteed in the selected angles
and the sidelobe levels to be kept below an a desired value. The adaptive particle swarm optimization
synthesis results of magnitudes and phases of the case of planar dual-beam array are given in Table 2.
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The measured CPU execution time required to reach convergence by the APSO algorithm is shown
in Table 3.

5. CONCLUSION

In this paper, the adaptive particle swarm optimization algorithm is introduced with the end to
synthesize the multibeam linear and planar annular ring antenna arrays for the TM11 and TM12 modes.
The complex weights of the arrays were calculated so as to approach the appropriate radiance diagram.
Satisfactory side-lobe levels were obtained while high directivities and narrow beams were attained.
Results indicate a very good agreement between the expected and synthesized specifications, for the
two modes. Significant results show the effectiveness of the suggested adaptive swarm optimization
algorithm through the determination of the optimized complex weight vectors.
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