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Electromagnetic Boundaries with PEC/PMC Equivalence

Ismo V. Lindell* and Ari Sihvola

Abstract—The most general electromagnetic boundary, defined by linear and local boundary
conditions, is defined in terms of conditions which can be called generalized impedance boundary
conditions. Requiring that the boundary be equivalent to PEC and PMC boundaries for its two eigen-
plane waves, which property is known to exist for many of its special cases, it is shown that the recently
introduced Generalized Soft-and-Hard/DB (GSHDB) boundary is the most general boundary satisfying
this property.

1. INTRODUCTION

Boundary surface is a conceptual two-dimensional structure in which electromagnetic sources, induced
by the external field, are related by some intrinsic mechanism. As sources we may assume electric and
magnetic surface currents, Jes, Jms, and electric and magnetic surface charges, %es, %ms. When the unit
vector normal to the boundary surface is denoted by e3, the fields outside the boundary are related to
the surface sources by the conditions [1]

e3 ×E = −Jms, e3 ×H = Jes, (1)
e3 ·D = %es, e3 ·B = %ms. (2)

For simplicity we assume a planar boundary and constant unit vectors e1, e2, e3 making an orthonormal
basis. Assuming time-harmonic fields with time dependence exp(jωt), the sources obey the continuity
conditions

∇ · Jes = −jω%es, ∇ · Jms = −jω%ms, (3)

following from the Maxwell equations and (1), (2).
Let us assume that the relations between the source quantities, set by the boundary structure, are

linear and local and can be expressed by linear algebraic equations. Because of the relations (1) and (2),
the fields at the boundary are related in a certain manner forming the boundary conditions which are
linear and local. Considering the basic problem of a field incident to the boundary, due to the Huygens
principle, the reflected field is uniquely determined when two scalar components of the field vectors
tangential to the surface are known. Thus, the boundary conditions must be of the form of two scalar
conditions between the fields at the surface. Under the assumption of linearity and locality, the most
general boundary conditions can be assumed to have the form

αe3 ·B + βe3 ·D + at ·E + bt ·H = 0, (4)
γe3 ·B + δe3 ·D + ct ·E + dt ·H = 0, (5)

relating the normal components of D and B vectors and tangential components of E and H vectors
in terms of four vectors and four scalars. The vectors tangential to the boundary surface are denoted
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by the subscript ()t. The form of (4) and (5) can be simplified by eliminating e3 ·B on one hand, and
e3 ·D on the other hand, whence the most general form can be written as

αe3 ·B + at ·E + bt ·H = 0, (6)

δe3 ·D + ct ·E + dt ·H = 0. (7)

Various special cases of these boundary conditions have been studied previously by these authors and
others, as will be discussed in the following section.

2. BOUNDARY CONDITIONS

Let us consider the boundary conditions (6) and (7) for some special choices of the two scalars and four
tangential vectors.

• The perfect electric conductor (PEC) conditions, α = δ = 0, bt = dt = 0, at = e1, ct = e2,

e1 ·E = 0, e2 ·E = 0, ⇒ e3 ×E = 0. (8)

• The perfect magnetic conductor (PMC) conditions, α = δ = 0, at = ct = 0, bt = e1, dt = e2,

e1 ·H = 0, e2 ·H = 0, ⇒ e3 ×H = 0. (9)

• The perfect electromagnetic conductor (PEMC) conditions [2], α = δ = 0, at = Mbt = Me1,
ct = Mdt = Me2,

e1 · (H + ME) = 0, e2 · (H + ME) = 0, ⇒ e3 × (H + ME) = 0. (10)

• The DB conditions [3], α = δ = 1, at = bt = ct = dt = 0,

e3 ·D = 0, e3 ·B = 0. (11)

• The soft-and-hard (SH) conditions [4], α = δ = 0, at = dt = e1, bt = ct = 0,

e1 ·E = 0, e1 ·H = 0. (12)

• The generalized soft-and-hard (GSH) conditions [5], α = δ = 0, bt = ct = 0,

at ·E = 0, dt ·H = 0. (13)

• The soft-and-hard/DB (SHDB) conditions [6], α = δ, β = γ = 0, bt = ct = 0, at = −dt,

αe3 ·B + at ·E = 0, αe3 ·D− at ·H = 0. (14)

• The generalized soft-and-hard/DB (GSHDB) conditions [7], bt = ct = 0,

αe3 ·B + at ·E = 0, δe3 ·D + dt ·H = 0, (15)

• The impedance conditions α = δ = 0,

at ·E + bt ·H = 0, ct ·E + dt ·H = 0. (16)

which can also be written as e3 ×E = Zs ·H, with Zs = (atdt − ctbt)/(e3 · at × ct).

Compared with (16), the form (6), (7) can be called generalized impedance conditions. Because
each tangential vector has two free parameters, the number of free parameters of the GSHDB boundary
(15) is 4; for the impedance boundary (16) it is 6; for the generalized impedance boundary (6), (7) it is
10.

One should note that non-local boundary conditions are not included in the definition (6) and (7).
For example, the D’B’ boundary defined by the conditions [8]

e3 · ∇(e3 ·D) = 0, e3 · ∇(e3 ·B) = 0, (17)

would require operator-valued scalars α and δ in (6) and (7).



Progress In Electromagnetics Research Letters, Vol. 61, 2016 121

3. PLANE-WAVE REFLECTION

Considering a time-harmonic plane wave incident to and reflecting from the boundary surface,

Ei(r) = Ei exp(−jki · r), Er(r) = Er exp(−jkr · r), (18)

with
ki = kt − k3e3, kr = kt + k3e3, (19)

and applying the Maxwell equations, we can write the following relations for the total fields at the
boundary surface,

ωe3 ·B = ωe3 · (Bi + Br) = e3 · kt × (Ei + Er) = (e3 × kt) ·E, (20)
ωe3 ·D = ωe3 · (Di + Dr) = −e3 · kt × (Hi + Hr) = −(e3 × kt) ·H. (21)

Substituting e3 ·B and e3 ·D in the generalized impedance conditions (6) and (7), they obtain the form
of the impedance conditions (16) if, in the latter, we substitute

at → at + αe3 × kt, dt → dt − δe3 × kt. (22)

Thus, if the vectors at, dt are allowed to have a similar linear dependence on the vector, e3 × kt, the
impedance conditions (16) represent the most general form of boundary conditions for a plane wave.

It has been previously shown that, for the generalized SHDB boundary (15), there exist two
eigenwaves, one of which is reflected from the boundary as from a PEC boundary and, the other
one, as from a PMC boundary. This property is valid for all of its special cases, the SHDB boundary,
the GSH boundary, the SH boundary and the DB boundary. Also, the PEMC boundary shares the
same property whereas the most general impedance boundary doesn’t. The property of PEC/PMC
equivalence is most useful because, given any incident wave, the reflected wave can be easily found
by decomposing the incident wave in its eigencomponents. The task is to find the restriction for the
generalized impedance boundary which allows the boundary to be replaced by PEC and PMC boundaries
for the respective eigenwaves.

Invoking the results of [7], the relations between tangential components of the electric and magnetic
fields of incident and reflected plane waves in an isotropic medium with parameters εo, µo can be written
as

ηoHi
t = −Jt ·Ei

t, Ei
t = Jt · ηoHi

t, (23)

ηoHr
t = Jt ·Er

t , Er
t = −Jt · ηoHr

t , (24)

where the dyadic Jt is defined by

Jt =
1

kok3

(
(e3 × kt)kt + k2

3e3 × It
)

. (25)

For an eigenfield, the tangential field components are multiples of one another. Defining Er
t = λEi

t,
from (23) and (24) we obtain Hr

t = −λHi
t. Thus, the PEC and PMC boundaries correspond to the

respective eigenvalues λ = −1 and λ = +1.
Let us first find under what restrictions to the four vectors at, bt, ct and dt the eigenvalues

corresponding to the impedance boundary conditions (16) are +1 and−1. Writing (16) for the eigenfields
as (

(1 + λ)ηoat − (1− λ)bt · Jt

)
·Ei

t = 0, (26)
(
(1 + λ)ηoct − (1− λ)dt · Jt

)
·Ei

t = 0, (27)

to have solutions other than Ei
t = 0, the bracketed vector expressions must be parallel. Thus, the

eigenvalue λ must satisfy the scalar equation

e3 ·
(
(1 + λ)ηoat − (1− λ)bt · Jt

)
×

(
(1 + λ)ηoct − (1− λ)dt · Jt

)
= 0. (28)

Let us require that it be satisfied for λ = +1 and λ = −1, which yields the two conditions:

e3 · (at × ct) = 0 (29)
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e3 ·
((

bt · Jt

)
×

(
dt · Jt

))
= e3 ·

(
(bt × dt) · J(2)

t

)
= e3 · (bt × dt) = 0. (30)

In the latter equation we use the property Jt
(2) = e3e3 [7] and rules of dyadic algebra [9]. From (29)

and (30) it follows that, to obtain eigenvalues λ = ±1, the tangential vectors at and ct on one hand,
and bt and dt on the other hand, must be linearly dependent, whence they must satisfy conditions of
the form

Aat + Cct = 0, Bbt + Ddt = 0 (31)

for some scalars A−D. Operating the impedance boundary conditions (16) as
(

A C
B D

)(
at bt

ct dt

)
·
(

E
H

)
=

(
(Abt + Cdt) ·H
(Bat + Dct) ·E

)
=

(
0
0

)
, (32)

the required boundary conditions must reduce to the form a′t · E = 0 and b′t · H = 0, which can be
recognized as the generalized soft-and-hard (GSH) boundary conditions (13).

For the generalized impedance conditions (6), (7), we can make the substitutions (22), whence (32)
can be written as (

(Abt + C(dt − δe3 × kt)) ·H
(B(at + αe3 × kt) + Dct) ·E

)
=

(
0
0

)
. (33)

Applying plane-wave relations, these conditions can be expressed as(
(Abt + Cdt) ·H + ωCδe3 ·D
(Bat + Dct) ·E + ωBαe3 ·B

)
=

(
0
0

)
, (34)

which have the form of the generalized soft-and-hard/DB conditions (15).

4. CONCLUSION

The task taken in this paper was to find the most general linear and local boundary conditions which
allow plane waves to be split in two components, one of which is reflected as from the PEC boundary
and, the other one, as from the PMC boundary. For this, the most general linear and local boundary
conditions were first expressed in a form which can be called generalized impedance boundary conditions.
Since PEC and PMC boundary conditions for a plane wave yield the reflection coefficients ±1, the
problem was reduced to finding out corresponding restrictions for the generalized impedance boundary.
The outcome was that the generalized impedance conditions must actually be of the form of what have
been called generalized soft-and-hard/DB (GSHDB) conditions, previously studied by these authors.
However, one should note that, because of the assumption of locality, there may exist other solutions as
well. For example, the non-local D’B’ boundary conditions (17) are also known to share this PEC/PMC
property [8]. While the result of this paper is mainly of theoretical interest, realizations of various
special cases of the GSHDB boundary conditions as metasurfaces have been reported in [10–16], and
applications have been pointed out in [17–20].
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