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Magnetic Coenergy Based Modelling of PMSM
for HEV/EV Application

Zaimin Zhong, Shang Jiang*, Yingkun Zhou, and Shuihua Zhou

Abstract—Permanent-magnet synchronous motors (PMSM) used for HEV/EV drive train have many
nonlinear characteristics including saturation, slotting effects and non-sinusoidal back-emf. However,
accurate torque control and rigorous on-board-diagnose require precise modelling that goes far beyond
capacity of conventional Space Vector based PMSM model considering only fundamental frequency.
By considering the higher harmonics of PMSM, this paper introduces a novel PMSM model named
Generalized Space Vector Model (GSVM) based on Fourier series reconstruction of magnetic coenergy.
Firstly, two-dimensional Fourier series supplemented by polynomial fitting is introduced to reconstruct
the numerical solution of coenergy from Finite Element Analysis (FEA). Secondly, analytical models
of flux linkage, electric torque and voltage equation in stator current oriented synchronous frame are
derived based on the reconstructed coenergy model. Finally, the steady and dynamic characteristics of
GSVM are validated against experimental results.

1. INTRODUCTION

PMSM are increasingly applied on HEV/EV due to the advantages including high power density, wide
speed range and high efficiency [1, 2]. However, the automotive application has more rigorous demand
on motor performance and on-board-diagnose. An accurate model of PMSM is the premise to solve
those problems.

One type of modelling methods is based on lumped parameters — inductances Ld and Lq, which are
usually regarded as constant. However, because of the saturation, slotting effects and other nonlinear
factors, such a model cannot accurately describe the relationship among voltages, currents and torque.
Some studies describe the saturated PMSM model by inductance variations. Both magnetic circuit
and FEA analysis are applied to predict the effect of iron core saturation [3]. The inductances are
illustrated by a nonlinear function respect to Id and Iq [4–7]. However, the lumped parameter method
cannot describe the space distributed property of magnetic field when the air gap flux density is not
sinusoidal.

Another type of modelling methods is based on reconstructing the FEA results. The field
reconstruction method (FRM) can provide a precise description of the magnetic field components for
PMSM in non-sinusoidal condition, which has been applied to flux estimation and minimize torque
ripple without core saturation [8–10]. A kind of flux linkage reconstruction method is put forward to
predict torque ripple in saturated situation [11], but the relationship between voltages and currents is
not studied. The coenergy reconstruction method is also applied to develop the PMSM model [12, 13],
but the integrated representation of reconstructed coenergy is not obtained, and there is no sufficient
validation of the proposed model.

This paper starts from the reconstruction of magnetic coenergy (MCE), in which all nonlinear
factors are taken into account. Then a new PMSM model named GSVM, including analytical description
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of flux linkage, electromagnetic torque and voltage are built based on the reconstructed MCE. This form
of GSVM is well organized and convenient to analyze the property of PMSM with arbitrary current
or voltage excitation. The simulation results of GSVM show good accordance with the FEA and
experimental results.

2. MODELLING MCE FROM NUMERICAL SOLUTIONS

2.1. Significance of MCE

The slot structure, core saturation, leakage flux and other nonlinear characteristics of PMSM can be
clearly reflected by the variation in MCE. In addition, the flux linkage and electromagnetic torque can
be derived from the MCE:

ψX =
∂Wc (ia, ib, ic, θr)

∂iX
(1)

Te =
3
2
p
∂Wc (ia, ib, ic, θr)

∂θr
(2)

where Wc denotes the MCE of the PMSM, iX the phase current, ψX the flux linkage of X phase, θr the
electrical angle of rotor, p the number of pole-pairs, and Te the electromagnetic torque.

Therefore, by describing the MCE of PMSM precisely in all working range, the full feature of
PMSM can be obtained, which includes flux linkage, torque ripple, etc.

2.2. Numerical Solutions of MCE

The FEA model used in this paper is shown in Fig. 1 while its corresponding parameters are illustrated
in Table 1.

Figure 1. 2D FEA model of PMSM.

In some electromagnetic FEA software, the MCE can be obtained directly. However, the FEA
software used in this paper does not have this function. Therefore, we need to get the flux linkage from
FEA firstly, then integrate the flux linkage with Equation (3) to get the MCE.

Wc

(
id, iq, θr

)
=

∫ id

0
ψd

(
i′d, 0,θr

)
di′d+

∫ iq

0
ψq

(
id, i

′
q, θr

)
di′q (3)

where θr denotes the rotor position relative to A-axis; id and iq are d-axis and q-axis currents,
respectively; ψd and ψq are d-axis and q-axis flux linkages, respectively (Fig. 2).

The d-axis and q-axis currents can be represented by Equation (4), so the form of MCE —
Wc(id, iq, θr) can be replaced by Wc(Is, θr, β).

id = Is cos β, iq = sin β (4)

where Is denotes the amplitude of stator current vector in d-q synchronous-frame and β the torque
angle between stator current vector and d-axis.
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Table 1. Parameters of IPMSM.

Parameters Value
Number of pole pairs 3
Number of phase 3
Number of slots 36
Outer Diameter of stator 180 mm
Inner Diameter of stator 105 mm
Outer Diameter of rotor 103.6 mm
Inner Diameter of rotor 50 mm
DC link voltage 336 V
Maximum Power 60 kW
Rated Torque 50 Nm
Rated Speed 6000 rpm

Figure 2. Synchronous-frames applied in this paper.

This paper defines that the corresponding MCE in a complete electrical period is W k,j
c (θr) in

working point P k,j(Ik
s , β

j), where θr is a vector varying from 0 to 2π, comprising wθr discrete values
θi
r. In order to get the full MCE of PMSM, Ik

s is varied from 0 to Imax, while βj is varied from 0 to
2π. By combining the MCE with each given Is, the numerical MCE with different θi

r and βj can be
represented by one matrix W k

c (θr, β).

2.3. Reconstruction of MCE Using Two-Dimensional Fourier Series

Many papers [14–16] have proved that the flux linkage in d-q frame consists of harmonics with 6, 12,
18, 24 . . . components when excited with three-phase symmetry currents.

ψd/q (Is, θr, β) =
N∑

k=−N

Ck (Is, β) e6kθr

So similarly the MCE deduced from Equation (3) only have harmonics with orders of 6k in the θr

dimension. In addition, it is obvious that with each given Is the excitation currents will have periodicity
in the β dimension, which make the MCE also change with β with a period of 2π. Fig. 3 is the waveform
of MCE from FEA numerical solution with a constant Is and different θr, β, from which the periodicity
of MCE in both θr and β dimensions can be easily observed.
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Figure 3. Periodicity of MCE in both θr and β dimensions.

Therefore, two-dimensional Fourier series decomposition can be employed to the discrete numerical
values of MCE W k

c (θr, β) because of its periodicity. Note that for a PMSM system, the energy is
concentrated around the fundamental pole frequency of the machine, thereby the number of Fourier
coefficients can be reduced to a small count. Then the ultimately transformation is

Ŵ k
c (θr, β) =

N1∑
m1=−N1

N2∑
m2=−N2

Ck
m1,m2

ejm1ωθθr+jm2ωββ (5)

where N1 and N2 denote the highest Fourier series orders of θr and β, respectively, and Ck
m1,m2

the
Fourier coefficients with corresponding orders m1 and m2. ωθ and ωβ are the base frequency of the
MCE. With the analysis before, the value of the frequency can be easily obtained.

ωθ = 6, ωβ = 1

2.4. Polynomial Fitting of Fourier Coefficients with Respect to Current Amplitude

When the amplitude of stator current vector Is is fixed, the relationship among MCE W k
c , electrical

angle of rotor θr and torque angle β can be described by Equation (5). However, the variation trend
of W k

c with respect to Is cannot be represented. In fact, when Is gets larger, the core saturation may
increase fast, which can change the property of PMSM and distribution of MCE largely. Thus, the next
step is to construct a function to illustrate the MCE in different working points including the highly
saturated region. The method used in this paper is to express the Fourier coefficients Cm1,m2 of different
current excitations by functions respect to Is − Cm1,m2(Is).

In this work the polynomial fitting has been selected, then the Fourier coefficients can be represented
by

Cm1,m2 (Is) = Is·(CN3
m1,m2

IN3
s +CN3−1

m1,m2
IN3−1
s + . . .Ck

m1,m2
Ik
s + . . .+C

1

m1,m2
I1
s +C0

m1,m2
) (6)

where N3 denotes the highest order of polynomial and Ck
m1,m2

the polynomial coefficient of the kth
order.

Then the MCE with different Is becomes

Wc (Is, θr, β) =
N1∑

m1=−N1

N2∑
m2=−N2

Cm1,m2 (Is) ejm1ωθθr+jm2ωββ
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Combine all the Cm1,m2(Is) into one matrix C(Is) whose dimension is 2m1+1 by 2m2+1.
Equation (6) becomes

C(Is) = Is

(
CN3IN3

S + CN3−1IN3−1
S + . . .+ CkIk

S . . . + C1I1
S + C0

)
(7)

Introduce vectors to express the base of Fourier series

V(θr)1×(2N1+1) = [e−jN1ωθθr , e−j(N1−1)ωθθr , . . . , ejkωθθr , . . . , ej(N1−1)ωθθr , ejN1ωθθr , . . . ,

ej(N1−1)ωθθr , ejN1ωθθr ] (8)

U(β)(2N2+1)×1 = [e−jN2ωββ, e−jN2−1ωββ , . . . , ejkωββ, . . . , ej(N2−1)ωββ, ejN2ωββ]T (9)

Then the MCE is illustrated with a well organized form

WC(IS , θr, β) = V(θr)C(IS)U(β) (10)

Ck are called “Distributed Matrices” in this paper. They represent the property of PMSM and are used
for describing the change rules of MCE. By choosing appropriate dimension and number of matrices
Ck, the balance between accuracy and complexity of MCE model can be very flexible.

A calculation example is given by setting the orders of Fourier series and polynomial both to six,
then the “Distributed Matrices” Ck become square matrices, with the dimension 13 by 13, and the
number of “Distributed Matrices” is also 6. As shown in Fig. 4, the MCE of numerical value (marks)
and analytical model (solid lines) varies with the electrical angle θr in almost the same track, which
means that the MCE model can describe the MCE of PMSM in all working range.
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Figure 4. Variations of MCE respect to electrical angle by the numerical value (marks) and the
analytical model (solid line): (a) Is= 50A, β = 45◦, (b) Is= 125A, β = 135◦, (c) Is= 200A, β = 225◦,
(d) Is= 275A, β = 315◦.

There may be some doubts about the accuracy of the proposed MCE model when the excitation
currents are non-sinusoidal because the model is derived from the FEA results in sinusoidal condition.
However, it is clear that the MCE is only decided by its arguments — Is, θr and β, thus, the model’s
validity is guaranteed as long as the value of MCE is accurate on every argument. Therefore, the
analytical model can also express the MCE precisely even the excitation currents are non-sinusoidal.

3. PMSM MODEL DERIVED FROM MCE

3.1. Analytical Model of Flux Linkage

Equation (1) is the relationship between MCE and flux linkage in the stationary frame. In the d-q
synchronous frame, the flux linkage of d-axis and q-axis will be a little more complicated.

ψd =
∂Wc (Is, θr, β)

∂id
=
∂Wc (Is, θr, β)

∂Is
·∂Is
∂id

+
∂Wc (Is, θr, β)

∂θr
·∂θr

∂id
+
∂Wc (Is, θr, β)

∂β
· ∂β
∂id

(11)
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According to Equation (4),

∂Is
∂id

=
∂
√
i2d+i

2
q

∂id
= cos β,

∂θr

∂id
= 0,

∂β

∂id
=
∂ tan−1 (iq/id)

∂id
= −sin β

Is
(12)

Substitute Equation (12) into Equation (11),

ψd= cos β·V (θr)
dC (Is)
dIs

U (β)−sin β
Is

·V (θr)C (Is)
dU (β)
dβ

Similarly, the flux linkage of q-axis is given,

ψq= sinβ·V (θr)
dC (Is)
dIs

U (β) +
cos β
Is

·V (θr)C (Is)
dU (β)
dβ

Although there is Is in the denominator position, the form of C(Is), with a sole Is part, shown in
Equation (7) makes it still have the ability to express the flux linkage when Is is close to zero. With
defining D(Is) = C(Is)

Is
, the expression of flux linkage becomes

[
ψd

ψq

]
=

[
cos β −sinβ
sin β cos β

] ⎡
⎢⎢⎣

V (θr)
dC (Is)
dIs

U (β)

V (θr)D (Is)
dU (β)
dβ

⎤
⎥⎥⎦ (13)

Figure 5 shows the comparison of d-axis and q-axis flux linkages between analytical model (solid line)
and FEA (marks). Plots (a) represent the d-axis and q-axis flux linkages without current excitation. The
good agreement between FEA and flux linkage model has demonstrated the effectiveness of analytical
model when Is is small. Plots (b) are the flux linkage with medium current excitation, which also show
a perfect consistency between two results. But when the amplitude of current excitation reaches the
maximum, the deviation between the two results increases, as represented in plots (c). The reason is
that the polynomial fitting cannot ensure the accuracy of derivative respect to Is near the boundary.
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Figure 6 illustrates d-axis and q-axis flux linkages when the injected currents are non-sinusoidal
with expression (14), but the two results still match well. Thereby, the flux linage model can also
represent the flux linkage precisely even if the excitation currents are non-sinusoidal. The results of flux
linkage have demonstrated indirectly that the analytical model of MCE is accurate with non-sinusoidal
current excitation.

ia= 100
(

cos (θr+β)+
1
3

cos (3θr+β) +
1
5

cos (5θr+β)
)

(14)
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Figure 6. Variations of d-axis flux linkage (a) and q-axis flux linkage (b) respect to electrical angle by
the FEA (marks) and the analytical model (solid line) with non-sinusoidal current excitation.

3.2. Analytical Model of Electro-Magnetic Torque

Just as the analytical model of flux linkage, the model of electromagnetic torque also needs to be
generated in d-q synchronous-frame again.

Te =
3
2
p
∂Wc (Is, θr, β)

∂θr
=

3
2
p

(
∂Wc (Is, θr, β)

∂Is
·∂Is
∂θr

+
∂Wc (Is, θr, β)

∂θr
·∂θr

∂θr
+
∂Wc (Is, θr, β)

∂β
· ∂β
∂θr

)
(15)

where ∂Is
∂θr

can be expressed by
∂Is
∂θr

=
∂Is
∂id

·∂id
∂θr

+
∂Is
∂iq

· ∂iq
∂θr

Then take partial derivative of id, iq with respect to θr

∂id
∂θr

= iq,
∂iq
∂θr

= −id (16)

According to Equations (4) and (16),

∂Is
∂θr

=
∂
√
i2d+i

2
q

∂θr
= 0, ∂θr/∂θr = 1,

∂β

∂θr
=
∂ tan−1 (iq/id)

∂θr
= −1, (17)

Substitute Equation (17) into Equation (15),

Te =
3
2
p

(
dV (θr)
dθr

C (Is)U (β)−V (θr)C (Is)
dU (β)
dβ

)
(18)

Note that the MCE, which generates the cogging torque is not included in Equation (18), which
makes the cogging torque unable to be calculated directly. Fortunately, the cogging torque changes only
slightly with different current excitations, so the full torque of PMSM can be obtained by adding one
constant item named Tcog(θr).

The form of torque model is very convenient to describe the change rule of torque in PMSM. Firstly,
from Equation (7) we have known that the polynomial C(Is) can represent the Fourier coefficients
accurately even if the PMSM in a highly saturated working condition. Based on the premise, the
torque model must have the ability to express the torque change on account of the core saturation.
The torque comparison between FEA (marks) and torque model (solid lines) is shown in Fig. 7. It is
obvious that the results of torque model are more precise than the flux linkage model compared with
the FEA. The two torque results are almost the same in each electric angle regardless of the amplitude
of excitation currents. The reason is that there is no derivative respect to Is existing on the torque
expression (Equation (18)). And unlike polynomial fitting respect to Is, the two-dimensional Fourier
series decomposition can guarantee not only the value, but also the derivative of MCE in each point.

Secondly, when Is and β are constant, which means that PMSM is in its steady state with
three symmetrically sinusoidal currents excitation, vector V(θr) can separate each harmonics of torque
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Figure 7. Variations of electric torque respect to electrical angle by the FEA (marks) and the analytical
model (solid line): (a) Is= 0A, (b) Is= 125A, β = 135◦, (c) Is = 300A, β = 135◦.

effectively indicated in Formula (19).

Te =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

T−N1
e−jN1ωθθr

. . .
Tke

jkωθθr

. . .
T0e

0

. . .
TN1e

jN1ωθθr

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(19)

where Tk represents the amplitude of kth torque harmonic.
Actually average torque is always used during PMSM control process. From the analytical model

of torque, we find that the orders of those torque harmonics are multiple of 6, causing no average torque
in each electrical period. Thus, the average torque is exactly the amplitude of zero order harmonic T0.
The formula of average torque can be simple.

T0= −3
2
pV0 (θr)C (Is)

dU (β)
dβ

where,
V0 (θr) = [0, . . . , 0, 1, 0, . . . 0]

Finally, when Is and β vary with time severely, the excitation currents will contain a large number
of harmonics. Like MCE model and flux linkage model, the torque ripple caused by non-sinusoidal
current excitation can also be represented accurately by the torque model (Fig. 8).
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Figure 8. Variations of electric torque respect to electrical angle by the FEA (marks) and the analytical
model (solid line) with non-sinusoidal current excitation.

3.3. Voltage Equations in M-T Synchronous-Frame

The flux linkage shown in Equation (13) is production of two parts. It is interesting to find that the first
part is identical to the IPark transformation. Actually the second part just illustrates the flux linkage
in another synchronous-frame rotated from d-q frame.

In order to express this phenomenon clearly, this paper introduces stator current oriented
synchronous-frame called M -T synchronous-frame. As shown in Fig. 2, the direction of M -axis is
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always aligned to the stator current vector, so the angle between M -axis and d-axis is the torque angle
β. The T -axis lags the M -axis 90 degrees in space all the time.

Thus flux linkage in M -T axis is just the second part of Equation (13).

[
ψM

ψT

]
=

⎡
⎢⎣ V (θr)

dC (Is)
dIs

U (β)

V (θr)D (Is)
dU (β)

dβ

⎤
⎥⎦ (20)

It is obvious that the flux linkages in M -T frame are simpler than the results in d-q frame. Thus,
this paper tries to establish the voltage equation in the M -T synchronous-frame. The components of
stator current vector in M -T axis are

iM = Is, iT = 0 (21)

Through the vector transformation ej(θr+β), the vector equation in M -T axis becomes

uMT
s = RsiMT

s +
dψMT

s

dt
+j(ωr+β̇)ψMT

s (22)

where Rs denotes the reluctance of stator windings,

uMT
s = uM+juT , ψMT

s = ψM+jψT , iMT
s = iM+jiT (23)

We find that the deviation of V(θr) and U(β) can be expressed by multiplying one diagonal matrix
algebraically.

dV (θr)
dθr

= V (θr) ·P, dU (β)
dβ

= M·U (β) (24)

where

P =

⎡
⎣

−jN 1ωθ · · · 0
...

. . .
...

0 · · · jN1ωθ

⎤
⎦ , M =

⎡
⎣

−jN 2ωβ · · · 0
...

. . .
...

0 · · · jN 2ωβ

⎤
⎦

Substituting Equations (20), (21), (23) and (24) into Equation (22), the voltage equations in M -T
axis are obtained. [

uM

uT

]
=

[
Rs

0

]
·Is+A·

[
İs
β̇

]
+B·ωr (25)

where

A =
[

V (θr) 0
0 V (θr)

]⎡
⎢⎢⎣

d2C (Is)
dI2

s

(
dC (Is)
dIs

−D (Is)
)
·M

dD (Is)
dIs

·M D (Is) ·M2+
dC (Is)
dIs

⎤
⎥⎥⎦

[
U (β) 0

0 U (β)

]

B =
[

V (θr) 0
0 V (θr)

]⎡
⎢⎢⎣

P·dC (Is)
dIs

−D (Is) ·M
dC (Is)
dIs

+P·D (Is) ·M

⎤
⎥⎥⎦

[
U (β) 0

0 U (β)

]

Through this section, a new PMSM model based on the reconstructed MCE is established, including
the flux linkage model, electromagnetic model and voltage model. Compared with the conventional
Space Vector model based on inductances considering only fundamental frequency, this new PMSM
model takes account of all the harmonic effects. Thereby, this analytic model will be called GSVM
(Generalized Space Vector Model) in this paper.

Since the parameters of GSVM are only composed of several matrices, the numerical solution of
GSVM is much faster than the FEA. When the orders of Fourier series and polynomial are chosen as
the previous calculation example defined in Section 2.4, the computation speed of GSVM established
in an off-line simulation software is about 7000 times as much as FEM. The computation time of the
analytical torque model has been recorded in one main stream embedded MCU running at 160 MHz,
and it only takes less than 70 microseconds. Therefore, it is possible that the GSVM can be used for
model-based accurate torque control or on-board-diagnose for HEV/EV application.
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4. EXPERIMENTAL VALIDATION

A test bench with a high precision torque transducer is shown in Fig. 9. The parameters of test motor
in the test bench are the same as the FEA model. As flux linkages are hard to be measured accurately
through the sensor devices, elements compared in this paper will be the response of electric torque and
currents.

Figure 9. Test bench.

Based on the voltage Equation (25) and electric torque model (18) proposed above, the model
of GSVM is established in an off-line simulation software. The close loop control system of PMSM
is developed based on Field Oriental Control (FOC). And the control systems are entirely identical
between the simulation and experiment. By comparing the results of GSVM and experiments in the
same working condition, the accuracy of GSVM can be validated.

Firstly, the torque response in steady state is compared at different working points, as shown in
Fig. 10. Plot (a) is the result of cogging torque while the remaining three plots are results with desired
torque 5Nm, 10 Nm and 15 Nm, respectively. The choices of currents distribution are based on MTPA
(Maximum Torque Per Ampere) principle. It is shown that the torque responses between GSVM and
experiments have good accordance, although the differences are bigger than the results comparison
between GSVM and FEA. It may be caused by manufacture errors of IPMSM or the vibration of test
bench.
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Figure 10. Variations of electric torque respect to electrical angle by experiments (marks) and GSVM
(solid line): (a) Is= 0A, (b) Is= 20.8A, β = 103.4◦, (c) Is= 40.9A, β = 108.7◦, (d) Is= 61.4A,
β = 109.7◦.

Then dynamic characteristics of GSVM are tested by setting a torque step from 0Nm to 15 Nm
when the tested motor is working in a constant speed (80 rpm). In Fig. 11(a), the solid line belongs
to A phase current response obtained from the simulation model GSVM while the marks come from
the corresponding experimental results through one current sensor. It is obvious that the phase current
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Figure 11. Comparison of dynamic response between experiments (marks) and GSVM (solid line): (a)
A phase current. (b) Electric torque.

responses of two results are very close, which means that GSVM can describe the relationship between
input voltages and output currents with good accuracy. The comparison of torque response between
experiments (marks) and GSVM (solid line) is shown in Fig. 11(b). In fact, the response process can
be divided into three parts. During the first part, the given torque is 0 Nm, but the actual torques of
the two results both have fluctuation of 2.8 Nm due to slotting effects. Then the two torques increase
quickly to about 15 N with almost the same trajectory. In the last part, there is a small phase difference
between the two results, which is caused by speed deviation from the test bench. As a whole, the torque
responses from GSVM reflect the torque property of real motor comprehensively.

5. CONCLUSIONS

This paper combines two-dimensional Fourier series and polynomial fitting to obtain an analytical
model of MCE with the “Distributed Matrices” Ck. The model of MCE has a well organized form
and describes the MCE of PMSM precisely considering saturation, slotting and non-sinusoidal back-emf
effects. In addition, a new PMSM model named GSVM, including the analytic description of flux linkage,
electromagnetic torque and voltage is developed based on the model of MCE. The steady and dynamic
characteristics have been validated by comparing with the FEA and experiment results respectively.
Specifically, the GSVM can represent the flux linkage of d-q-axis and torque ripple perfectly under
different current excitations. The voltage equation developed in stator current oriented synchronous
frame can predict the response of three phase currents exactly.
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