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Uncertainty Quantification of Radio Propagation
Using Polynomial Chaos

Mattias Enstedt1 and Niklas Wellander1, 2, *

Abstract—In this paper we demonstrate how so-called polynomial chaos expansions can be used to
create efficient algorithms for uncertainty quantification in some classes of problems related to wave
propagation in stochastic environment. We provide an example from telecommunication.

1. INTRODUCTION

Briefly, uncertainty quantification (UQ) is a scientific discipline that aims at quantifying uncertainties
in various applications. Hence, it can be used to characterize how likely an output is and therefore,
as an example, be an important support in decision-making. See [14] for an introduction and further
references.

In most fields, there exists a widespread use of modeling and simulation tools. In spite of this,
to provide, in some sense, objective confidence intervals for the numerical predictions is in general a
difficult task. High-impact decisions require rigorous estimates of the confidence. To the greatest extent
possible, we try to represent real world systems, and hence we aim at getting the best model possible
which in general implies that we get complex models which even in the ideal situation can require a lot
of resources to run.

When a model is verified, a part of the Validation and Verification (V&V) process is to compare
numerical results with physical observations. Rigorous estimates of the uncertainties are important to
be able to estimate the predictive quality of a model. Thus, we see that UQ is an important part of
V&V since any kind of comparison between physical observations and output from associated numerical
models must include the quantification of uncertainty.

From a computational point of view, the technique we use to propagate the uncertainty is highly
interesting. Many techniques exist, and these techniques can be binary classified into intrusive methods
and nonintrusive methods. Nonintrusive methods require a deterministic model, where, of course, the
model should be well defined. Nonintrusive models require the deterministic model to be run multiple
times. Monte Carlo (MC) methods are examples of nonintrusive methods [4, 13]. Intrusive methods
require a stochastic formulation of the problem. An example here is Stochastic Galerkin type methods,
and we will discuss this type of methods further in Section 2.

The last step in a normal UQ-process is quantification of the confidence. The way we do this will
be strongly dependent on the way we propagate the uncertainty and the measure we consider to be
relevant. We provide an example regarding how it can be done in Section 2.

The idea of incorporating and quantifying uncertainty in our analysis is nontrivial in practice
since we, in general, require efficient ways of calculating and evaluating uncertainties. When it comes
to uncertainties in, for example, parameters within certain models we might use various families of
orthogonal polynomials to find efficient ways to quantify the uncertainty of certain calculated results.
In Section 2, we introduce polynomial chaos and relate them to the construction of efficient algorithms
for numerical solutions of certain partial differential equations.
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More precisely, we will, in Section 3, consider a scenario within the field of radio propagation. We
assume that we have a limited amount of information in the initial field. This uncertainty can for example
come from algorithmic uncertainties in previous calculations or model uncertainties. Furthermore,
when the radio wave propagates we have a section in the environment where we do not have complete
information on some of the dielectric parameters. We use a paraxial approximation as model for the
propagation of the wave in this environment. In [3] and [1], a similar technique was applied on the
Maxwell equations.

2. A STOCHASTIC GALERKIN METHOD

We derive things in a formal way in this section, and note that we need to make assumptions and derive
consequences to put this section on a solid mathematical ground. The main objective is to introduce
the idea.

Let (Ω,M, R) be an abstract probability space, where Ω is the sample space, M the set of events,
and R the probability measure. Assume that Y : Ω → Y (Ω) def= Υ ⊂ R

d is a random variable and
denoted by μY , the distribution of Y .

In a standard way, we define the space L2(Υ,MY , μY ) equipped with the inner-product

〈f, g〉 def=
∫

Υ
fgdμY (1)

and for simplicity we write L2(Υ, μY ).
Now, consider the kth order partial differential equation

E
(
x, Y (ω),Dk

xu(x, Y (ω)), . . . , u(x, Y (ω))
)

= 0, (2)

where (x, Y (ω)) ∈ D×Υ and the equation is interpreted in a classical sense for each fixed ω with D an
open set in R

N . We assume that this equation is supported with appropriate boundary conditions on
∂D. Here the mapping E is an appropriate functional and u a sufficiently smooth function on D × Υ.

Define
SP

def= Span {Ψ0(y), . . . ,ΨP (y)} ⊂ L2(Υ, μY ), (3)

where we want to choose {Ψp}P
p=1 as an ON-set in L2(Υ, μY ). The idea is to solve Eq. (2) restricted to

SP . In other words, we project the coefficients of the PDE onto SP and solve the associated equation.
Let Pk denote the polynomials with degree less than or equal to k and P̂k the set of polynomials in Pk

orthogonal to Pk−1. Cameron-Martin theorem [2, 18] states (for standard Gaussians) that

u = u0P0 +
∞∑

i1=1

ui1P̂1(Qi1) +
∞∑

i1=1

∞∑
i2=1

ui1,i2P̂2(Qi1 , Qi2) + . . . (4)

holds true for any u ∈ L2(Ω,M, R), and the convergence is strong in norm. Here Qi1 , Qi2 , . . . are
stochastic variables defined on Ω. The efficiency and accuracy of any algorithm involving expansions of
this type will depend on the creation of SP .

For the highest order polynomial in Eq. (4), n, and the number of stochastic processes, d, we can
write

u ≈ uP
def=

P∑
p=0

upΨp(y), where P =
(n + d)!

n!d!
− 1. (5)

If the solution is not sufficiently smooth in y, see for example [17].
We can now, using Eq. (2), write

〈E|SP
,Ψp〉 = 0, ∀p, (6)

with the corresponding operations for the boundary. Hence, the name Galerkin. Depending on the
structure of the equation there will be different ways of solving this equation.
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As we mentioned in Section 1, the final part is to quantify the confidence. This is the calculation
of

E [f(u)] ≈
∫

Υ
f

⎛
⎝ P∑

p=0

upΨp

⎞
⎠ dμY , (7)

for an appropriately chosen function f , depending on the measure we are interested in.
A final note is that we can actually derive approximate realizations of the true distribution, and

hence if we have found a sufficiently good approximation, we may use this as an algorithm for sampling
or as a basis for a detection algorithm.

3. STOCHASTIC WAVE PROPAGATION

Computational electromagnetic modelling (CEM) [9, 15] of the interaction between electromagnetic
fields and an environment will in general involve parameters associated with a limited degree of
information. These parameters are, according to our belief, in general represented in terms of
probabilities. Obviously these uncertainties will imply uncertainties in the results. One way of handling
these uncertainties is introduced in this section.

Let u ∈ C∞(Ξ), where Ξ := {(x, z) : x > 0 and z > 0}. Fock and Leontovich introduced, in [7, 10],
a model that can be used for wave propagation, see also [11]. We use

D
def=

1
4

1
k2

∂3
z2x − i

2k
∂2

z +
n2 + 3

4
∂x − ik

n2 − 1
2

, (8)

where n ∈ C will be defined later in this section, and k is the (angular) wavenumber as the governing
operator. There are many different approximations, based on the theory of pseudo-differential operators,
but this one is quite common to work with in telecommunication and propagation in unguided medium.
Parabolic approximations are used in many different fields for example underwater acoustics [16] and
geophysics [5]. Note here that this model, although extensively used for deterministic scenarios,
introduces model uncertainty into our analysis. This equation has also previously been studied, see
for example [8] and the references therein. To the best of the authors’ knowledge, this equation has
previously not been studied in a stochastic framework. Consider⎧⎪⎪⎨

⎪⎪⎩
Du = 0,
lim|(x,z)|→∞ |u(x, z)| = 0,
∂zu|z=0 = −Γu|z=0,

u|x=0 = f(z),

(9)

where f : R+ → C is the initial condition generated from a source. Here

Γ(x) def=

⎧⎪⎨
⎪⎩

ik
√

ε(x) − 1, HED,

ik

√
ε(x) − 1
ε(x)

, VED.
(10)

Define a grid, G(Δx,Δz) with um
l

def= u(xm, zl) constant, Δx the size of the grid in x and Δz in z. Let

xm
def= (m + 1

2)Δx, zl
def= (l + 1

2)Δz and let m, l be nonnegative integers. We note that depending on
our position in the grid we will get different refraction indices with different degrees of information.
Therefore, we introduce the notation below. Put

M
def=
{
(m, l) ∈ N

2 : ax ≤ m ≤ Ax and az ≤ l ≤ Az

}
, (11)

where ax ≤ Ax and az ≤ Az denote an area in the grid with an uncertainty in the imaginary part of n.
If (m, l) or (m + 1, l) belongs to M and (m, l) or (m + 1, l) not belong to M (in the exclusive sense) we
say that the element (m, l) belongs to Mb. When (m, l) and (m + 1, l) belong to M , we say that the
element belongs to Mu, and when (m, l) and (m + 1, l) do not belong to M , we say that the element
belongs to Md. Put

nm
l (X)2 def= ε + dm

l X, where dm
l

def=
i

ωε0
·
{

0, (m, l) ∈ Md,
1, (m, l) ∈ Mu ∪ Mb.

(12)
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Here X ∼ U(a, b) is the stochastic variable representing the uncertainty associated with the imaginary
part of the permittivity.

We use the Crank-Nicolson method [6] to find the approximate solution and hence introduce an
algorithmic uncertainty into the propagation. This results in a system of the form

Aum+1 = Bum (13)
for a fixed m. In other words, there will be a system of deterministic equations that we need to solve
in each step. To be explicit, the system based on Eq. (9) reads

um+1
l+1 (X) + α

m+ 1
2

l (X)um+1
l (X) + um+1

l−1 (X) = γ

(
um

l+1(X) + β
m+ 1

2
l (X)um

l (X) + um
l−1(X)

)
, (14)

where

γ
def=

1 + i2kΔx − (kΔx)2

1 + (kΔx)2
, (15)

α
m+ 1

2
l (X) def= (kΔz)2

(
ξ
m+ 1

2
l (X) − 1

)
+ 4ik

Δz2

1 − ikΔx
− 2, l > 0, (16)

and

β
m+ 1

2
l (X) def= (kΔz)2

(
ξ
m+ 1

2
l (X) − 1

)
− 4ik

Δz2

1 − ikΔx
− 2, l > 0. (17)

Here

ξ
m+ 1

2
l (X) def=

(
nm

l (X) + nm+1
l (X)

2

)2

. (18)

In addition, when we take the boundary conditions into account,

α
m+ 1

2
0

def=
1
2

(
(kΔz)2

(
ξ
m+ 1

2
0 (X) − 1

)
+ 4ik

Δz2

1 − ikΔx
− 2
)

+ Γm+1Δz − ikΔxΔzΓm+ 1
2 , (19)

and

β
m+ 1

2
0

def=
1
2

(
(kΔz)2

(
ξ
m+ 1

2
0 (X) − 1

)
− 4ik

Δz2

1 − ikΔx
− 2
)

+ ΓmΔz + ikΔxΔzΓm+ 1
2 , (20)

where Γm def= Γ(xm) and Γm+ 1
2

def= 1
2(Γm + Γm+1). We initiate the field in u0

l defined for all l. The
asymptotic condition will be handled by a Hann-Poisson filter.

We will proceed by introducing L2(R,dm), where dm def= χ[−1,1]dμ with the inner-product

〈f, g〉 def=
∫

R

fgdm. (21)

Fix P > 0 and project um
l (X) onto the span of {Lp(Z)}P

p=0, where P > 0 and Z ∼ U(−1, 1). Here Lp

is the univariate Legendre polynomial of degree p, which, in this case, will correspond to the function
Ψp in Section 2. This will result in

um
l (X) ≈

P∑
p=0

pum
l Lp(Z). (22)

Therefore, Eq. (14) can be written as

qum+1
l+1 +

P∑
p=0

p
qe

m
l

pum+1
l + qum+1

l−1 = γ

⎛
⎝qum

l+1 +
P∑

p=0

p
qg

m
l

pum
l + qum

l−1

⎞
⎠ , (23)

where q = 0, 1, . . . , P , with

p
qe

m
l

def=

〈
α

m+ 1
2

l (X)Lp, Lq

〉
〈Lq, Lq〉 , (24)
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and

p
qg

m
l

def=

〈
β

m+ 1
2

l (X)Lp, Lq

〉
〈Lq, Lq〉 . (25)

In Section 5, we will present a brief analysis of the algorithm.

4. A NUMERICAL EXAMPLE

We consider a scenario with a source located 13 m above ground, vertical polarization, and working at
50 MHz. To initiate the field, we use an approximative solution (by Norton), ul

0, of the Sommerfeld’s
half-space problem [12].

The dielectric parameters we used are εair = εvegetation = 1.00032, εground = 15, Xair = 0.0 [S/m],
Xground = 5 ·10−3 [S/m], and Xvegetation ∼ U(20 ·10−6, 50 ·10−6) [S/m]. We use a grid with Δx = 4.5 [m]
and Δz = 1.5 [m] for Ξ = {(x, z) : 0 < x < 3000 and 0 < z < 60}. The scenario can be found in
Figure 1.

Figure 1. The scenario used in the numerical example. Blue — air with known refraction index.
Green — vegetation modelled with a stochastic refraction index. The dielectric parameters we used
are εair = εvegetation = 1.00032, εground = 15, Xair = 0.0 [S/m], Xground = 5 · 10−3 [S/m], and
Xvegetation ∼ U(20 · 10−6, 50 · 10−6) [S/m].

Introduce the propagation factor, CPF := 20 log | E
E0

|, where E0 is the field under free-space
conditions. In Figure 2 and Figure 3, the calculated propagation factor can be found for a linear
polynomial (P = 1) and quadratic polynomial (P = 2), respectively. As a comparison, we run a
non-intrusive algorithm that consists of simply using randomly sampled realizations of the uncertainty
associated with the vegetation and running an implementation of the standard algorithm. In Figure 4
and Figure 5, the calculated propagation factor is given, for 5 realizations and 1000 realizations,
respectively. The sample mean and the unbiased sample variance estimator were used as estimators of
the associated estimands.
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Figure 2. First two moments, expectation value (top) and standard deviation (bottom), of the
propagation factor using linear polynomials.

Figure 3. First two moments, expectation value (top) and standard deviation (bottom), of the
propagation factor using quadratic polynomials.

5. DISCUSSION OF NUMERICAL RESULTS AND CONCLUSIONS

We will now provide a comparison in performance, with respect to computational effort, between the
two different methods studied in this paper along with a discussion of the numerical results.

Recall that P is the degree of the polynomial used in the intrusive method and that the results can
be found in Figure 2, Figure 3, Figure 4, and Figure 5.
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Figure 4. First two moments, expectation value (top) and standard deviation (bottom), of the
propagation factor estimated from 5 realizations.

Figure 5. First two moments, expectation value (top) and standard deviation (bottom), of the
propagation factor estimated from 1000 realizations.

The first step will be to calculate the matrices A and B in Equation (13). The extra computational
effort required by the intrusive method compared to the non-intrusive method is the evaluation of P 2

integrals one time, that is, when the propagation enters the area with a limited degree of information.
Until the propagation enters the area with a limited degree of information, the speed of propagating

the solution is equal between the methods. Once we propagate into an area with limited degree of
information, the matrix A will get a new structure, and we need to create a new optimized linear
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solver. Once we again propagate into an area with complete information, the stepping part will require
approximately P times the time for the non-intrusive stepping with respect to one sample (the standard
case).

Once we are done stepping through the grid, an integral for both the first moments needs to be
evaluated in each grid cell. Note that the reason for this requirement is that we are interested in
estimating the first two moments of the stochastic variable CPF. If we were interested in moments of
other stochastic variables, they could be calculated explicitly in terms of the coefficients associated with
Sp, introduced in Eq. (3).

In total, we can see that there is a potential huge speedup using the method suggested in this paper.
Further studies with respect to computational effort, accuracy, and other numerical properties need to
be conducted but at a given point in the grid the intrusive code (which can be optimized further) for
the linear case required roughly the same time as for 5 non-intrusive runs.

The focus of this paper was to demonstrate a possibly efficient method to estimate uncertainties,
as discussed above. However, a few words about the results are appropriate. To begin, we note that
linear and quadratic polynomial expansions yield similar results, i.e., the intrusive method seems to
have converged for a fixed grid. However, for the non-intrusive approach there are what we believe
to be nonphysical structures in the standard deviation close to the ground between 2500 and 3000 m.
One possibility is that we do not have a sufficient number of samples to get a good estimate with this
particular non-intrusive method. Besides that, the expectation values of the propagation factor CPF

for the two methods agree well, as well as the standard deviation. We would like to stress that there
might be other non-intrusive methods that perform significantly better than the one we used, but this
is beyond the scope of this paper.

An obvious observation is that the propagation factor becomes very small in the modelled vegetation
but with a significant uncertainty.

We note that there is a significant uncertainty (standard deviation is about 1.6 dB) in CPF in parts
of the deterministic part of the domain, which is most pronounced right above the vegetation. In fact,
the uncertainty propagates up in the whole computational volume above the vegetation.

A final remark is that quantification of uncertainties related to EM wave propagation is important
for, e.g., detection and tracking applications.

Further validation cases will be presented in the future.
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