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Study on Attitude Control Method for Zero-Doppler Steering
in Space Borne SAR System

Xinqiang Zhao1 and Dan Wei2, *

Abstract—For the spaceborne synthetic aperture radar (SAR) system, in order to alleviate the
complexity of the imaging algorithm and to improve the accuracy of the applications of SAR images,
attitude steering is required to reduce the Doppler centroid to 0 Hz. In published literature, two-
dimensional attitude steering, including yaw and pitch steering, is employed for elliptic orbiting SAR
systems. This paper proposes a new steering approach involving only yaw steering to suppress the
Doppler centroid of the mid-range to theoretically 0 Hz with a low residual Doppler centroid at the edge
of the range extent. This may reduce the complexity of the attitude control system. The comparison
of the performances of the current applied methods and the proposed approach is carried out with a
simulation, and the effectiveness of the new approach is validated by the results.

1. INTRODUCTION

In spaceborne synthetic aperture radar (SAR) systems, the Doppler centroid is not zero in the
conventional broadside mode with zero beam attitudes due to the earth rotation and eccentricity of the
orbit [1, 2]. The large Doppler centroid may result in serious coupling of range and azimuth variables
and increasing the difficulty of focusing. This may also result in degradation in image registration
accuracy, interferometry accuracy, scalloping correction performance for ScanSAR processing and other
factors [2, 3]. In order to suppress the Doppler centroid to 0 Hz, attitude steering method is applied to
point the antenna beam centerline in the direction of Doppler zero-line. The effectiveness of the attitude
steering methods has been validated in advanced space borne SAR systems including TerraSAR-X [4, 5],
to name a few.

Several attitude steering policies can be found in current literature. Ref. [1] proposes a yaw steering
method which works perfectly for circular orbiting space borne SAR systems, but this method does not
work well in elliptic orbit cases, which will generate a Doppler frequency at the scale of hundreds of Hz.
Refs. [6, 7] and [8] proposes a Total Zero Doppler Steering (TZDS) method by exploiting an additional
pitch steering. This method is applied in the TerraSAR-X system and suppresses the Doppler centroid
to tens of Hz all over the range swath [9, 10]. However, this method suppresses the Doppler centroid
at the cost of increasing the complexity of the SAR system since it requires attitude steering on two
dimensions. Besides, in some SAR systems, there are always some constraints on the attitude of the
satellite for specific purpose [11, 12], which also sets a limit on the applications of the 2-dimensional
attitude steering method.

By analyzing the aforementioned attitude steering methods for elliptic orbiting SAR systems, it
can be found that the pitch steering angle is usually very small in nearly circular orbit cases. This
implies that an attitude steering method with only yaw steering may suffice to suppress the Doppler
centroid to 0 Hz for the mid-range at the cost of causing a low residual Doppler centroid at the edge
of the range extent. It can reduce the complexity of the attitude control system while not affecting
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the accuracy of the SAR products. This paper studies the attitude steering problem and proposes a
new method to calculate the yaw steering angle with zero pitch steering angle or with a given pitch
steering angle. The former formula can be used to perform 1-D yaw steering in the SAR systems with
one coordinate axis pointing toward the earth center [6, 7]; the latter can be used to perform 1-D yaw
steering in the SAR systems with one coordinate axis pointing perpendicular to the earth surface [5] or
to refine the performance of TZDS.

This paper is organized as follows. Section 2 derives the formula for calculating the yaw steering
angle of the new method. Section 3 gives the simulation results to compare the performances of the
new method and the currently applied methods. Section 4 gives a discussion and draws the conclusion.

2. THE GENERAL METHOD FOR ZERO DOPPLER STEERING

2.1. Geometry for SAR Attitude Steering

The Doppler frequency fdop of a point target is given by [13]

fdop = − 2
λ

(�RS − �RT ) · ( �̇RS − �̇RT )
R

(1)

where λ is the wavelength; �RS and �RT are the position vectors of satellite and target, respectively; �̇RS

and �̇RT are the corresponding first order derivatives; R is the range distance from the satellite to the
target; · is the inner product operator.

Let fdop equal 0. Expanding the terms in the brackets, substituting the relation �RT · �̇RT = 0 for
earth rotation, and shifting the term irrelevant to the target to the other side yield

�RS · �̇RT + �̇RS · �RT = �RS · �̇RS . (2)
From the derivation process, it may be contended that Eq. (2) is the function for zero-Doppler

plane. To get a concrete point of this contention, we proceed to derive an algebraic form of Eq. (2) in
terms of coordinates.

First, three coordinate systems depicted in Figure 1 are defined as follows.
(1) Earth centered coordinate system E − xeyeze: The origin coincides with the Earth center,

and the ze-axis is along the angular momentum direction of the Earth; the xe-axis is pointing to the
ascending node of the orbit, while the ye-axis is directed to complete a right-handed Cartesian system.

(2) Orbit plane coordinate system E−xoyozo: The origin coincides with the Earth center, while its
zo-axis is along the angular momentum direction of the satellite; the xo-axis is pointing to the perigee,
while the yo-axis is directed to complete a right-handed Cartesian system.

(3) Satellite local coordinate system S−xsyszs: The origin coincides with the satellite mass center,
while its zs-axis is along the angular momentum direction of the satellite; the xs-axis is pointing to the
satellite away from the earth center, while the ys-axis is directed to complete a right-handed Cartesian
system.

Then the translations between these three coordinate systems are as following:
(1) From E − xoyozo to E − xeyeze

E − xoyozo needs to be rotated about zo-axis by ω, where ω is the argument of perigee, and then
be rotated about the x-axis by i, where i is the inclination, so the rotation matrix from the orbit plane
coordinate system E − xoyozo to the earth centered coordinate system E − xeyeze is

Aeo =

[ 1 0 0
0 cos i − sin i
0 sin i cos i

][ cos ω − sin ω 0
sin ω cos ω 0

0 0 1

]
. (3)

(2) From S − xsyszs to E − xoyozo

S − xsyszs needs to be translated by
−→
SE and then be rotated about zo-axis by f , where f is the

true anomaly. The rotation matrix is

Aos =

[ cos f − sin f 0
sin f cos f 0

0 0 1

]
. (4)
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Figure 1. Geometry of space borne SAR.

2.2. Derivation of Steering Angles for SAR Attitude Control

In the orbit plane coordinate system E − xoyozo, we have the satellite position vector �R′
S , and its

derivative �̇R
′
S is

�R′
S =

a(1 − e2)
1 + e cos f

[cos f, sin f, 0]T

�̇R
′
S =

√
μ

a(1 − e2)
[− sin f, cos f + e, 0]T

. (5)

where a is the semi-major axis length, e the eccentricity, and μ the earth gravitational constant
In the earth centered coordinate system E − xeyeze, the position vector of the target �RT and its

first order derivative �̇RT can be expressed as

�RT =

[
xT

yT

zT

]
, �̇RT = ωe

[ −yT

xT

0

]
= ωe

[ 0 −1 0
1 0 0
0 0 0

][
xT

yT

zT

]
. (6)

where ωe is the angular velocity of the Earth. Denoting that

Ac =

[ 0 −1 0
1 0 0
0 0 0

]
. (7)

using the relations that �RS = Aeo
�R′

S and �̇RS = Aeo
�̇R
′
S , replacing the inner product of two vectors by the

corresponding matrix multiplication, and substituting Eqs. (5) and (6) into Eq. (2), a plane equation
with respect to �RT drops out as

�RS · �̇RS =
[
ωe

�R
′T
S AT

eoAc + �̇R
′T
S AT

eo

]
�RT . (8)
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of which the normal vector is

�n =
[
ωe

�R
′T
S AT

eoAc + �̇R
′T
S AT

eo

]T

. (9)

In S − xsyszs, without attitude steering, the unit vector of the beam center line can be expressed
as

�l = [− cos γ, 0, ε sin γ]T. (10)

where ε is an indicator variable that describes radar’s looking to the right (−1) or left (+1) of the orbital
velocity vector.

Assume that the angles for yaw and pitch steering are θp and θy, respectively, then the coordinate
of the beam center line vector in S − xsyszs becomes �l′ = Asa

�l, where the rotation matrix Asa is

Asa =

[ 1 0 0
0 cos θy − sin θy

0 sin θy cos θy

][ cos θp − sin θp 0
sin θp cos θp 0

0 0 1

]
. (11)

Converted into E − xeyeze, the coordinate of �l′ is �l′ = AeoAosAsa
�l.

For zero Doppler steering, the beam center line must be in the zero Doppler plane, hence �l′ should
be perpendicular to �n, which can be written as

�n ·�l′ =
[
ωe

�R
′T
S AT

eoAc + �̇R
′T
S AT

eo

]
AeoAosAsa

�l =
[
ωe

�R
′T
S AT

eoAcAeo + �̇R
′T
S

]
AosAsa

�l = 0. (12)

The last simplification employs the relation that A−1
eo = AT

eo.
(1) 2-D steering
Observe that the second dimension of �l is 0, so AosAsa

�l can be viewed as a linear combination of
the first and third column vectors of AosAsa. In order to satisfy Eq. (12), it is sufficient to have[

ωe
�R

′T
S AT

eoAcAeo + �̇R
′T
S

]
col1 (AosAsa) = 0[

ωe
�R

′T
S AT

eoAcAeo + �̇R
′T
S

]
col3 (AosAsa) = 0

. (13)

where coli(·) denotes the ith column of the matrix in the brackets. Since col3(AosAsa) relates only to
the yaw steering angle θy, the second equation of Equation (13) can be solved for θy, then θp can be
determined from the first equation by using θy. For convenience of reference, the steering angles are
listed here as θyo and θpo.

θyo = tan−1

(
k1 sin i cos(ω + f)

k2(1 + e cos f) − k1 cos i

)

θpo = k tan−1

⎛
⎝ ek2 sin f√

[k1 sin i cos(ω + f)]2 + [k2(1 + e cos f) − k1 cos i]2

⎞
⎠. (14)

where

k1 = ωe
a(1 − e2)
1 + e cos f

, k2 =
√

μ

a(1 − e2)
, k =

{ −1 k2(1 + e cos f) − k1 cos i ≥ 0
1 k2(1 + e cos f) − k1 cos i < 0 . (15)

(2) 1-D yaw steering with zero pitch steering angle
Let θp = 0 in Eq. (12), by collecting together the terms related to sin θy and cos θy, respectively,

we have
[k1 cos i − k2(e + cos f)] sin θy + [k1 sin i cos(ω + f)] cos θy = εek2 sin f cot γ. (16)

Employing the triangular identity sin θy cos θ + cos θy sin θ = sin(θy + θ) yields

θy = sin−1 (ε tan θpo cot γ) + θyo. (17)
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where θyo and θpo are written as in Eq. (14).
(3) 1-D yaw steering with a given pitch steering angle
Given a pitch steering angle θp, the yaw steering angle can be solved as

θy = sin−1

⎡
⎣ε tan θpo cot γ cos θp√

1 + sin2 θp cot2 γ

⎤
⎦+ θyo − θ. (18)

where
θ = tan−1 (ε sin θp cot γ) . (19)

3. SIMULATION RESULTS

For the convenience of reference, the analytical form of the steering law employed by TerraSAR-X is
listed here:

θy =tan−1

(
sin i cos(ω + f)

N − cos i

)
, θp =k′ cos−1

(
1 + e cos f√

1 + e2 + 2e cos f

)
, k′=

{
1 0 ≤ f < π
−1 π ≤ f < 2π . (20)

where N is the number of revolutions per day. There is a little improvement on the accuracy of this
steering law by replacing N with ωs/ωe, where ωs is the instantaneous angular velocity of satellite. We
label the steering law that TerraSAR-X employs and its improvement edition as TZDS and TZDM,
respectively, label the steering law in Eq. (17) as OLY and the steering law in Eq. (18) with a given
pitch angle as OLYT. The parameters used in the simulation are listed in Table 1. The orbit is a kind
of low sun synchronous orbits which most current SAR systems adopt. The beam width angle offers a
range swath of 30 kilometers.

Table 1. Orbit elements and SAR system parameters for simulation.

Denotation Description Value Value Units
a Semi Major 6892.137 km
e Eccentricity 0.0011
i Inclination 97.42 deg
ω Argument of Perigee 90 deg
f0 Carrier Frequency 9.6 GHz
γ Off-Nadir Angle 30 deg
θb Beam Width Angle 2 deg
T Orbit cycle 4.2 h

The yaw and pitch steering angles that the above methods employ and the residual Doppler centroid
at the mid-range and at the edge of the range extent are demonstrated in Figure 2. The scales of the
residual Doppler frequency are tabulated in Table 2. Based on the simulation results, it can be concluded
that:

(1) For the mid-range, the Doppler centroid is reduced to 0Hz by employing OLY and OLYT, while
there is a small residue by employing TZDS and TZDM.

(2) Compared with the residual Doppler frequency over the range extent by employing TZDS and
TZDM, there is a variation of ±20 Hz of the residual Doppler centroid. This low variation will not add
the difficulty of focusing due to the azimuth over sampling.

(3) The residual Doppler centroid can be reduced from ±20Hz by employing TZDS to ±5Hz by
employing TZDM. The residual Doppler centroid can be reduced further to almost 0 Hz by employing
the yaw steering angle of OLYT.

According to the analysis and simulation shown in the manuscript, the proposed altitude steering
method has the following advantages. Firstly, the Doppler centroid of mid-range can always be 0 Hz,
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Figure 2. Residual Doppler centroid over the range by employing different steering laws. (a) Residual
doppler at mid-range. (b) Residual doppler at near-range. (c) Residual doppler at far-range.

Table 2. The scale of the residual doppler frequency.

TZD TZDM OLY OLYT
Mid-Range ±21.0 Hz ∼ 0 Hz ∼ 0 Hz ∼ 0 Hz
Near-Range ±20.5 Hz ±4.9 Hz ±18.4 Hz ±0.2 Hz
Far-Range ±21.5 Hz ±4.9 Hz ±18.4 Hz ±0.2 Hz

and the residual Doopler centroid at the edge of range extent is low and will not cause defocus. Secondly,
the system complexity is lower with only yaw steering than 2D altitude steering. Thirdly, the proposed
algorithm can be applied in circular and elliptic orbit cases.

4. CONCLUSION

This paper discusses the problem of attitude control in SAR system, and proposes a new method to
suppress the residual Doppler centroid by employing 1-D yaw steering when the pitch angle is set to
0 or a constant value. Compared with 2-D steering law in current literature, the proposed method
can reduce the complexity of the attitude control system and can be used to refine the performance of
current steering laws.
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