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A Novel Compact Fractal Ring Based Cylindrical Dielectric
Resonator Antenna for Ultra Wideband Application

Dileep Sankaranarayanan*, Duggirala Venkatakiran, and Biswajeet Mukherjee

Abstract—This paper presents a novel compact Koch snowflake fractal ring based Dielectric Resonator
Antenna (DRA) for ultra wideband application. Firstly, Koch snowflake fractal geometry is implemented
on the conventional Cylindrical Dielectric Resonator Antenna (CDRA). Further, the performance of the
DRA is enhanced by fractal ring created on the snowflake geometry. With the application of the fractal
and the fractal ring geometry, the Q-factor of DRA is reduced, thus the bandwidth of DRA is increased.
The proposed antenna offers a wide impedance bandwidth of 90% ranging from 4.7 GHz–12.4 GHz.
The effect of the fractal geometry enhances the gain of DRA. The proposed antenna achieves radiation
efficiency more than 78%, throughout the bandwidth. Interestingly, the proposed configuration reduces
the DRA volume by 76.63% with reduced volume of 7.91 cm3. The experimental verification of the
proposed structure shows good agreement between simulated and measured results.

1. INTRODUCTION

In recent times, Dielectric Resonator Antenna (DRA) has witnessed huge attention due to its high
radiation efficiency and wide impedance bandwidth. There have been rigorous investigations carried
out on different geometries of DRA. The first DRA derived on cylindrical geometry was under the
assumption of dielectric resonator not enclosed by conductor boundary will radiate. This was credited
to Long [1]. This simple structure offered several advantages such as low cost and ease of machining.
Unlike patch antenna, DRA does not support propagation of surface waves. This makes it efficient for
high frequency applications [2].

A dielectric resonator has 3-dimensional geometry. It enhances the flexibility of design. Most
common geometries of DRA are rectangular, hemispherical, and triangular [3, 4]. Each geometry has
different radiation characteristics. The mode of DRA depends on the geometry and feeding method.
There are different ways to excite DRA. The type of coupling scheme and its location with respect
to the antenna can affect its performance in terms of impedance bandwidth, radiation patterns and
gain. Coaxial probe, coplanar waveguide, microstrip and aperture coupling methods are most common
coupling schemes of DRA [2]. Several methods have been proposed for bandwidth enhancement of
DRA. The inclusion of fractals puts a new insight into them. Fractals are self-similar and repetitive
complex patterns [5]. The fractal structure offers wide impedance bandwidth which has been reported
on rectangular, cylindrical and hemispherical DRAs [6, 7]. Stacked DRA, dual-segment, hybrid DRA
and slots in ground plane also well suited for improving the impedance bandwidth of DRA [8–12].
However, this makes the antenna bulky and less compact. Annular ring geometry is another way to
increase the bandwidth of DRA. This will impart weight reduction too. In [13], Minkowski fractal DRA
with a cylindrical hole provides enhanced bandwidth and gain.
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This paper analyses the bandwidth enhancement of CDRA by Koch snowflake fractal ring. Initially,
a conventional CDRA is designed, and snowflake geometry is applied to it. Koch snowflake fractal DRA
implemented on CDRA offers wide impedance bandwidth and high gain. This is due to increase in
surface area of DRA by the application of the fractal geometry. The bandwidth of Koch snowflake
fractal DRA is further increased by removing a small size Koch snowflake geometry from the central
portion of DRA. Removing a portion of dielectric material from DRA reduces the permittivity and
increases the surface area to volume ratio (S/V ); hence the Q-factor of DRA is also lowered. Finally,
the structure is made compact by removing a half portion of DRA. A prototype based on optimized
dimension is fabricated and experimentally verified.

2. KOCH SNOWFLAKE

Koch snowflake is generated from a simple Koch curve. A Koch curve is created by dividing a line
segment into three equal parts. The middle segment forms base of the equilateral triangle. Thus, the
base of the triangle is eliminated to create the subsequent fractals. Figure 1(a) shows an equilateral
triangle T1 with side S. For the first iteration, an equilateral triangle T2 with length 1/3rd of the length
of T1 is created and placed along each of the three sides of T1 towards the outer periphery as shown in
Figure 1(b). In the second iteration, the equilateral triangle is placed with 1/9th of the original length
of T1 triangle, and the process is continued to obtain higher order iterations [5, 14].

(a) (b) (c)

Figure 1. (a) T1: equilateral triangle with side S. (b) T2: first iteration. (c) T3: second iteration.

Fractals are self-similar and repetitive patterns, thus its dimensions are different from lines, curves
and planes. The dimension of a Koch snowflake is calculated by using self-similar property of fractal in
terms of Hausdroff dimension. During each of the iterations, the number of sides of the Koch snowflake
is increased by 4 times with side length 1/3 of the original one. The dimension of Koch snowflake is
given as mentioned below [15, 16],

Dim = limn→∞
ln (4n)
ln (3n)

=
ln(4)
ln(3)

≈ 1.2619 (1)

The total number of sides (N) of Koch snowflake after n iterations is given by,

N = 3 ∗ 4n (2)

The equilateral triangle has sides of length S, and the length of each side of the snowflake after n
iteration

Sn =
S

3n
(3)

The perimeter (P ) after n-iteration is given by,

P = 3 ∗ S ∗
(

4
3

)n

(4)
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3. ANTENNA CONFIGURATION

The antenna configuration is described in the following subsections. The first section presents
conventional CDRA design and its simulated S11 results. The second section focuses on implementation
of Koch snowflake fractal geometry on conventional CDRA and its parametric studies. Further, the
comparison of its performance for various iterations and optimized parameters calculated are also shown.
The third section proposes annular ring geometry on the optimized geometry from the second section
and its parametric studies. The final section explains the compact structure made from the fractal ring.
All simulations have been done on CST Microwave Studio 2014 by keeping 25 mesh cells per wavelength.

3.1. CDRA Design

The dimensions of the conventional CDRA are calculated for resonating at 3.8 GHz using a magnetic
wall model [2]. The radius and height of the CDRA are a = 2.68 cm and h = 1.5 cm. The antenna
is designed on an FR4 material with relative permittivity εr = 4.3 and loss tangent tan δ = 0.025
placed on a large ground plane of 10 cm × 10 cm. It is excited by a 50 ohm coaxial probe of length,
l = 0.9 cm kept at the center. The DRA resonates at 3.8 GHz with a bandwidth of 15% ranging from
3.56 GHz–4.12 GHz with 4.8 dBi gain at 3.8 GHz.

(a) (b)

Figure 2. The structure of antenna. (a) Top view. (b) Front view. W and L are the length and width
of ground plane, W = L = 10 cm. K = 0.5 cm is the distance from center to the probe, hr and hg are
the height of resonator and ground plane with hr = 1.5 cm and hg = 0.1 cm.

Figure 3. Simulated S11 plot of Koch snowflake
first iteration at different probe positions (k).

Figure 4. Simulated S11 plot of koch snowflake
first iteration at different probe lengths.
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Figure 5. Simulated S11 plot of koch snowflake
second iteration at different probe lengths (l).

(a) (b)

Figure 6. Electric field distribution of Koch
snowflake DRA on XY -plane. (a) First iteration
at 6.04 GHz. (b) Second iteration at 4.57 GHz.

3.2. Koch Snowflake

On the CDRA, Koch snowflake fractal geometry is implemented up to two iterations as shown in
Figures 1(a) and (b). The length of each side in iteration 1 is 15.6 mm, while in iteration 2 it is reduced
to 5.2 mm. Number of sides in the first iteration is 12, and it is increased to 48 in iteration 2. Iteration
1 covers a perimeter of 62.4 mm, and iteration 2 covers 83.2 mm based on Equation (4). With increasing
number of iterations, the fractal structure tries to form a curve with large perimeter.

Figure 2 shows the top and front views of the first iteration of the fractal DRA. From Figure 2,
it can be seen that S is the side length (i.e., S = 15.6 mm) and K the distance between the position
of probe from the center of the Koch snowflake DRA along Y -axis. The simulated S11 plot of Koch
snowflake first iteration for different probe positions along Y -axis is shown in Figure 3. The position
of the probe has varied from K = 0 cm to K = 0.5 cm. As moving away from the center of DRA, the
resonant frequency shifts more towards the higher frequency, and impedance bandwidth increases. The
position of the probe, K = 0.5 cm from the center of DRA, gives a better impedance bandwidth by the
perfect impedance matching. Further increasing the value of K from K = 0.5 cm to K = 1 cm, the
bandwidth of the DRA decreases. The optimized probe location is X = 0 cm and Y = −0.5 cm.

After optimizing the position of iteration 1, the length of probe is varied from l = 0.8 cm to l = 1cm.
Figure 4 shows the S11 plot of snowflake first iteration for different probe lengths. As the length of
the probe increases the coupling to the DRA also increases, thus the resonant frequency of the DRA is
decreased. It is evident that wide bandwidth is observed at l = 0.9 cm. The DRA resonates at 6.04 GHz
with bandwidth 57.2% in the range of 4.43 GHz–7.98 GHz with a gain of 5.9 dBi. From the parametric
studies, the probe length is optimized for effective impedance matching, and the optimized probe length
is l = 0.9 cm.

In order to improve impedance bandwidth further, the second iteration is applied. The length of
the probe is varied for improving the impedance matching. The parametric results of the fractal in the
second iteration are shown in Figure 5. The optimized probe length is l = 0.9 cm. As can be seen, in
the second iteration the resonant frequency decreases compared to the first iteration. This is due to
the increase in volume of DRA with the increase in the iteration. The snowflake iteration 2 resonates
at 4.57 GHz with a bandwidth of 57.6% (4.07–7.36) GHz with 6.57 dBi gain. Compared to iteration 1,
iteration 2 covers more surface area, which increases the gain of the DRA.

The electric field distributions of the snowflake for various iterations at the respective resonant
frequencies are shown in Figure 6(a) and Figure 6(b). The coaxial probe excites the DRA at an offset
position, as the position of the probe has kept at an offset distance from the center. The electric fields
are generated at K = 0.5 cm and distributing inside the dielectric resonator. The field distributions of
the fractal structure are similar to the TM01δ mode of CDRA [17].

Figure 7 shows the comparison of S11 plot of Koch snowflake for the first three iterations. It reveals
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Figure 7. Simulated S11 plot of Koch snowflake
iteration comparison.

(a) (b)

Figure 8. Top view of (a) fractal ring DRA, (b)
fractal ring inside the annular ring.

that compared to the first iteration, the second iteration has a different resonant frequency, due to the
difference in surface area of the two iterations. The S11 plots of iteration 2 and iteration 3 are similar.
As can be seen, bandwidths offered by the second and third fractal iterations offer almost the same
bandwidth. This is because the perturbation effects caused by the second and third iterations of the
Koch snowflake are similar. Thus further analysis is carried out on the second iteration only to avoid
any complex structure.

3.3. Annular Ring

The Koch snowflake fractal ring geometry is created by removing a similar fractal shaped section from
the center of the fractal DRA. The creation of the annular ring symmetrically creates a slot in the DRA
structure, thus reducing the effective permittivity and improving the bandwidth. The bandwidth of the
fractal ring geometry can be varied by adjusting the diameter of the hole. The top view of the fractal
ring DRA is shown in Figure 8(a), and Figure 8(b) shows the top view of annular ring geometry on an
annular ring CDRA. In Figure 8(b), a represents the outer diameter of the ring, a′ the inner diameter of
the ring and ‘d’ the distance from the top edge of inner cylinder to the center of the probe (d = 0.35 cm).

Figure 9 shows the simulated S11 plot of the fractal ring DRA for various radii, where a′ is the
radius of the fractal hole. The value of a′ is varied from a/3 to a/2. The dimension of a′ = a/3 offers
an impedance bandwidth of 3.16 GHz (52.84%) in the range of 4.4 GHz–7.56 GHz. Further, the value
of a′ is increased to a′ = a/2.5. This offers an impedance bandwidth of 3.6 GHz (57.14%) ranging from
4.5 GHz to 8.5 GHz. The dimension of fractal hole is again increased to a′ = a/2, and the DRA offers an
impedance bandwidth of 5.69 GHz (74.23%). It can be observed that the wide bandwidth is obtained
when the radius of the hole is half of the radius of the snowflake DRA. With increasing the dimension of
the hole, the bandwidth is increased, and the resonant frequency is shifted towards the higher frequency
side of the spectrum.

The variation of probe length of fractal ring is shown in Figure 10. As the probe length is increased
from l = 1 cm, the bandwidth of DRA increases. At l = 1.1 cm, maximum impedance bandwidth
is obtained. By further increasing the probe length, the impedance bandwidth is reduced. The best
impedance matching is obtained for a probe length of l = 1.1 cm offering a wide impedance bandwidth
of 5.69 GHz (74.23%) ranging (4.82–10.51) GHz with 7.6 dBi gain.

The electric field distribution of the fractal ring DRA at resonance is shown in Figure 11. It is
similar to the TM01δ mode of conventional CDRA [17]. The concentration of electric field lines is more
in the upper half region of fractal ring DRA (section closer to the probe side), and very few field lines
are concentrated in the lower region of DRA. Thus, the lower half can be removed from the proposed
geometry. This aids in making the DRA physically small, however, retaining the same bandwidth of
operation.
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Figure 9. Simulated S11 plot of fractal ring for
different radius.

Figure 10. Simulated S11 plot of fractal annular
ring for different probe length (l).

Figure 11. Electric field distribution of fractal
ring DRA at 6.14 GHz on XY -Plane.

Figure 12. Top view of half split fractal ring
DRA.

3.4. Half Split Annular Ring

In order to get the optimal design, the annular ring geometry is cut by half, and its parametric studies
are carried out. Figure 12 shows the top view of the half split fractal ring DRA with dimensions.

Figure 13 shows the simulated S11 plot of half split fractal ring for various probe lengths. The
probe length is varied from 1 cm to 1.3 cm. As the probe length is increased from l = 1 cm to l = 1.2 cm,
the impedance bandwidth increases. Further increasing probe length from l = 1.2 cm to l = 1.3 cm, the
impedance matching between the probe and the DRA is decreased. Hence the impedance bandwidth
is decreased. It can be seen that DRA achieves the widest bandwidth when probe length l = 1.2 cm.
It can be observed that a half split structure gives a better impedance bandwidth than a complete
fractal ring. The simulation result shows the bandwidth of 6.09 GHz (4.6–10.69 GHz) with Peak gain of
9.13 dBi.

The electric field distribution of the half split fractal ring DRA is shown in Figure 14. The field
distribution of a half split ring at lower frequency 6GHz and 7.4 GHz is similar to TM01δ like mode of
CDRA [17].

Figure 15 shows the comparison of S11 plot of cylindrical ring DRA with the fractal ring and
half split fractal ring. It can be seen that the fractal ring has better performance than conventional
cylindrical ring DRA. From Figure 8(b), it can be inferred that the fractal ring covers more surface
area and less volume than the annular ring DRA. Hence it offers more impedance bandwidth than
annular ring DRA. The annular ring DRA offers an impedance bandwidth of 3.48 GHz (53.54%) in
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Figure 13. Simulated S11 plot of half split koch
snowlake DRA for different probe length (l).

(a)

(b)

(c)

Figure 14. Electric field distribution of proposed
configuration at (a) 6 GHz on XY -Plane. (b)
Proposed configuration at 7 GHz on XY -Plane.
(c) Proposed configuration at 10 GHz on XY -
Plane.

Figure 15. Simulated S11 plot of comparison. Figure 16. Cavity perturbation on CDRA edges
by Koch snowflake fractal first iteration.

the frequency range of 4.76 GHz–8.24 GHz. However, the fractal ring offers an impedance bandwidth
of 5.69 GHz (74.23%), which is 20.69% higher than that of annular ring DRA. It is noted that after
removing a half portion of the fractal ring structure, the half split portion covers more impedance
bandwidth due to the increase in surface area to volume ratio (S/V ). The fractal ring has an S/V ratio
of 4.21 while the half split fractal ring has 4.51. The half split fractal ring DRA offers an impedance
bandwidth of 6.09 GHz (4.6 GHz–10.69 GHz).
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4. RESULT AND DISCUSSION

The dielectric material used is an FR4 slab of thickness 1.5 cm. The fractal structure is fabricated
from an FR4 material using a high precision abrasive water jet machine. The conventional CDRA has
a resonant frequency of 3.8 GHz. It can be observed that when the fractal is applied on CDRA, the
resonant frequency is shifted towards higher frequency. The resonant frequency of a DRA depends
on radius ‘a’, height ‘h’ and dielectric constant of material (εr) (i.e., Dielectric resonator material
dimensions and properties) [18].

The Lumped element circuit of a conventional CDRA is equivalent to a parallel RLC resonator.
Resonant frequency of parallel resonator

ω0 =
1√
LC

(5)

where, L represents the inductance and C the capacitance of the resonator. Lowering the value of L
and C increases the resonant frequency of resonator. Under equilibrium condition, the time average
electric energy and magnetic energy inside the resonator are the same. Variation in the structure of
DRA changes its electric and magnetic fields, due to change in reactive elements [19].

Average electric energy stored in the capacitor [19] is given as follows:

We =
1
4
|V |2 C (6)

Average electric energy stored in the inductor [19] is given as follows:

Wm =
1
4
|V |2 1

ω2L
(7)

Implementing Koch snowflake configuration on cylindrical dielectric resonator causes material
perturbation on the walls or sides. The shifting of resonant frequency is due to the inward perturbation
created on the edges of the dielectric resonator. From Figure 16, let V0 and S0 be the volume and
surface area of the conventional CDRA, V and S be the volume and surface area of Koch snowflake
first iteration, i.e., cylindrical resonator after inward perturbation and Δv and Δs be the volume and
surface area of the inward perturbation [20–22].

Let ω0, �E0, �H0 be the resonant frequency and field of conventional CDRA before perturbation,
which satisfies Maxwell’s equations [20, 21],

∇× �E0 = iω0μ �H0 (8)

∇× �H0 = −iω0ε �E0 (9)

The Koch snowflake first iteration is applied on the conventional CDRA with ω is the modified
resonant frequency and �E, �H are the electric and magnetic fields of Koch snowflake first iteration,
satisfies Maxwell’s equation,

∇× �E = iωμ �H (10)

∇× �H = −iωε�E (11)

The approximate value of change in resonant frequency (ω−ω0) after perturbation is given by [20],

ω − ω0 = −i
⊂⊃
∫∫

Δs

�E × �H∗
0 · d�s∫∫∫

V0

(
ε �E · �E∗

0 + μ �H · �H∗
0

)
dV

(12)

The numerator represents the perturbed surface of surface area Δs while the denominator represents
the volume integration, including perturbed and unperturbed volume, V0 = V + ΔV . �E∗

0 and �H∗
0 are

the complex conjugates of �E0 and �H0.
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Now assume that perturbation is very small, �E and �H can be replaced by their perturbed values
�E0 and �H0 to obtain approximate values for the change in resonant frequency [20],

ω − ω0 = −i
⊂⊃
∫∫

Δs

�E0 × �H∗
0 · d�s

∫∫∫
V0

(
ε
∣∣∣ �E0

∣∣∣2 + μ
∣∣∣ �H0

∣∣∣2
)

dV

(13)

ω − ω0 = ω0

∫∫∫
ΔV

(
μ

∣∣∣ �H0

∣∣∣2 − ε
∣∣∣ �E0

∣∣∣2
)

dV

∫∫∫
V0

(
μ

∣∣∣ �H0

∣∣∣2 + ε
∣∣∣ �E0

∣∣∣2
)

dV

(14)

ω − ω0 = ω0
ΔWm − ΔWe

Wm−We

(15)

The denominator represents the unperturbed total energy, and the numerator represents the
difference between electric energy (ΔWe) and magnetic energy (ΔWm) removed after inward
perturbation. If the perturbation is made at the place of large magnetic field, the resonant frequency is
raised. Otherwise, if the perturbation is made at the place of large electric field, resonant frequency is
lowered [20]. It can be inferred from Equations (14) and (15).

Fractal ring DRA has a higher resonant frequency than the fractal DRA. The shift in resonant
frequency of the fractal ring is due to material perturbation inside the cavity. The change in resonant
frequency after inward perturbation inside the DRA is given by [20, 21],

ω − ω0 = ω0

∫∫∫
ΔV

([(
Δμ · �H

)
· �H∗

0 +
(
Δε · �E

)
· �E∗

0

])
dV∫∫∫

ΔV

(
μ �H · �H∗

0 + ε �E · �E∗
0

)
dV

(16)

where, Δε and Δμ represent the differences between permittivity and permeability of perturbed and
unperturbed dielectric resonators.

ω − ω0

ω
= −ΔWm + ΔWe

Wm−We

(17)

The denominator represents unperturbed total energy inside the resonator, and numerator
represents an increase in electric and magnetic energies caused by cavity perturbation. From
Equation (16) it is evident that decreasing the value of permittivity or permeability of material inside
the DRA increases the resonant frequency of DRA. In fractal ring DRA a sample is inserted into the
resonator with permittivity, (εr = 1), which is less than the permittivity of the material. This change in
permittivity shifts the resonant frequency. If the permittivity of sample is higher than the permittivity
of material, resonant frequency is lowered and vice versa [23].

Quality factor (Q-factor) is a figure of merit and the measure of bandwidth. The bandwidth of the
antenna is increased by lowering the Q-factor of the resonator. Increasing surface area of DRA is another
way to reduce the quality factor. The surface area of DRA can be increased by creating perturbation on
the DRA. Applying Koch snowflake fractal on CDRA changes the cross section of the DRA. It increases
the surface area, which increases the surface area to volume ratio (S/V ), thus lowering the Q-factor
and improving the bandwidth. The fractal ring decreases the permittivity inside the cavity by material
perturbation [24].

Fractal ring DRA covers more surface area than conventional ring DRA and the fractal DRA. The
increase in S/V ratio of the Koch snowflake fractal DRA by the implementation of fractal ring decreases
the quality factor and increases the bandwidth of DRA [24, 25].

Figure 17 shows the fabricated prototype of the proposed half split fractal ring shaped DRA. The
DRA has been kept on a ground plane with dimension W × L (10 cm × 10 cm), equivalent to the
dimensions of DRA discussed in Figure 2. The DRA is excited by a co-axial probe kept in the identical
position as the fractal ring DRA (d = 0.35 cm), discussed in Figure 8(b). The dimensions of the half
split fractal DRA are similar to that discussed in Figure 12.
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Figure 18 shows the simulated and measured S11 plots of the proposed configuration. It is noted
that the measured results show the bandwidth of 7.7 GHz (90%) ranging from 4.7 GHz–12.4 GHz. The
difference in the results is mainly due to the fabrication tolerances such as small air gaps between the
slabs of the DRA, air gaps between the DRA and the ground plane, imperfections while drilling the
hole for probe insertion.

Figure 19 demonstrates the radiation pattern in two orthogonal planes (i.e., ∅ = 0◦ and ∅ =
90◦). The co-polar and cross-polar radiation patterns of the proposed structure at different resonant

Figure 17. Fabricated proposed antenna
configuration.

Figure 18. Simulated and measured S11 plot of
proposed DRA.

(a) (b)

(c)

Figure 19. Simulated and measured normalized radiation patterns of co-polarization and cross-
polarization of the proposed antenna. The radiation pattern is measured for ∅ = 0◦ and ∅ = 90◦
at (a) 6 GHz, (b) 7.4 GHz, (c) 10 GHz.
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frequencies 6 GHz, 7GHz, 10 GHz are measured. It is evident that at ∅ = 90◦ the cross-polar levels
are very low. The null in the broadside direction of the radiation pattern at 7 GHz confirms the mode
predicted for the proposed antenna geometry as TM01δ like mode. But at 6GHz the radiation pattern
does not have a perfect null in the broadside direction. The radiating mode of the proposed DRA
is a combination of more than single modes due to the change in geometry. The radiation pattern
of the proposed DRA is varied over the bandwidth of operation. The gain of the proposed antenna
is varied. So, it can be used for applications as in Cellular Communication Repeaters, LANs, and
Vehicular Communication, where the mobile equipment can readily select the beam width and gain
most appropriate for each antenna [26, 27].

Figure 20 shows the measured gain and efficiency as a function of frequency. It can be noted that
the peak gain is obtained at resonant frequency 10 GHz which is 8.76 dBi. It can also be seen that the
antenna efficiency is more than 78% of the impedance bandwidth. The maximum radiation efficiency
observed at 7.4 GHz is 86%.

Figure 20. Gain and efficiency plot.

The antenna radiation efficiency related to antenna gain [28],

η =
D

G
(18)

G is the measured gain of the antenna. The gain of the antenna calculated by using two-antenna
method. D is the directivity calculated.

The Directivity of the antenna,

D =
41253
θe ∗ θh

(19)

where θe and θh are the 3 dB beamwidth of the radiation pattern of DRA along the two planes (i.e.,
∅ = 0◦ and ∅ = 90◦).

Table 1 summarizes the performance characteristics of conventional CDRA with the Koch snowflake
fractal, fractal ring and the proposed configuration. The conventional CDRA has an S/V ratio of 1.41,
while the half split fractal ring DRA has 4.51. The bandwidth of DRA increases with the increase in
S/V ratio. From Table 1, it can be inferred that the volume of CDRA is decreased by 76.63%, and
the proposed DRA has a volume of 7.91 cm3. From Table 1, it is clear that Koch snowflake DRA has
higher resonant frequency than CDRA. The shift in resonant frequency is due to the cavity perturbation
created on the edges of CDRA by the application of Koch snowflake fractal. With increasing number of
iterations, the resonant frequency of DRA also increases. This is due to the difference in volume of the
two iterations. Fractal ring causes inward cavity material perturbation inside the DRA, which reduces
the effective permittivity of DRA, thus the resonant frequency of DRA is shifted. It is well understood
from Table 1 that with increasing the S/V ratio, the gain of the antenna also increases.



82 Sankaranarayanan, Venkatakiran, and Mukherjee

Table 1. Comparison of the proposed antenna with the simulated geometries.

Geometry fr BW G S V S/V
Conventional CDRA 3.8 15 4.8 47.82 33.85 1.41

Koch snowflake Iteration 1 6.04 57.2 5.90 40.73 18.98 2.15
Koch snowflake Iteration 2 4.57 57.57 6.56 51.5 21.09 2.44

Fractal Ring (snowflake iteration 2) 6.14 74.23 7.6 66.71 15.83 4.21
Half split fractal ring 6 90 8.76 35.7 7.91 4.51

fr — First resonant frequency (GHz), BW — Bandwidth (%), G — Gain in dBi, S — Total surface
area (cm2), V — Volume (cm3), S/V — Surface area to volume ratio (cm−1).

5. CONCLUSION

This paper presents a novel compact half split fractal annular ring DRA. Three separate DRA geometries
have been discussed. Each has been designed, analyzed and modified, followed by comparison of its
performance with conventional CDRA. A Koch snowflake structure is implanted on the CDRA. The
parametric studies are carried out for Koch snowflake on the CDRA. Optimized second iteration of
the fractal geometry offers better performance, a bandwidth of 57.5% with a gain of 6.56 dBi. Further,
the fractal ring offers a wide impedance bandwidth of 74.23% with a gain of 7.6 dBi. The structure
is made compact by removing a half portion of the fractal ring without affecting its characteristics.
The proposed configuration provides 90% impedance bandwidth in the range of 4.7 GHz–12.4 GHz.
Experimental results prove that the proposed DRA achieves high peak gain of 8.76 dBi. The bandwidth
of the antenna is increased by the reduction of Q-factor caused by material cavity perturbation by the
snowflake fractal. To the best of our knowledge, such a geometry has neither been investigated nor been
proposed in previous works.
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